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a b s t r a c t

In this study, the static pull-in instability of nanocantilever beams immersed in a liquid electrolyte is

theoretically investigated. In modeling the nanocantilever beam, the effects of van der Waals forces,

elastic boundary condition and size dependency are considered. The modified couple stress theory,

containing material length scale parameter, is used to interpret the size effect which appears in micro/

nanoscale structures. The modified Adomian decomposition (MAD) method is used to gain an

approximate analytical expression for the critical pull-in parameters which are essential for the design

of micro/nanoactuators. The results show that the beam can deflect upward or downward, based on the

values of the non-dimensional parameters. It is found that the size effect greatly influences the beam

deflection and is more noticeable for small thicknesses. Neglecting size effect overestimates the

deflection of the nanobeam. The findings reveal that the increase of ion concentration increases the

pull-in voltage but decreases the pull-in deflection. Furthermore, an increase in ion concentration

increases the influence of size-dependent effect on pull-in voltage.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A new field of scientific and technological research is intro-
duced due to the development of new materials with the size of a
few micro/nanometers such as micro/nano devices. The objective
of these devices is to develop faster and better communication
systems in addition to smarter and smaller micro/nano devices.
Generally, the micro and nanofabrication processes are planar
technologies. A typical beam-type micro/nano electromechanical
system (MEMS/NEMS) is made of two conductor nanoelectrodes
that the upper one is movable and the lower one is fixed.
A physical schematic of cantilever nanobeam actuator is depicted
in Fig. 1. Applying voltage difference between these two nanoe-
lectrodes causes the movable one deflects downward as a result
of electrostatic force. At a critical voltage, pull-in voltage, instabil-
ity occurs and the movable electrode is pulled-in onto the fixed
one. Beam-type MEMS/NEMS is increasingly used in many appli-
cations such as accelerometers [1,2], pressure sensors [3], high-
quality filters [4], relays [5], nanotweezer [6,7], switches [8] and
comb-drive actuators [9].
ll rights reserved.
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The first issue that appears at nanoscale is the effect of
dispersion forces such as van der Waals attraction. Consider a
typical cantilever beam suspended above a surface with a small
gap in between. As the gap decreases from micro to nanoscale,
several intermolecular forces become important. The intermole-
cular forces significantly influence the deflection and internal
stresses of nanobeam, at nanoscale separations [10,11]. The van
der Waals force results from the interaction between instanta-
neous dipole moments of atoms. This force is significant when
separation is less than the retardation length (typically below
20 nm) which corresponds to the transition between the ground
and the excited states of the atom [12]. The van der Waals force
attraction is proportional to the inverse cube of the separation
and is affected by material properties [13]. Capillary force also can
be appeared as the result of a volume of liquid trapped under-
neath the beam during rinsing and drying processes in fabrica-
tion. When the beam is placed in a liquid electrolyte, the osmotic
(chemical) force appears because of ion concentration difference.

Because of the importance of micro and nanobeams in the
recent technologies, many researchers have analyzed and mod-
eled the micro and nanobeams. Generally, there are two main
approaches to model the micro and nanoscale beams, namely, the
one degree of freedom (1DOF) model and distributed parameter
model. The one degree of freedom model considers the beam as a
mass and spring which the nonlinear forces act on the mass.
In this model, the entire beam has one average displacement.
However, most of the significant forces in the range of nanometer
are a function of displacement. Furthermore, the method of 1DOF
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Nomenclature

Symbol physical meaning

A cross-sectional area of the beam
Ah Hamaker constant
B width of beam
cb bulk ion concentration
E young’s modulus
e electronic charge
fc chemical (osmatic) per unit beam length
fe electrical force per unit beam length
fec electrochemical force per unit beam length
fvdw van der Waals force per unit beam length
g initial gap between the electrode
I second moment of cross-sectional area
kB Boltzmann constant
Ky spring stiffness
L length of beam
l length scale parameter
mij deviatoric part of couple stress tensor
q(x) external forces
T absolute temperature
t thickness of beam
U strain energy
u displacement in the x direction
u0 normalized tip deflection

ui components of displacement vector
v displacement in y direction
w displacement in z direction
zc absolute value of the valence

Greek symbols

a non-dimensional van der Waals force
b non-dimensional electrochemical force
d size effect parameter
e relative permittivity of the dielectric medium

between the two electrodes
e0 permittivity of vacuum
eij strain tensor
yi components of rotation vector
l lame’s first constant
lDL Debye length
m shear modulus
n Poisson’s ratio
x0 non-dimensional ionic concentration
sij stress tensor
f2/f1 non-dimensional voltage ratio
wij symmetric curvature tensor
c(x) rotation angle
c1, c2 applied electric potential to two electrodes

Fig. 1. Scheme of the simply supported nanobeam.
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fails to obtain the shape of the beam after deflection and the
induced resultant stress. It is worth mentioning that the 1DOF
methods are simple and, in most cases, an analytical expression for
pull-in instability and displacement of the beam can be easily
obtained. By contrast, the distributed model considers the beam as
a distributed mass each element of which is directly acted by the
forces. This model is capable of simulating the shape of the beam
after deflection and the induced resultant stress. Osterberg [14]
was the first who introduced the one degree of freedom (1DOF)
model and obtained an analytical expression for the pull-in
parameters about MEMS switches. Considering lumped parameter
model (1DOF), some researchers analyzed the electrical force
[15–18] and some of them analyzed the simultaneous influence
of intermolecular and electrical forces [19–21]. Ou et al. [22]
presented a semi-analytical formulation to inspect the behavior
of microbeams, subjected to both residual stress gradients and
electrostatic loads. Some of the researchers applied distributed
parameter model to examine the effect of intermolecular and
electrical forces on pull-in parameters of nanobeams [10,23–26].
Because of the nonlinearity of forces in the nanoscale dimensions,
the distributed parameter models lead to highly nonlinear differ-
ential equations which in most cases is hard to obtain a close form
solution. Thus, the power series or numerical methods are needed.
As the convergence of numerical methods at the onset of pull-in
instability decreases, finding an accurate solution for the pull-in
instability of nanobeams using numerical methods becomes more
difficult. Hence, in recent researches, the approximate solutions
and analytical methods have been utilized to solve the governing
differential equations arising from distributed models. Abadyan
et al. [27], using MAD theory, considered the influence of van der
Waals force and elastic boundary condition (B.C) on the pull-in
behavior of NEMS. Noghrehabadi et al. applied power series
solution [28] and a monotone method [29] to investigate the
deflection and instability of a multi-walled carbon nanotube
(MWCNT) under van der Waals attraction. Guo and Zhao [30]
investigated the influence of van der Waals and Casimir forces on
the instability of electrostatic torsional actuators. Gusso and
Delben [31] inspected the effect of Casimir force on the electro-
static torsional actuators made of silicon. It is noticeable that all the
above mentioned studies have examined the beams in vacuum.

