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ABSTRACT 

The effects of variable viscosity and thermal conductivity on the natural convection heat transfer over 
a vertical plate embedded in a porous medium saturated by a nanofluid are investigated.  In the nanoflu-
id model, a gradient of nanoparticles concentration because of Brownian motion and thermophoresis 
forces is taken into account.  The nanofluid viscosity and the thermal conductivity are assumed as a 
function of local nanoparticles volume fraction.  The appropriate similarity variables are used to convert 
the governing partial differential equations into a set of highly coupled nonlinear ordinary differential 
equations, and then, they numerically solved using the Runge-Kutta-Fehlberg method.  The practical 
range of non- dimensional parameters is discussed.  The results show that the range of Lewis number as 
well as Brownian motion and thermophoresis parameters which were used in previous studies should be 
reconsidered.  The effect of non-dimensional parameters on the boundary layer is examined.  The re-
sults show that the reduced Nusselt number would increase with increase of viscosity parameter and 
would decrease with increase of thermal conductivity parameter. 

Keywords: Natural-convection, Variable viscosity, Variable thermal conductivity, Nanofluids, Porous 
media. 

1.  INTRODUCTION 

Due to many industrial applications, e.g. for example 
high performance cooling systems where energy-   
efficient heat transfer fluids are crucial, improving the 
performance of cooling systems have been widely de-
manded by the industry.  The key problem here, which 
has involved many researchers and engineers, is to find 
economically affordable ways for improving the con-
ventional cooling systems.  The challenge, though, is 
that the inherently low thermal conductivity of fluids is 
a primary limitation against developing highly efficient 
cooling systems.  Considering high thermal conduc-
tivity of metallic solids and their oxides, the idea of 
dispersing solid particles in the fluid flow was devel-
oped to enhance the overall fluid conductivity.  In 
1881, this idea was implemented through dispersing 
micro and millimeter sized particles in base fluids.  
However, due to stability problems, sedimentation and 
clogging the channels, the fluids containing small scale 
particles did not turn out to be economic.  Recently, 
nanofluids are proposed to resolve the latter limitation 
[1].  Nanofluids are synthesis by suspending nanopar-
ticles, i.e. metallic or nonmetallic particles of nanome-
ter dimensions, in the traditional heat transfer fluids 
such as water, oil, or ethylene glycol [1].  The most 
important characteristic of nanofluids is their high 

thermal conductivity relative to the base fluids, which 
can be achieved even at very low volume fraction of 
nanoparticles.  The nanofluids can flow smoothly 
through microchannels without clogging them, because 
they are small enough to behave similar to liquid mol-
ecules [2].  This unique property of nanofluids in en-
hancement of heat transfer has attracted many re-
searchers to investigate the heat transfer characteristics 
of nanofluids [3-5].  Many researchers reported that 
the presence of the nanoparticles in the base fluid tre-
mendously enhances the effective thermal conductivity 
of the fluid and consequently enhances the heat transfer 
characteristics [1,6-8].  The heat transfer enhancement 
of nanofluids then became a means for surpassing the 
limited heat transfer performance of available liquids. 

Convective flow in porous media has a wide range of 
engineering applications, such as solar energy collec-
tors, heat exchangers, geothermal and hydrocarbon re-
covery, groundwater systems for agricultural usages and 
flow through filtering media [9-13].  That is why there 
are numerous studies reported on convective flow in 
porous media.  

Natural convection flow in porous media is exten-
sively studied in the literature.  For example, similari-
ty solution of natural convection boundary layer flow 
along a vertical plate with variable wall temperature 
was investigated by Cheng and Minkowycz [14].  
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They reported that the temperature and velocity profiles 
of a Darcy flow are identical.  Likewise, the problem 
of free convection from a vertical plate with non-   
uniform surface temperature was studied by Gorla and 
Zinalabedini in 1987 [15].  Joshi and Gebhart [16] 
studied the mixed convection in porous media adjacent 
to a vertical uniform heat flux surface.  Belhachmi   
et al. [17] simulated the free convection heat transfer 
about a vertical flat plate embedded in a porous medium.  
They presented some experimental results along with 
physical models for validating their numerical simula-
tions.  

Due to the unique thermal properties of nanofluids 
and their exclusive role in enhancing the heat transfer, 
researchers have dedicated a lot of efforts to study the 
influence of nanoparticles on the heat transfer of 
nanofluids.  It is believed that several slip mechanisms 
are involved in the convection of nanofluids, and thus 
the volume fraction of nanoparticles in the nanofluid 
may not be uniform.  The consideration of additional 
heat transfer mechanisms in the convective heat transfer 
of nanofluids was further developed by Buongiorno 
[18].  He discussed seven possible mechanisms, dur-
ing convection of nanofluids, being inertia, Brownian 
diffusion, thermophoresis, diffusionphoresis, Magnus 
effect, fluid drainage, and gravity for particles slips.  
Among the investigated mechanisms, the thermophoresis 
and the Brownian diffusion were found to be important.  