The second important phenomenon at micro/nanoscale struc-
tures is the size dependency of material characteristics. The
MEMS/NEMS is very small in size; hence the small scale effects
on their behavior are considerable and have significant influence
on the accuracy of modeling and designing these elements. Size
dependency in micro and nanoscales is experimentally validated.
In the micro bending test of thin nickel beams, Stolken and Evans
[32] have observed that the plastic work hardening shows a great
increase as the beam thickness decreases from 50 to 12.5 mm.
Experimental outcomes indicate that the size-dependent behavior
is an inherent property of materials when the characteristic size
such as thickness or diameter is close to the internal material
length scale parameter [32–34].

Recent researches show that the classical continuum mechanics
theories are unable to predict and interpret the size-dependent
behaviors in micron and sub-micron scale structures [35,36];
hence, new models are needed. Couple stress theory is one of the
higher-order continuum theories. This theory contains material
length scale parameters, and can explain microstructure related
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size effects [37]. Yang et al. [38] applied the equilibrium equation
of moments of couples and introduced a modified couple stress
theory by the classical equilibrium equation of forces and moments
of forces in which only one internal length parameter is involved.
This new model is successfully employed to estimate the size-
dependent effect. Compared to the classical couple stress theory,
the modified couple stress theory has two advantages: first, the
couple stress tensor is symmetric and second, only one internal
length scale parameter is involved.

Based on the total minimum potential energy principle and
modified couple stress theory, a new model for an Bernoulli–Euler
beam bending is developed by Park and Gao [35]. Kong et al. [39]
obtained the governing equation, boundary and initial conditions for
a dynamic model of Bernoulli–Euler beams, considering the mod-
ified couple stress theory and Hamilton’s principle. Rahaeifard et al.
[36] used the modified couple stress theory to explain size-
dependant behavior of electrostatically actuated microbridge. Zhao
et al. [40] modeled a micro clamp–clamp beam by considering
fringing field, residual stress and using Analog Equation Method
(AEM). They [40] analyzed the influence of size dependency on the
static deflection, fundamental frequency and the pull-in parameters.
Beni et al. [41] utilized modified couple stress theory to examine the
simultaneous influence of van der Waals force and size dependency
on NEMS. One of the most considerable materials fulfilling the
functions in sensors and switches is silicon. Sadeghian et al. [42]
investigated the size-dependent elastic behavior of silicon nano
cantilevers and nanowires by experimental measurements.

Characterization of real boundary conditions (B.C.) is the third
important effect that must be considered in the simulation of
micro/nanoscale structures. The mechanical characteristics of
MEMS/NEMS cantilevers totally depend on the choice of material
and the boundary support of the elastic structure [43]. Therefore,
the boundary support condition requires being theoretically
quantified [44] and experimentally validated [45]. Yunqiang
et al. [46] studied the effect of boundary conditions on the static
and dynamic responses of microplates. The real boundary condi-
tions of structures can be modeled by using artificial springs at
the supported end. Rinaldi et al. [47] recommended a method to
test MEMS cantilevers under different electro-thermal influences
and also presented an experimental approach to quantify the
supported boundary condition of atomic force microscopy (AFM)
cantilevers.

In many nanotechnology applications such as packaging the
nanocomponents before use or in service, the nanocomponents
are needed to be placed in liquid electrolytes. In biomedical, a
logical application for NEMS devices such as switches, tweezers,
and linkages is in body fluids which are typically 0.2 M ionic
solutions, mainly NaCL or KCL. There are also ionic liquid
applications of NEMS actuators which may include fuel cells,
batteries, supercapacitors, filters, electro-osmotic pumps, storage
of hydrogen and electroactive polymer actuators. In spite of
extensive applications of NEMS actuators in liquid electrolytes
only few studies have been carried out to analyze them. Sounart
et al. [48] examined MEMS comb-driver electrostatic actuators in
sort of liquids which included HeOH, ethylene glycol, isopropyl
alcohol. Boyd and Kim [49] applied one degree of freedom (1DOF)
model to simulate the electrostatic actuators in liquid electro-
lytes. Using the solution of linearized Poisson–Boltzman equation,
they studied the inherent instability due to van der Waals force
and electrochemical forces. Using distributed parameter model,
Boyd and Lee [50] investigated a nanocantilever beam in a liquid
electrolyte by considering van der Waals, osmotic and electric
forces. They examined the effects of bulk ion concentration and
surface potential on the tip deflection of the beam.

To the best of authors’ knowledge, there is not any investiga-
tion to address the influence of size effect and elastic boundary
condition on the static deflection and pull-in instability of
nanobeams in liquid electrolytes. In the present study, a distrib-
uted parameter model based on modified couple stress theory is
utilized to simulate the deflection and pull-in instability of nano
cantilever beams immersed in liquid electrolytes in the presence
of the van der Waals and electrochemical forces. In addition, a
rotational artificial spring is used to model the elastic effect of the
nanobeam support. The modified Adomian decomposition (MAD)
method is employed to solve the constitutive nonlinear differ-
ential equation of the nanobeam actuator.
2. Mathematical model

2.1. The modified couple stress theory

In micro and nanoscale structures, the classical continuum
mechanics theories are unable to predict and interpret the size-
dependent behaviors; hence, new models are needed. The mod-
ified couple stress theory has been introduced by Yang et al. [38].
On the basis of this theory, the strain energy (U) in a deformed
isotropic linear elastic material occupying region V is a function of
both strain and gradient of the rotation vector [39]. Therefore, the
strain energy of the nanobeam, shown in Fig.1, can be represented
as follow

U ¼
1

2

Z
V
ðsijeijþmijwijÞdV i,j¼ 1,2,3ð Þ ð1Þ

where sij, eij, mij, wij are stress tensor, strain tensor, deviatoric part
of couple stress tensor and symmetric curvature tensor, respec-
tively, defined by the following relations

sij ¼ l½trðeijÞ�Iþ2meij ð2Þ

eij ¼
1
2 ruiþðruiÞ

T
h i

ð3Þ

mij ¼ 2l2mwij ð4Þ

wij ¼
1
2 ryiþðryiÞ

T
h i

ð5Þ

where l and m are the first and the second Lame’s constants. The
Lame’s constants are material properties that are related to the
elastic modulus and Poisson ratio. tr(.) and I are trace function
and identity matrix, respectively. l is the material length scale
parameter which is small in comparison with the body dimen-
sions. Therefore, its influence might become important as the
dimensions of a body diminish to the order of the length scale
parameter [51]. Mathematically, the parameter l is the square
root of the ratio of the curvature (bending) modulus to shear
modulus, and physically is a property measuring the effect of
couple stress [35,52]. The material length scale parameter can be
determined by experimental methods such as micro/nano inden-
tation test [33,34] and micro bend test [32]. ui are the compo-
nents of displacement vector, and yi are the components of
rotation vector given by

yi ¼
1
2curl uið Þ ð6Þ

Considering one-dimensional and according to the fundamen-
tal hypotheses of Bernoulli–Euler beams, the displacement field
can be represented as

u¼ zcðxÞ, v¼ 0, w¼wðxÞ ð7Þ

where u, v and w are the x, y and z components of the displace-
ment vector, and c(x) is the rotation angle which is related to the
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deflection by

c xð Þ ��
dwðxÞ

dx
ð8Þ

Considering a small deformation, the non-zero strain compo-
nents from Eqs. (3), (7) and (8) can be obtained as

exx ¼�z
d2wðxÞ

dx2
, all other eij ¼ 0 ð9Þ

and from Eqs. (6) and (8)

yy ¼�
dwðxÞ

dx
, yx ¼ yz ¼ 0 ð10Þ

By substituting Eq. (10) into Eq. (5), the following equations
can be derived

wxy ¼ wyx ¼�
1

2

d2wðxÞ

dx2
, all other wij ¼ 0 ð11Þ

For a slender beam with a large aspect ratio, the Poisson effect
can be neglected. Hence, substituting Eq. (9) into Eq. (2) yields

sxx ¼�Ez
d2wðxÞ

dx2
, all other sij ¼ 0 ð12Þ

where E is the Young’s modulus of the beam. Similarly, substitut-
ing Eq. (11) into Eq. (4) gives

mxy ¼�ml2
d2wðxÞ

dx2
, all other mij ¼ 0 ð13Þ

where m is the shear modulus.

2.2. Modeling of the nanobeam

Fig. 1 depicts the physical schematic of a nanoactuator
suspended above a ground plane. The actuator is modeled by a
simply supported (SS) nanobeam with uniform rectangular cross-
section. Here, L is the length, B is the width and t is the thickness
of the nanobeam. The initial gap between ground-plane and
nanobeam is g. The nanobeam is immersed in a liquid electrolyte.

It is assumed that the beam is homogeneous and linear elastic.
In order to model the real boundary condition for the SS beam, an
artificial angular spring with a spring stiffness of Ky is used.
Considering the static deflection, substituting Eqs. (9) and
(11)–(13) into Eq. (1) and adding the elastic energy of the spring,
the energy of the system can be obtained as

U ¼
1

2

Z L

0

Z
A

Ez2 d2w

dx2

 !2

dAdxþ
1

2

Z L

0

Z
A
ml2

d2w

dx2

 !2

dAdxþ
1

2
Ky

dwð0Þ

dx

� �2

ð14Þ

Simplifying Eq. (14) yields

U ¼
1

2

Z L

0
EIþmAl2
� � d2w

dx2

 !2

dxþ
1

2
Ky

dwð0Þ

dx

� �2

ð15Þ

where A is cross-sectional area of the beam. I is the second
moment of cross-sectional area as

I¼

Z
A

z2dA ð16Þ

The work done by the external forces, q(x), can be written as

V ¼

Z L

0
qðxÞwðxÞdx ð17Þ

According to the minimum total potential energy principle, the
governing equilibrium equation is given by

d P¼ dðU�VÞ ¼ 0 ð18Þ

where d denotes the variation symbol.
Substituting Eqs. (15) and (17) into Eq. (18) leads to

d
Z L

0

1

2
EIþmAl2
� � d2w

dx2

 !2

�qw

0
@

1
Adxþ

1

2
Ky

dwð0Þ

dx

� �2
8<
:

9=
;