Few studies were performed in association with the 
natural convection of nanofluids using models includ-
ing slip mechanisms.  Nield and Kuznetsov [19] stud-
ied the classical Cheng-Minkowycz problem for natural 
convective boundary-layer flow in a porous medium 
saturated with a nanofluid.  They found that the re-
duced Nusselt number is a decreasing function of both 
Brownian motion and thermophoresis parameters.  
Later, Chamkha et al. [20] presented a non-similar so-
lution for natural convective boundary layer flow over a 
sphere embedded in a porous medium saturated with a 
nanofluid.  Rashad et al. [21] investigated natural 
convection boundary layer of a nanofluid about a per-
meable vertical full cone embedded in a saturated po-
rous medium.  Moreover, natural convective boundary 
layer flow over a horizontal plate embedded in a porous 
medium saturated with a nanofluid was investigated by 
Gorla and Chamkha [22].  Mixed convective boundary 
layer flow over a vertical wedge embedded in a porous 
medium saturated with a nanofluid has been analyzed 
by Gorla et al. [13]. 

In all above-mentioned studies, [13,19-22], it was 
assumed that the thermal properties of the nanofluid, i.e. 
thermal conductivity and viscosity, are constant and no 
efforts have been made to study the effect of variable 
thermal conductivity and variable viscosity.  However, 
it has been reported that the thermo-physical properties 
of nanofluids are strongly affected by volume fraction 
of nanoparticles [1,23,24].  Moreover, the appropriate 
range of Brownian motion parameter, thermophoresis 
parameter, buoyancy ratio parameter and Lewis number 
has not been discussed in previous researches.  

In the present study, the thermal conductivity and 
viscosity of nanofluid are assumed to vary as a function 

of local nanoparticle volume fraction.  Therefore, two 
new parameters, namely variable thermal conductivity 
parameter and variable viscosity parameter are intro-
duced.  In addition, the practical range of non-    
dimensional nanofluid parameters is discussed.  The 
results show that the range of these parameters which 
has been used by previous researchers should be recon-
sidered.  According to the author’s knowledge, the 
influence of local volume fraction of nanoparticles on 
the viscosity and thermal conductivity of nanofluids has 
not been considered by the previous researchers.  

2.  FORMULATION OF THE PROBLEM 

Consider the two-dimensional steady natural convec-
tion boundary layer flow past a vertical plate placed in a 
Darcy porous medium saturated with nanofluid.  The 
plate surface is imposed to a constant temperature Tw.  
The coordinate system is chosen such that x-axis is 
aligned with the flow on the surface of the plate.  A 
schematic of the physical model and coordinate system 
are shown in Fig. 1.  As shown in Fig. 1, there are 
three distinct boundary layers namely, hydrodynamic 
boundary layer, thermal boundary layer and nanoparti-
cle concentration boundary layer.  It is assumed that 
the nanoparticle volume fraction () at the wall surface 
(y  0) has a fixed value of w.  The ambient values of 
T and , as y tends to infinity, are denoted by T and , 
respectively.  The flow in the porous medium with 
porosity  and permeability K is considered as Darcy 
flow, and the Oberbeck-Boussinesq approximation is 
applied.  Furthermore, it is assumed that the porous 
medium is homogeneous and in local thermal equilib-
rium.  

Following the work of Nield and Kuznetsov [19] and 
applying the standard boundary layer approximations, 
the steady-state conservation of total mass (Eq. (1)), 
momentum (Eq. (2b)), and energy (Eq. (3)) as well as 
conservation of nanoparticles (Eq. (4)) for nanofluids in 
the presence of variable properties of nanofluid 
(nanofluid viscosity and thermal conductivity) are as 
follows, 

 0 ,
u v

x y

 
 

 
 (1) 

 

Fig. 1 Schematic view and the coordinate systems 
utilized to model convective heat transfer past 
a vertical plate placed inside a homogeneous 
porous medium saturated with a nanofluid 
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, in the above equations, is defined as:  
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Based on the problem description, the boundary 
conditions are: 

0 , , , at   0 , 0w wv T T y x        (6) 

0 ,    ,     ,    at   u v T T y         (7) 