¼

Z L

0
EIþmAl2
� � d2w

dx2

 !
dw00�qdw

 !
dxþKy

dwð0Þ

dx

� �
dw0 ¼ 0

ð19Þ

Integration by parts yieldsZ L

0

EIþmAl2
� �

d4w
dx4 �q xð Þ

� �
dwdxþKy

dwð0Þ
dx dw0 0ð Þ

þ EIþmAl2
� � d2w

dx2
dw09L

0� EIþmAl2
� � d3w

dx3
dw9L

0 ¼ 0 ð20Þ

Thus, the governing equilibrium equation of micro/nanobeam
is derived as

EIþmAl2
� � d4w

dx4
¼ q xð Þ ð21Þ

It is obvious that by substituting l¼0 in Eq. (21), the modified
couple stress theory is reduced to the classical theory. The
boundary conditions of a simply supported beam are

w 0ð Þ ¼
d3wðLÞ

dx3
¼

d2wðLÞ

dx2
¼ 0 ð22Þ

EIþmAl2
� � d2wð0Þ

dx2
¼ Ky

dwð0Þ

dx
ð23Þ

In most cases of micro/nanobeams L410 g, and as a result the
effect of finite kinematics (large deformations) has been neglected
[53–56], therefore, this effect is not considered in the present
work. Moreover, the damping effect is not taken into account in
the case of mechanical equilibrium [57]. In liquid electrolytes, the
net force per unit length of the beam due to double layer
interaction is sum of the chemical (osmotic) force per unit beam
length (fc) and electrical force per unit beam length (fe). As the
nanobeam is completely immersed in the liquid electrolyte, the
capillary force can be neglected. Hence, the external forces along
the beam are sum of the van der Waals force per unit length (fvdw)
and electrochemical force per unit length (fec)

qðxÞ ¼ f vdwþ f ec ð24Þ

Using the Lifshitz theory, the van der Waals force per unit
length of the beam can be calculated as [13]

f vdw ¼�
AhB

6pðgþwÞ3
ð25Þ

where Ah is Hamaker constant (normally Ah¼0.4–4�10�20 J).
The difference between the osmotic pressure of the interstitial
solution and the bulk solution gives the osmotic pressure (repul-
sive pressure) [58]

P¼ kBT
X

i

ðc7
i �cbulk

i Þ ð26Þ

where kB¼1.38054�10�23 J K�1 is the Boltzmann constant, T is
the absolute temperature, cbulk is bulk concentration and c7 is the
concentration of positive and negative ions for a dilute electro-
lytic solution which is represented by the Boltzmann law as
follow [58]

c7 ¼ cbexpð8zcec=kBTÞ ð27Þ

In the above relation, cb is the bulk ion concentration and
assumed to be equal for both ions, zc is the absolute value of the
valence, e¼1.602�10–19 C is the electronic charge and c is the
electrical potential. By using Eqs. (26) and (27) and supposing the
bulk electric potential is zero, the chemical (osmotic) force per
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unit length is determined as

f c ¼P B¼ 2BkBTcbcosh
zcec
kBT

� �
�2BkBTcb

¼ 2kBTcbB cosh
zcec
kBT

� �
�1

� �
ð28Þ

For small values of electric potential, the chemical force can be
approximated by Taylor’s series

f c ¼ 2kBTcbB
zcec
kBT

� �2

ð29Þ

For parallel plates the capacitance is denoted by

C ¼
ee0A

g
ð30Þ

where e is relative permittivity of the dielectric medium between
two electrodes and e0¼8.854�10�12 C2 N�1 m�2 is the permit-
tivity of vacuum. Using Eq. (30) the electrostatic force per unit
length for parallel plates can be calculated as

f e ¼�
1

2

@C

@g
c2
¼�

1

2
ee0B

c
g

� �2

ð31Þ

where

c
g
¼ E¼�rc ð32Þ

E denotes electric filed. Inserting Eqs. (30) and (32) into
Eq. (31) the electrostatic force per unit length can be expressed as

f e ¼�
1

2
ee0BðrcÞ2 ð33Þ

It is necessary to specify the electric potential (c) in determin-
ing the chemical and electrostatic forces. The relation between
the electric potential and the charge density (r) is given by the
Poisson equation

r
2c¼�

r
ee0

ð34Þ

where the charge density is related to concentration of
positive(cþ) and negative(c�) ions

r¼ ezcðc
þ�c�Þ ð35Þ

Using Eqs. (34), (35) and (27), the Poisson–Boltzmann equa-
tion for a symmetric zc: zc electrolyte which determines the
electric potential is obtained as

r
2c¼�

ezcðcþ�c�Þ

ee0
¼�

zcecb

ee0
exp �

zcec
kBT

� �
�exp

zcec
kBT

� �� �

¼
2zcecb

ee0
sinh

zcec
kBT

� �
ð36Þ

Precise results are attained from Poisson–Boltzmann equation
when concentrations are less than 1 M and surface potentials do
not transgress 200 mV [13]. Applying the Taylor series expansion
with the first term, the Poisson–Boltzmann equation, Eq. (36), can
be linearized for small values of electric potential. In this case, the
linear Poisson–Boltzmann equation for a dilute electrolytic solu-
tion becomes

d2c
dz2
¼

2z2
c e2cb

ee0kBT
c¼ k2c ð37Þ

which is the Debye–Hückel approximation and proceeding from
the assumptions that the deflections are small, the central ion is a
point charge and each ion is surrounded by ions of opposite
charge. In the above equation, k2

¼2zc
2e2cb/ee0kBT, and 1/k is the

Debye length. Eq. (37) has a solution in the form of

c¼D1coshkzþD2sinhkz ð38Þ
where constants D1 and D2 can be determined by solving the
resulting algebraic equations for the general case of two parallel
plates with the boundary conditions c (z¼0)¼c1 and c
(z¼gþw)¼c2. Therefore, Eq. (38) is written as

c¼c1cosh kzð Þþ
c2�c1coshðkðgþwÞÞ

sinhðkðgþwÞÞ
sinh kzð Þ ð39Þ

From Eqs. (29), (33) and (39), the electrochemical force can be
calculated as

f ec ¼ f eþ f c ¼ Be e0k2 c2
1

sinh2
ðkðwþgÞÞ

c2

c1

cosh k wþgð Þð Þ�
1

2
1þ

c2

c1

� �2
" #( )

ð40Þ

where c1 and c2 are the applied electric potential between
ground plane and cantilever beam. Neglecting the effect of the
electrolyte on the van der Waals force and substituting Eqs. (24),
(25) and (40) into (21), the governing nonlinear differential
equation of the nanobeam is obtained as

EIþmAl2
� � d4w

dx4
¼�

AhB

6pðwþgÞ3

þBee0k2 c2
1

sinh2
ðkðwþgÞÞ

c2

c1

cosh k wþgð Þð Þ�
1

2
1þ

c2

c1

� �2
" #( )

ð41Þ

2.3. Non-dimensional formulation:

For convenience, Eq. (41) can be transformed to its non-
dimensional form by introducing the following non-dimensional
variables,

u¼
wþg

g
, X ¼

x

L
, f¼

zcec
kBT

ð42Þ

where f corresponds to the value of the applied voltage.
By substituting Eq. (42) into Eq. (41) the non-dimensional

governing equation of the nanobeam, which is depicted in Fig. 1,
is given by

d4u

dX4
¼�

a
ð1þdÞu3

þ
b

ð1þdÞsinh2
ðx0uÞ

f2

f1

cosh x0uð Þ�
1

2
1þ

f2

f1

� �2
" #( )

ð43Þ

The five non-dimensional parameters appearing in Eq. (43) are

a¼ B
Ah

6pg4

L4

EI
, b¼ B

2cbkBTf2
1

g

L4

EI
, x0 ¼ kg,

f2

f1

, d¼
mAl2

EI

ð44Þ

where a and b, respectively, denote non-dimensional values of
van der Waals force and electrochemical force. f2/f1 is the non-
dimensional voltage ratio, x0¼kg represents the non-dimensional
ionic concentration and d is non-dimensional size effect (d¼0
noted the classical theory). Replacing the non-dimensional vari-
ables introduced in Eq. (42) into Eqs. (22) and (23), the non-
dimensional boundary conditions of a simply supported beam are
obtained as

uð0Þ ¼ 1, u00ð0Þ ¼ Ku0ð0Þ, u00ð1Þ ¼ u000ð1Þ ¼ 0 ð45Þ

where K ¼ KyL= EIþmAl2
� �

.
Using non-dimensional variables, the van der Waals and

electrochemical forces can be represented as

f vdw ¼�
a
u3

ð46Þ

f ec ¼
b

sinh2
ðx0uÞ

f2

f1

cosh x0uð Þ�
1

2
1þ

f2

f1

� �2
" #( )

ð47Þ
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It is noticeable that the model of simply supported beam is
reduced to the cantilever beam when the value of spring stiffness
tends to infinity. Therefore, it is possible to use the following
boundary conditions (B.C.) in the case of cantilever beam

uð0Þ ¼ 1, u0ð0Þ ¼ u00ð1Þ ¼ u000ð1Þ ¼ 0 ð48Þ

Eq. (43) subject to the boundary conditions, i.e., Eq. (45) or Eq.
(48), is the governing differential equation of the nanobeam in the
presence of van der Waals and electro mechanical forces. The
obtained governing differential equation, Eq. (43), is fourth order
and highly nonlinear. Hence, deriving a close form exact solution
is not easy. In order to solve this equation subject to each of the
boundary conditions, i.e., Eq. (45) or Eq. (48), the modified
Adomian decomposition method is utilized.
Fig. 2. b versus u0 when a¼0, f2/f1¼0.1 and x0¼1.
3. Analytical solution

Modified Adomian decomposition method is employed to
solve the nonlinear constitutive governing equation of the nano-
beam, Eq. (43). The Adomian polynomials are very powerful to
solve non-linear differential equations [59–61]. Different modifi-
cations of Adomian decomposition method have been proposed
by recent researchers [62–66]. Here, the modified Adomian
decomposition method proposed by Wazwaz [59] is utilized to
analysis the pull-in behavior of cantilever NEMS.

Applying MAD method, the deflection of the nanobeam in Eq.
(43) can be written as follows

uðXÞ ¼
X1
n ¼ 0

unðXÞ ð49Þ

X1
n ¼ 0

unðXÞ ¼ C0þC1Xþ
1

2!
C2X2

þ
1

3!
C3X3

�
1

ð1þdÞ
L�4 a

X1
n ¼ 0

DnðXÞ�b
f2

f1

X1
n ¼ 0

EnðXÞþb
1

2
1þ

f2

f1

� �2
 !" # X1

n ¼ 0

FnðXÞ

" #

ð50Þ

In above equation the functions Dn, En and Fn are defined as

Dn ¼
1

u3
, En ¼

coshðx0uÞ

ðsinhðx0uÞÞ2
, Fn ¼

1

ðsinhðx0uÞÞ2
ð51Þ

Thus, by using MAD method, the deflection of the nanobeam in
Eq. (43) is obtained (see the Appendix)

u Xð Þ ¼ C0þC1Xþ
1

2!
C2X2

þ
1

3!
C3X3

�
1
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1
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The constants C0, C1, C2 and C3 are determined by solving the
resultant algebraic equation from boundary conditions, i.e., Eq. (45). In
order to verify the accuracy of the obtained results, the governing
differential equation of nanobeam, i.e., Eq. (43), is numerically solved
Table 1
Comparison between MAD and numerical solution in typical NEMS deflection.

Case MAD

Five terms (X16) Six te

SS beam (a¼b¼z¼1, f2/f1¼0.1, K¼30, d¼0.5) �0.16763 �0.1

Error % 1.417 0.1

C beam (a¼b¼z¼1, f2/f1¼0.1, d¼0.5) �0.13916 �0.1

Error % 0.699 0.0
using MAPLE commercial software. Table 1 shows the difference
between the numerical solution and the MAD method for normalized
tip deflection (u0) of simply supported (SS) and cantilever (C) beams
types. The normalized tip deflection is defined as

u0 ¼
uðXÞ

g
9X ¼ 1 ð53Þ

As seen, evaluating more terms of the series solution results in
a higher accuracy. The eight terms of modified Adomian solution
show sufficient accuracy for the engineering applications. There-
fore, in the following section, the calculations are performed using
eight terms of Adomian series for convenience.