In many studies [25-30], the viscosity and thermal 
conductivity of fluid were presumed to be a function of 
fluid temperature.  In the latter studies, the fluid was 
considered as pure.  In this study, however, a nanoflu-
id is considered as the working fluid.  The reviews of 
experimental reports reveal that the viscosity and ther-
mal conductivity of nanofluids are strongly dependent 
on the volume fraction of nanoparticles rather than the 
temperature [1,23,24].  Therefore, the thermal conduc-
tivity and viscosity of the nanofluid are considered as a 
function of local volume fraction of nanoparticles.  To 
aim this purpose, the nanofluid viscosity and thermal 
conductivity are assumed as a reciprocal and a linear 
function of local nanoparticle volume fraction, respec-
tively.  Therefore, the viscosity can be written as  

  1 1
1 ( )



    
 

 (8) 

Equation (8) can be further simplified as 
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where m and r given by 
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In Eqs. (8) and (9), , , , m and r are constant.  
In addition, the nanoparticle volume fraction-dependent 
thermal conductivity is introduced as 

  ,( ) 1 ( )m m kk k m        (11) 

where, w,  and mk are constant, and mk  Nc / (w 
).  Here, Nc is the variable thermal conductivity 
parameter and km, is the effective thermal conductivity 
of porous medium and nanofluid outside the boundary 
layers. 

Equations (2a) and (2b) are simplified using cross- 
differentiation, and the continuity equation will also be 
satisfied by introducing a stream function, (): 

 , ,u v
y x

 
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By substituting Eqs. (9), (11) and (12) in Eqs. (2b) 
and (3) and simplifying the resulting expression, the 
governing differential equations (Eqs. (1) ~ (4)) are 
then reduced to the following three equations, 
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Here, the local Rayleigh number (Rax) is defined as 
[19], 
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To simplify the system of governing equations (Eqs. 
(13) ~ (15)) subject to the boundary conditions (Eqs. (6) 
and (7)), the similarity variable  is defined as, 
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Using the similarity variables, Eqs. (13) ~ (15) are 
reduced to the following three ordinary differential 
equations, 

2

.
. 0

( ) ( )

Nv Nv f
S S Nr f

Nv f Nv f


       

 
 (19) 

21
(1 . ) . . . . . ( ) 0

2
Nc f S Nc f Nb f Nt                  

  (20) 

1
. . . 0

2

Nt
f Le S f

Nb
       (21) 

subject to the following boundary conditions, 
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where the non-dimensional parameters are as follow: 
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Here, Nr, Nb, Nt, Le, Nv and Nc denote the buoyancy 
ratio parameter, the Brownian motion parameter, the 
thermophoresis parameter, the Lewis number, the vari-
able thermal conductivity parameter and the variable 
viscosity parameter, respectively.  It is worth men-
tioning that Nv   and Nc  0 reduce the present 
study to the model of constant viscosity and constant 
thermal conductivity which was previously analyzed by 
Nield and Kuznetsov [19].  Furthermore, in this case 
(i.e. Nv   and Nc  0), Eqs. (19) and (20) reduces to 
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where are in good agreement with the equations re-
ported by Nield and Kuznetsov [19]. 

It is interesting that integrating Eq. (19) once results 
in, 
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where C is a constant value which comes from the inte-
gration.  Using boundary conditions of Eq. (22b) 
shows that the value of C is zero.  Moreover, it is 
found that by using Eq. (26a) and implementing 
boundary conditions of Eq. (22a), the values of non- 
dimensional velocity on the wall as a function of Nr and 
Nv can be easy obtained as follow, 

 
( 1)(1 )

(0)
Nv Nr

S
Nv

    (26b) 

Equation (26b) demonstrates that the value of the 
non-dimensional surface velocity is only a function of 
the buoyancy ratio parameter Nr and variable viscosity 
parameter Nv.  It is worth mentioning that in the case 
of fluid flow with constant viscosity (Nv  ), the 
value of non-dimensional velocity on the wall is just 
directly related to the buoyancy ratio parameter Nr. 

The quantities of local Nusselt number (Nux) and lo-
cal Sherwood number (Shx), interested in thermal engi-
neering design of industrial equipment, are defined as 
[19], 

 ,    ,
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w m
x x
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q x q x
Nu Sh

k T T D 
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Here, the quantities of qw and qm are the wall heat 
and mass fluxes, respectively.  Using the similarity 
variables, the reduced Nusselt number (Nur) and re-
duced Sherwood number (Shr)are obtained as, 

1 1

2 2(0) , (0)r x x r x xNu Ra Nu Sh Ra Sh f
 
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2.1  Physical Range of Parameters 

In order to perform a realistic analysis on the effect 
of non-dimensional parameters on the flow, heat and 
mass transfer in the boundary layer, the practical range 
of nanofluid parameters should be clarified.  To aim 
this purpose, first, the practical range of physical prop-
erties (i.e. DB, DT, (c)p / (c)f, , m, etc.) should be 
analyzed. 