Before solving Eq. (43), at first the MAD method is tested
against the published solutions by Boyd and Lee [50] for the
bending of a cantilever beam in liquid electrolytes which is based
on the classical theory. Neglecting the size effect, i.e., d¼0, and
assuming a cantilever beam, i.e., K-N, the present work reduces
to the work of Boyd and Lee [50]. Fig. 2 shows the influences of
the applied voltage, b, on the normalized tip deflection, u0, of the
cantilever beam for a¼0, f2/f1¼0.1 and x0¼1. It can be
observed that the normalized tip deflection would increase with
an increase in the input voltage. The critical value of bPI¼5.24
occurs at uPI¼�0.386 which is in very good agreement with the
finite element solution reported by Boyd and Lee [50]. It is worth
noticing that uPI corresponds to tip deflection of the beam (the
maximum deflection of the beam) at the onset of instability.

In next section a simply supported beam, a cantilever beam and a
case study of a microactuator will be considered, respectively, to
investigate the pull-in behavior of beam-type MEMS/NEMS.
Numerical

rms (X20) Seven terms (X24) Eight terms (X28)

6983 �0.16996 �0.17003 �0.17004

23 0.047 0.006 –

4008 �0.14012 �0.14013 �0.14014

43 0.014 0.007 –
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4. Results and discussion

4.1. Simply supported beam (SS beam)

In order to investigate the effect of elastic B.C. on the pull-in
instability of simply supported (SS) nanobeams, the governing
equation i.e. Eq. (43) subject to boundary conditions of Eq. (45) is
solved. Fig. 3 illustrates the influence of spring stiffness (K) on the
deflection of SS beam. By increasing stiffness the flexibility of the
supported end is decreased, and consequently, there is less deflection
toward the substrate. As the spring stiffness increases, the pull-in
instability voltage increases. This figure clearly depicts that as the
stiffness of supported end is increased, more voltage is needed to
achieve a special deflection. Fig. 4 shows the relationship between
electrochemical force (b) and normalized tip deflection for various
values of K. It is seen from this figure that an increase in spring
stiffness would increase the pull-in voltage. Increasing spring stiffness
leads to a decrease in flexibility of the supported end, and hence, it
causes the decreasing of the normalized tip deflection and increasing
of pull-in voltage. Figs. 3 and 4 depict that the instability of NEMS
intensely depends on the sort of applied boundary condition.
Fig. 4. Effects of spring stiffness on cantilever tip deflection and b for a¼0.5,

d¼0.3, f2/f1¼0.1, x0¼1.5.
4.2. Cantilever beam

In this section the governing differential equation of the nano-
beam, i.e., Eq. (43), subject to the boundary conditions of Eq. (48) is
solved in order to investigate the pull-in behavior of nanocantilever
beam-type. Fig. 5 depicts the variation of normalized tip deflection as
a function of f2/f1 for selected values of the size effect parameter.
This figure reveals that increasing size effect increases the critical
ratio f2/f1 and normalized tip deflection at the onset of pull-in
instability. Therefore, it is possible to use a beam with high size effect
parameter in applications in which a large magnitude of tip deflection
is required before appearing of the pull-in instability. As can be seen
in Fig. 5, for f2/f1¼0.52 and f2/f1¼7.006 the value of cantilever tip
deflection reaches zero. In these two points the van der Waals and
electrochemical forces are equal, but they are in opposite direction.
For 0.52of2/f1o7.006, the total force at the tip is repulsive which
causes the beam gets far from the substrate. As shown, the curve of
d¼0 intersects the curves of d40 at least at two points. The
maximum normalized tip deflections for different values of size effect
Fig. 3. Deflections of the SS beam for different values of K when a¼0.5, b¼5,

d¼0.3, f2/f1¼0.1, x0¼1.5.
are the places in which the van der Waals force has its minimum
value and the electrochemical force is in maximum repulsive value.
The places of maximum tip deflection can be of interest to design
micro/nanoactuators.

Fig. 6 demonstrates the influence of size effect parameter on
electrochemical force (b) and normalized tip deflection at the
pull-in point. This figure interestingly reveals that increasing the
value of size effect parameter would increase pull-in voltage, but
it does not have significant effect on the normalized tip deflection
at the onset of instability (pull-in deflection). Therefore, a nano-
beam with higher size effect parameter can be used to have a
specific movement in a higher voltage.

Fig. 7 shows the effect of van der Waals force on the normalized
tip deflection of the cantilever beam. Because of intermolecular force
the beam deflects, even without implying voltage. As seen, augmen-
tation of the van der Waals force decreases the pull in voltage and
Fig. 5. Effects of size dependency on normalized tip deflection and critical ratio

f2/f1 for x0¼b¼2, a¼0.2.



Fig. 7. Effects of van de Waals force on cantilever tip deflection and b for d¼0.3,

f2/f1¼0.5, x0¼0.5.
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pull-in deflection (normalized tip deflection at the onset of instabil-
ity). As the van der Waals force is a function of the inverse cube of
separation, it is concluded that in order to have a nanobeam which
operates in high voltages, the distance between two electrodes should
be increased (in this state the van der Waals force is reduced).

Fig. 8 shows the influence of the size effect parameter on the
van der Waals attraction and cantilever tip deflection in the
absence of electrochemical force. This figure indicates that the
critical value of non-dimensional van der Waals force (ac) is
dependent on the size effect parameter and increases as the size
effect parameter increases. The critical values of a for various
values of the size effect parameter are shown in Table 2.

The detachment length is the maximum length (Lmax) of the
electrode actuators that does not adhere to the substrate due to
the van der Waals force. When the gap between the electrode and
substrate is adequately small, the electrode might adhere to the
substrate due to the van der Waals force. In this case, if the length
of the actuators is known, the minimum gap (gmin) between the
two electrodes can be calculated. The detachment length and
minimum gap are fundamental design parameters for MEMS and
NEMS actuators and are obtained by substituting the value of ac

into Eq. (44) [55]. Based on the results of Table 2 and for d¼0, the
Lmax and gmin are

Lmax ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:602pEt3

Ah

4

s
, gmin ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ah

0:602pEt3

4

s
Numerical methodð Þ ð54Þ

Lmax ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:6045pEt3

Ah

4

s
, gmin ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ah

0:6045pEt3

4

s
MAD methodð Þ ð55Þ

Fig. 8 and Eqs. (54) and (55) reveal that the modified couple
stress theory (da0) predicts larger Lmax and smaller gmin than
classical theory (d¼0).

4.3. Case study with microactuators

In order to study the pull-in instability of microactuators,
Eq. (43) subject to boundary conditions of Eq. (48) is solved for a
silicon micro cantilever beam actuator. This cantilever is consid-
ered as a case study that the geometric data and constitutive
material of the beam are identified in Table 3. The applied
potential to the electrodes has the same magnitude but opposite
sign, c2¼�c1.
Fig. 8. Effect of size dependency on a and cantilever tip deflection when b¼0.

Table 2
Critical values of ac versus size effect parameters.

Method

ac

d¼0 d¼0.3 d¼0.6

Numerical 1.204 1.566 1.927

MAD 1.209 1.571 1.934

Fig. 6. Effects of size dependency on pull-in parameters for a¼0, f2/f1¼0.5, x0¼0.5.
Fig. 9 depicts the effect of beam thickness on displacement and
also makes a comparison between modified couple stress (with
size effect) and classical (without size effect) theories. This figure
obviously reveals that the size effect greatly influences the beam
deflection and is more noticeable for small thicknesses. It is
shown that the decrease of beam thickness leads to high



Table 3
Material and geometrical parameters of silicon microactuator. Rahaeifard [56].

Parameter Value

L Length of beam 75�250 ðmmÞ

t Thickness of beam Input value

g Distance from the base Input value

E Young’s modulus 169:2 ðGPaÞ

m Shear modulus 65:8 ðGPaÞ

Ah Hamaker constant 0:4� 10�20
ðJÞ

l Length scale parameter 0:592 mm
	 


T Temperature 298 Kð Þ

c1 Applied electric potential Input value

cb Bulk ion concentration Input value

Fig. 9. Effects of beam thickness on deflection for c1¼4 mV, cb¼0.05, L¼200 mm

and g¼1.05 mm.

Fig. 10. Effect of initial gap and size dependency on pull-in voltage for cb¼10�3,

L¼200 mm and t¼2.94 mm.

Fig. 11. Effects of length and size dependency on pull-in voltage for cb¼10�3,

g¼50 nm and t¼2.94 mm.
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differences between non-classical and classical theory. Therefore,
when the thickness of the cantilever is as the order of its length
scale parameter, the size effect is significant and the classical
beam theory cannot be utilized. Fig. 9 shows that the beam
deflection is always smaller by considering size effect than when
it is neglected.

Figs. 10 and 11 indicate the effect of classical and modified
couple stress theories on pull-in voltage, Dc, as a function of the
initial gap and microactuator length, respectively. Fig. 10 depicts
the influence of initial gap and size dependency on the pull-in
voltage. As seen, increasing the initial gap increases the pull-in
voltage and causes instability in higher voltages. By increasing the
initial gap, the influence of size dependency on the pull-in voltage
is increased. When the gap decreases, the van der Waals force is
increased, and this causes the decreasing of the pull-in voltage. It
is concluded that in specifying pull-in voltage of cantilever
actuators, the van der Waals force plays a significant role in
small gaps.

The effect of microactuator length and size dependency on the
pull-in voltage is plotted in Fig. 11. As shown, the pull-in voltage
decreases as the length of microactuator increases. This figure
reveals that augmentation of the beam length reduces the
influence of size effect (modified couple stress theory) on the
pull-in voltage.

Figs. 10 and 11 demonstrate that the pull-in voltage is always
larger when the size effect is considered. It is concluded that in
designing micro/nanobeams actuators, the classical theory pre-
dicts the pull-in voltage less than the modified couple stress
theory. Thus, the designed micro/nanobeam may fail to switch in
practical applications.

Fig. 12 illustrates the effect of ion concentration and size
dependency on cantilever tip deflection and pull-in voltage.
Augmentation of ion concentration increases the pull-in voltage,
but it decreases the magnitude of pull-in deflection. It is seen that
increasing ion concentration increases the influence of size
dependency on the pull-in voltage. For low ion concentrations,
increasing voltage has high influence on the cantilever tip
deflection while its influence is reduced as the ion
concentration is increased. For a constant ion concentration, size
effect causes the increasing of the pull-in voltage, but decreasing
the pull-in deflection.

Table 3 shows the dimension and mechanical properties of a
practical small scale beam. Fig. 9 depicts the effect of beam
thickness on displacement of the beam which identified in



Fig. 12. Effect of ion concentration and size dependency on pull-in parameters

and cantilever tip deflection for L¼200 mm, g¼40 nm.
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Table 3. In order to perform an experimental test, a silicon
microbeam switch with the dimension and mechanical properties
identified in Table 3 can be constructed. The experimental
shape of beam (with different thicknesses) can be compared with
the plotted shapes in Fig. 9. The pull-in voltages of the
proposed beam also can be compared with the results of Fig. 10
for each different size of gap or Fig. 11 for each different length of
beam. Fig. 12 shows tip deflection of beam for different values of
bulk ion concentration and applied voltage to cover a range of
possible parameters. These figures provide extensive possible
case studies which the further practical results can be compared
with them.
5. Conclusions

In this research, the influences of size dependency and elastic
boundary condition on the static pull-in instability of beam-type
micro/nanoactuators immersed in an electrolyte are scrutinized.
While the nanobeam is subjected to the van der Waals and
electrochemical forces, a non-classical Bernoulli–Euler theory is
utilized to consider the size dependency. The obtained nonlinear
equation is analytically solved using MAD method. There is good
agreement between the analytical and numerical results, even as
the micro/nanobeams approach their stability limits. The results
show the crucial effects of bulk ion concentration, size depen-
dency and elastic boundary condition on the pull-in parameters of
nanobeam. The results can be summarized as follows:
�
 The electric and van der Waals forces between beam and
substrate are always attractive, but the osmotic force is always
repulsive. The electrochemical force which is the sum of
electric and osmotic forces can be attractive or repulsive
depending on the values of the non-dimensional parameters.
When the total force (sum of the van der Waals and electro-
chemical forces) is attractive, the beam bends toward the
substrate and pull-in instability may occur. However, when
the total force is repulsive, the beam bends upward and there
is no pull-in instability.
�
 Increasing the stiffness parameter decreases the flexibility of
the supported end; consequently, less deflection toward the
substrate was observed, and more voltage is required to
achieve a special deflection.