For the water base nanofluids at room the tempera-
ture with nanoparticles of 100 nm diameters, the 
Brownian diffusion coefficient (DB) ranges from      
1 1010 to 1 1012m2/s [18].  The thermophoresis 
coefficient (DT) also ranges from 1 1010 to 1 1012 
[18,31].  The ranges of 5 to 40,  to 0.1 and 0 to 1 are 
considered for the temperature difference, the nanopar-
ticle volume fraction difference and the porosity of po-
rous medium, respectively.  In order to evaluate the 
amount of remaining thermo-physical properties in the 
nanofluid parameters (i.e. (c)p / (c)f, f, p f,  
and m), three different types of base fluids (water, oil 
and ethylene glycol) and two types of nanoparticles (Cu 
and Al2O3), which mostly have been used in the synthe-
sis of nanofluids, are adopted.  Therefore, the 
nanofluids are Cu-H2O, Cu-Oil, Cu-C2H4(OH)4, 
Al2O3-H2O, Al2O3-Oil and Al2O3-C2H4(OH)4.  The 
thermo-physical properties of the base fluids and the 
nanoparticles are given in Table 1.  These thermo- 
physical properties have been previously used by Oztop 
and Abu-Nada [32].  Based on the Table 1 and the 
work of Buongiorno [18], the thermo-physical range of 
parameters can be summarized in Table 2. 

Now, the ranges of thermo-physical properties in the 
nanofluid parameters have been identified.  By substi-
tuting minimum and maximum values of the thermo- 
physical properties into definition of nanofluid parame-
ters, Eq. (23), the practical range of these parameters is 
obtained and summarized in Table 3.  In the present 
study, we are interested in the case in which heat trans-
fer is driving the flow rather than the mass transfer.  
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Therefore, the value of buoyancy-ratio parameter (Nr) 
is assumed very small (Nr  1). 

In the literature [13,19-22], for example, in the work 
of Nield and Kuznetsov [19], Gorla et al. [13] and Gor-
la and Chamkha [22], the range of 0.1 to 0.5 has been 
chosen for nanofluid parameters (i.e. Nb, Nt and Nr) to 
analyze the effect of these parameters on the boundary 
layer heat and mass transfer.  In addition, they 
[13,19,22] have considered the range of 1 to 1000 for 
Lewis number.  Moreover, Chamkha et al. [20] have 
chosen the range of 0.1 to 0.5 for Nr, Nb and Nt and the 
range of 1 to 100 for Le.  Rashad et al. [21] have also 
adopted the range of 0.1 to 0.7 for Nb, Nt, Nr and the 
range of 1 to 100 for Le.  However, the present analy-
sis reveals that the range of nanofluid parameters in the 
previous works ([13,19-22]) should be reconsidered. 

In order to demonstrate the range of variable viscos-
ity parameter (Nv), the range of proportionality coeffi-
cient () should be revealed.  Based on Eq. (8), the 
value of  is dependent on the values of uniform viscos-
ity () and local viscosity ().  Therefore, it is as-
sumed that nanofluid has a uniform nanoparticles con-
centration () that is equal to 0.05.  Four different 
models [6], including: Einstain, Brinkman, Batchelor 
and Saito, are adopted to determine the uniform viscos-
ity () and local viscosity ().  The details of these 
models can be found in [6].  The range of local vol-
ume fraction of nanoparticles () is selected between 0 
to 0.1.  Then, the proportionality factor () is evaluated 
using curve fitting.  It is found that Eq. (8), using ap-
propriate value of , is capable to estimate the values of 
local viscosity as a function of local volume fraction.  
The proportionality coefficient () is evaluated for dif-
ferent nanofluids.  The results show that  varies be-
tween 2.0 to 3.0. 