�
 Increase of ion concentration increases the pull-in voltage but

reduces the pull-in deflection. It is also observed that increas-
ing the ion concentration increases the influence of size-
dependent effect on the pull-in voltage.

�
 Regarding classical theory, the normalized mechanical beha-

viors of the micro/nanobeam are independent of its dimen-
sions, but by considering the modified couple stress theory,
normalized static deflection and pull-in voltage are dependent
on the size of micro/nanobeam. Based on modified couple
stress theory, the micro/nanobeams are stiffer than those
assessed by classical continuum theory.

�
 Increase of the initial gap increases the magnitude of pull-in

voltage as well as the influence of size effect on the pull-in
voltage. By contrast, the increase of beam length decreases the
magnitude of pull-in voltage as well as the influence of size-
dependent effects on pull-in voltage.
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Appendix. Modified Adomian decomposition

Consider a forth-order boundary value problem in the form

Lð4Þ yðxÞ½ � ¼ f ðx,y
�

, 0rxrb ðA:1Þ

with boundary conditions

yð0Þ ¼ C0, y0ð0Þ ¼ C1, y00ðbÞ ¼ C2, y000ðbÞ ¼ C3 ðA:2Þ

where the differential operator L(4) and corresponding inverse
operator L�(4) are given by

Lð4Þ ¼
dð4Þ

dxð4Þ
ðA:3Þ

L�ð4Þ ¼

Z x

0

Z x

0

Z x

0

Z x

0
ð:Þdx dx dx dx ðA:4Þ

The Adomian decomposition method defines the solution y(x)
by the decomposition series

yðxÞ ¼
X1
n ¼ 0

ynðxÞ ðA:5Þ

and the nonlinear function f(x,y) by an infinite series of poly-
nomials

f ðx,yÞ ¼
X1
n ¼ 0

An ðA:6Þ

Refer to [64, 65], series An can be presented as the following
equation

An ¼
Xn

n ¼ 1

Cðn,nÞhnðy0Þ ðA:7Þ

where

C n,nð Þ ¼
X

pi

Yn
i ¼ 1

yki
pi

k!
,
Xn
i ¼ 1

kipi ¼ n,n40, 0r irn,1rpirn�nþ1

 !

ðA:8Þ
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and ki is the number of repetition in the ypi. Values of pi are
selected from the above range by combination without repetition.
hn(y0) is calculated by differentiating the nonlinear terms f(y0),
n times with respect to y0 and can be obtained as

hn y0

	 

¼

dn

dyn0
f ðy0Þ
� �

ðA:9Þ

Using Eqs.(8–10), the Adomian polynomials can be obtain as

A0 ¼ h0 y0

	 

A1 ¼ C 1,1ð Þh1 y0

	 

¼ y1h1 y0

	 

A2 ¼ C 1,2ð Þh1 y0

	 

þC 2,2ð Þh2 y0

	 

¼ y2h1 y0

	 

þ

1

2!
y2

1h2 y0

	 

A3 ¼ C 1,3ð Þh1 y0

	 

þC 2,3ð Þh2 y0

	 

þC 3,3ð Þh3 y0

	 

¼ y3h1 y0

	 

þy1y2h2 y0

	 

þ

1

3!
y3

1h3 y0

	 

A4 ¼ C 1,4ð Þh1 y0

	 

þC 2,4ð Þh2 y0

	 

þC 3,4ð Þh3 y0

	 

þC 4,4ð Þh4 y0

	 

¼ y4h1 y0
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2þy1y3
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1

2!
y2

1y2h3 y0
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1
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ðA:10Þ

Using Adomian decomposition method, the dependent vari-
able in Eq. (1) can be written as

y xð Þ ¼ C0þC1xþ
1

2!
C2x2þ

1

3!
C3x3þL�4

X1
n ¼ 0

An

" #
ðA:11Þ

The boundary conditions at x¼b are adequate to evaluate the
unknown constants C2 and C3 by solving resulted algebraic
equation. The recursive relations of Eq. (5) can be provided as

y0 ¼ C0

y1 ¼ C1xþ
1

2!
C2x2þ

1

3!
C3x3þL�ð4Þ A0½ �

ynþ1 ¼ L�ð4Þ AnðxÞ½ � ðA:12Þ

Using Eq. (A.10), in Eq. (34) the functions Dn , En and Fn are
determined through MAD0s polynomials as

D0 ¼ u�3
0

D1 ¼�3u1u�4
0

D2 ¼�3u2u�4
0 þ6u2

1u�5
0

D3 ¼�3u3u�4
0 þ12u1u2u�5

0 �10u3
1u�6

0

. . ., ðA:13Þ

E0 ¼ cosh x0u0ð Þsinh x0u0ð Þ
�2

E1 ¼ u1 x0sinh x0u0ð Þ
�1
�2x0cosh x0u0ð Þ
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and

F0 ¼ sinh x0u0ð Þ
�2

F1 ¼�2u1x0cosh x0u0ð Þsinh x0u0ð Þ
�3

F2 ¼�2u2x0cosh x0u0ð Þsinh x0u0ð Þ
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1

2
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1 6x2
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By substituting relations (A.13)–(A.15) in Eq. (33) the compo-
nents un(x) can be determined as follow
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