The values of  are negative, and thereby, the values 
of Nv are positive.  According to the Eq. (23) and the 

Table 1 Thermo-physical properties of base fluids, 
nanoparticles [32] and porous media [9] 

Physical 
properties 

k 
(W/m.K) 

 
(kg/m3)

Cp 

(J/kg.K) 
 

(K1) 


Fluid phase 
(Water) 

0.613 997.1 4179 21 105 

Fluid phase 
(Oil) 

0.145 884.1 1909 70 105 

Fluid phase 
(Ethylene 

glycol) 
0.252 1114.4 2415 65 105 

Cu 401 8933 385 1.67 105 
Al2O3 40 3970 765 0.85 105 
Porous 
phase 
(Sand) 

3.0    0.45

Porous 
phase 

(Limestone) 
1.26    0.04

Porous 
phase 

(Glass) 
0.17    0.9

Table 2 The range of physical properties in definition 
of nanofluid parameters 

Physical properties Range of variation 

(c)p / (c)f 0.73 to 1.996 

f 884.1 to 1114.4 

p f 2.8E3 to 8E3 

 21E5 to 70E5 

m 1.94E7 to 2.94E7 

DB 1.0E10 to 1.0E12 

DT 1.0E10 to 1.0E12 

Table 3 The range of nanofluid parameters, i.e. Nb, 
Nc, Nr, Nt and Le 

Parameters Range of variation 
Nb 2.4E9 to 1E4 
Nc 0 to 1.0 
Nr 0 to 9.7E2 
Nt 4E9 to 1.3E4 
Nv 2 to ∞ 
Le 1E3 to 3E6 

 
 
 

obtained range of , the values of variable viscosity 
parameter (Nv) are chosen to be in the range of 2 Nv 
 to clearly show the effect of this parameter on the 
dimensionless quantities.  By selecting this wide range, 
the results obviously demonstrate the behavior of vari-
able viscous fluid flow (i.e. Nv  2, 10, 20, 200) and 
fluid flow with constant viscosity (i.e. Nv  ).  
Likewise, For clarifying the values of variable thermal 
conductivity parameter (Nc), based on Eq. (11), it is 
necessary to determine the uniform effective thermal 
conductivity of porous medium (km,) and the local ef-
fective thermal conductivity of porous medium (km).  
Therefore, four different models [6,33,34], namely, 
Hamilton-cylinders, Ya and Choi, Maxwell and Hamil-
ton-spheres are considered to determine km, and km.  
considering the properties of various nanofluids and 
porous media (present in Table 1), the calculations were 
performed for different nanofluids and porous media.  
The results show that the effect of porous medium on 
the effective thermal conductivity and mk is significant.  
The uniform nanoparticle concentration () is assumed 
equal to 0.05, and the range of local volume fraction of 
nanoparticles () is selected between 0 to 0.1.  Then, 
the proportionality factor (mk) is evaluated using curve 
fitting.  The results show that using the appropriate 
value of mk provides excellent agreement between 
Maxwell model and Eq. (11) for different types of po-
rous media.  Repeating the calculations for different 
types of nanofluids and porous media demonstrates that 
the mk ranges from 0 to 5.  Therefore, in the present 
study, the parameter of Nc has been selected between 0 
and 1 in order to cover the estimated range of this pa-
rameter. 

3.  NUMERICAL PROCEDURE 

The system of Eqs. (19) ~ (21) subject to the bound-
ary conditions (Eqs. (22a) and (22b)) is numerically 
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solved using an efficient, iterative fourth-order Runge- 
Kutta-Fehlberg method starting with an initial guess.  
In this method, every nth-order equation is converted to 
n first order differential equations.  Therefore, the 
system of high order ordinary differential equations is 
converted into a system of first order nonlinear differ-
ential equations.  An iteration method is then applied 
on the latter system.  A maximum relative error of 105 
is used as the stopping criteria for the iterations.  An 
important criterion for the success of this numerical 
approach is to choose an appropriate finite value of .  
Thus, in order to estimate the realistic value of , the 
solution process was started with initial guess value of 
  6.  The value of  was updated and the solution 
process was repeated until further changes (increment) 
in  did not lead to any changes in the values of results 
or, in other words, the results are independent of the 
value of .  The results show that the choice of    
max  10 guarantees that all numerical solutions ap-
proach to their asymptotic values. 

3.1  Code Validation  

The case of Nv   and Nc  0 simulates the natural 
convection of constant thermal conductivity and viscos-
ity flow over an isothermal flat plate embedded in a 
porous medium saturated with a nanofluid which re-
cently has been analyzed by Nield and Kuznetsov [19].  
Therefore, a comparison has been done between the 
present results and those reported by Nield and Kuz-
netsov [19] in a case in which Nr  Nb  Nt  0.5, Le  
10, Nc  0 and Nv  .  The results of this compari-
son are illustrated in Fig. 2.  As seen, this figure de-
picts good agreement between the present results and 
the previous study.  In the work of Cheng and Min-
kowycz [14] for the case of pure fluid is has been re-
ported that the non-dimensional temperature and veloc-
ity profiles are identical; however, Fig. 2 shows that the 
temperature and velocity profile are not identical be-
cause of the concentration gradient. 

4.  RESULTS AND DISCUSSION 

The system of equations, i.e.  Eqs. (19) ~ (21), sub-
ject to the boundary conditions, i.e.  Eqs. (22a) and 
(22b), is numerically solved for selected values of 
buoyancy ratio parameter, Brownian motion parameter, 
thermophoresis parameter, variable thermal conductiv-
ity parameter and variable viscosity parameter.  

The values of reduced Nusselt number ((0)) and 
the values of reduced Sherwood number (ƒ(0)) are 
shown in Table 4 for selected combination of Nt, Nb, Nr, 
Nv and Nc and for two selected values of Le 1E 3 
and Le 2E 3.  Table 4 clearly depicts that increase 
of variable viscosity parameter (Nv) would increase the 
magnitude of reduced Nusselt and sherwood numbers 
for two values of Le 1E 3 and Le 2E 3.  Like-
wise, increase of variable thermal conductivity param-
eter tends to decrease the magnitude of reduced Nusselt 
number whereas increase the magnitude of Sherwood 
number.  This table reveals that the increase of ther-

mophoresis parameter does not show any significant 
effect on the reduced Nusselt number.  In addition, 
increase of Brownian motion parameter (or buoyancy 
ratio parameter) increases (or decreases) the reduced 
Nusselt number.  Nield and Kuznetsov [19], using 
curve fitting, obtained a relation between the reduced 
Nusselt number and nanofluid parameters (i.e. Nt, Nb 
and Nr) in the case of Le 10.  However, the results of 
present study do not confirm the results which were 
reported by Nield and Kuznetsov [19].  Despite of 
present results, they found a decreasing trend for the 
reduced Nusselt number by increase of thermophoresis 
and Brownian motion parameters.  This difference is 
due to the fact that a different physical range of param-
eters have been chosen in the work of Nield and Kuz-
netsov [19]. 

Table 4 shows that the most significant parameter 
which affects the reduced Nusselt number is the varia-
ble thermal conductivity parameter (Nc).  However, 
the influence of other non-dimensional parameters on 
the reduced Nusselt number is comparatively insignifi-
cant.  Therefore, it can be concluded that the heat 
transfer associated via diffusion of nanoparticles is neg-
ligible compared with heat transfer associated via con-
duction and convection. 

Figures 3 and 4 depict the effect of variable viscosity 
parameter (Nv) on the dimensionless velocity, tempera-
ture and concentration profiles.  In preparing these 
figures, the values of Nr, Nb, Nt, Nc and Le are kept 
constant.  These figures illustrate that the thickness of 
concentration boundary layer is very small in compari-
son with hydrodynamic and thermal boundary layers.  
Therefore, the results are plotted in the logarithmic 
scale to clearly show the effect of variable viscosity 
parameter on the boundary layers.  Figure 3 depicts 
that a rise in variable viscosity parameter increases the 
velocity profiles.  Figure 4 shows that the concentra-
tion of nanoparticles in the vicinity of the wall signifi-
cantly decreases with moving from the wall into the 
boundary layer.  Low values of Nv indicates that the 
viscosity of the nanofluid is highly dependent to the 

 

Fig. 2 Comparison of present results with results of 
Nield and Kuznetsov [19] for temperature, 
velocity and concentration profiles when Nc  
0 and Nv   
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Table 4 Variation of reduced Nusselt number (0) and reduced Sherwood number –f  (0) for various values of 
nanofluid parameters (Nt, Nb and Nr) and variable parameters (Nc and Nv) for two values of Le 

Nt Nb Nr Nc Nv 
 (0) ∞ –f  (0) ∞ 

Le 1E 3 Le 2E 3 Le 1E 3 Le 2E 3

1.0E06 1.0E05 1.0E03 0 2 0.4379 0.4396 14.5928 20.6811 

 
 
 
 
 
 

10 0.4428 0.4431 17.1597 24.3089 

20 0.4434 0.4435 17.4518 24.7217 

200 0.4440 0.4440 17.7102 25.0869 

  0.4440 0.4440 17.7329 25.1191 

Nt Nb Nr Nv Nc Le 1E 3 Le 2E 3 Le 1E 3 Le 2E 3

1.0E05 1.0E04 1.0E03   0 0.4438 0.4438 17.7330 25.1191 

 
 
 

0.25 0.3569 0.3564 17.7515 25.1377 

0.5 0.2986 0.2978 17.7645 25.1508 

1 0.2253 0.2243 17.7818 25.1679 

Nb Nr Nc Nv Nt Le 1E 3 Le 2E 3 Le 1E 3 Le 2E 3

1.0E04 1.0E02 0   1.0E09 0.4437 0.4438 17.6831 25.0487 

 
 
 
 
 

1.0E08 0.4437 0.4438 17.6830 25.0475 

1.0E07 0.4437 0.4438 17.6830 25.0475 

1.0E06 0.4437 0.4438 17.6829 25.0474 

1.0E05 0.4437 0.4438 17.6658 25.0352 

Nt Nr Nc Nv Nb Le 1E 3 Le 2E 3 Le 1E 3 Le 2E 3

1.0E06 1.0E02 0   1.0E08 0.4436 0.4437 15.9542 23.8143 

 

1.0E07 0.4438 0.4438 17.5101 24.9241 

1.0E06 0.4438 0.4438 17.6657 25.0351 

1.0E05 0.4437 0.4438 17.6829 25.0474 

Nt Nb Nc Nv Nr Le 1E 3 Le 2E 3 Le 1E 3 Le 2E 3

1.0E06 1.0E05 0   1.0E05 0.4439 0.4439 17.7387 25.1283 

 
 
 
 

1.0E04 0.4439 0.4439 17.7381 25.1264 

1.0E03 0.4439 0.4439 17.7329 25.1191 

1.0E02 0.4438 0.4438 17.6813 25.0462 

1.0E01 0.4429 0.4431 17.1555 24.3047 

 

 

Fig. 3 Velocity profiles for various values of variable 
viscosity parameter (Nv) 

 

Fig. 4 Temperature and concentration profiles for 
various values of variable viscosity parameter 
(Nv) 
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local concentration.  Therefore, the results of Fig. 3 in 
agreement with the concentration gradient (observed in 
Fig. 4) show that the velocity profiles are affected by 
Nv in the vicinity of the plate.  However, in the areas 
comparatively far from the wall but inside the hydro-
dynamic boundary layer, the concentration reaches to 
the constant value of , and variation of viscosity pa-
rameter (Nv) does not show significant effect on the 
velocity profiles.  As seen in Fig. 3, when the variable 
viscosity parameter is comparatively low (Nv  2), the 
velocity profile in the vicinity of the wall is obviously 
lower than the case of constant viscosity (Nv  ).  A 
reason for this behavior is that decreasing the variable 
viscosity parameter (as seen in Fig. 4) would tend to 
increase the concentration of nanofluid in the vicinity of 
the wall.  The presence of heavy nanoparticles de-
creases the buoyancy force near the wall; consequently 
it decreases the velocity profiles.  Simultaneously, 
decrease of velocity leads to increase of concentration 
profiles.  Figure 4 interestingly reveals that an in-
crease of variable viscosity parameter does not show 
significant effect on the temperature profiles.  Consid-
ering Eq. (26a), it can be concluded that  (Nv / (Nv 
f)) S ' Nr f.  Hence, by the decrease of f and 
increase of S ', which were observed by increase of Nv 
in Figs. 3 and 4, the temperature profiles tend to remain 
constant.  Furthermore, the minimum value of dimen-
sionless concentration occurs in the case of constant 
variable viscosity parameter (Nv  ) as seen in Fig. 4.  
Therefore, the model of constant thermo-physical prop-
erties, i.e. constant thermal conductivity and constant 
viscosity, overestimates the velocity profiles and un-
derestimates the concentration profiles.  

The non-dimensional profiles of velocity, tempera-
ture and concentration are shown in Fig. 5 for different 
values of variable thermal conductivity parameter (Nc).  
High values of Nc denote that the thermal conductivity 
is highly dependent on local nanoparticles concentra-
tion, and zero value of Nc denotes that the thermal 
conductivity is independent of the local nanoparticle 
concentration.  As mentioned earlier, the results show 
that the thickness of concentration boundary layer is 

 

Fig. 5 Velocity, temperature and concentration pro-
files for various values of variable thermal 
conductivity parameter (Nc) 

thin in comparison with thickness of the hydrodynamic 
and thermal boundary layers.  This is because of the 
high values of Lewis number.  Lewis number (m /DB) 
shows the ratio of the diffusion of heat (thermal diffu-
sivity) to diffusion of nanoparticles (Brownian diffusiv-
ity).  Hence, for high values of Lewis number, the 
thickness of thermal boundary layer is much higher 
than concentration boundary layer.  Therefore, the 
results are illustrated in the logarithmic scale to obvi-
ously display the influence of variable thermal conduc-
tivity parameter on the boundary layers.  In addition, 
the results show that the increase of variable thermal 
conductivity parameter increases the magnitude of ve-
locity and temperature profiles.  A reason for this be-
havior is that an increase of Nc would increase the 
thermal conductivity of the nanofluid near the wall 
where the local concentration of nanoparticles is com-
paratively high; thereby, the temperature profiles would 
increase.  Increase of temperature increases the buoy-
ancy force and consequently increases the velocity pro-
files.  As mentioned before, Eq. (26a) shows that there 
is an obvious relation between temperature, velocity 
and concentration profiles.  Therefore, by simultane-
ous increase of temperature and velocity profiles, the 
concentration profiles tend to remain constant which 
can be seen in Fig. 5.  In a comparatively wide region 
far from the wall but inside the hydrodynamic boundary 
layer, the concentration tends to the fixed value of , 
and variation of Nc has not any significant influence on 
the velocity and temperature profiles. 

As shown in Fig. 5, the increase of thermal conduc-
tivity parameter does not show significant effect on the 
magnitude of concentration profiles.  

Figures 6 and 7 show the variation of reduced 
Nusselt and Sherwood numbers as a function of varia-
ble viscosity parameter (Nv) and variable thermal con-
ductivity (Nc), respectively.  These figures depict that 
increase of variable viscosity parameter increases the 
magnitude of reduced Nusselt and Sherwood numbers.  
However, the increase of reduced Nusselt number is 
negligible.  By decreasing the variable viscosity pa-
rameter, nanofluid would act as a fluid with high 

 

Fig. 6 Reduced Nusselt number profiles for various 
values of variable viscosity (Nv) and variable 
conductivity (Nc) parameters; the small figure 
shows a magnified view of the curves 
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Fig. 7 Reduced Sherwood number profiles for vari-
ous values of variable viscosity (Nv) and vari-
able conductivity (Nc) parameters; the small 
figure shows a magnified view of the curves 

viscosity in the vicinity of the wall where the local 
concentration of nanoparticles in the nanofluid is high.  
Hence, the velocity of nanofluid would decrease; that in 
turn it decreases the heat transfer rate (Nur).  In the 
Figs. 7 and 8 the curves are close together; therefore a 
magnified view of the curves is provided inside the 
figures.  Figure 7 illustrates that the increase of varia-
ble viscosity parameter increases the magnitude of 
concentration gradient on the wall surface.  This result 
is in agreement with the results of Fig. 4 and Table 4.  

Figures 6 and 7 also depict that an increase of varia-
ble conductivity parameter decreases the magnitude of 
reduced Nusselt number while it increases the magni-
tude of reduced Sherwood number.  However, the 
augmentation of reduced Sherwood number is not sig-
nificant.  As mentioned, the increase of variable ther-
mal conductivity parameter increases thermal conduc-
tivity coefficient near the wall where the local concen-
tration of nanoparticles is high, and thus, the gradient of 
temperature profiles decreases.  It is worth mentioning 
that based on Eq. (27), hx km,w (0)x1Rax

1/2, and 
hence, the local heat transfer coefficient of natural 
convection (hx) not only is a function of reduced 
Nusselt number but also thermal conductivity.  There-
fore, the increase of Nc, which would simultaneously 
decrease Nur and increase the thermal conductivity on 
the wall, produces two opposite effects on the heat 
transfer coefficient (hx).  Recalling Eq. (11), thermal 
conductivity at the wall is km,w km,  (1  Nc).  
Therefore, considering Nc 0 results in hx 0.4438km, 
x1Rax

1/2 and considering Nc 1 results in 0.4506km, 

x1Rax
1/2.  In summary, it can be concluded that the 

increase of Nc increases the local heat transfer coeffi-
cient of natural convection (hx) for very high values of 
variable thermal conductivity parameter.  

5.  CONCLUSIONS 

A combined similarity and numerical approach is 
adopted to theoretically investigate the effect of varia-
ble viscosity and thermal conductivity parameters on 
the natural convection heat transfer from a vertical plate 

embedded in a porous medium saturated with a 
nanofluid.  In the modeling of nanofluid, the dynamic 
effects of nanoparticles, thermophoresis and Brownian 
motion, have been taken into account.  Considering six 
different types of nanofluids, the practical range of 
nanofluid parameters has been revealed.  The effects 
of variable viscosity and thermal conductivity parame-
ters on the velocity, temperature and concentration pro-
files, as well as reduced Nusselt and Sherwood numbers, 
are analyzed.  The results of present study can be 
summarized as follows: 
1. The physical range of nanofluid parameters, which 

has been used by many of previous researchers, is 
not in good agreement with the practical range of 
these parameters. 

2. Using practical range of non-dimensional parameters 
demonstrate that the heat transfer associated with 
migration of nanoparticles is negligible compared 
with heat transfer associated with conduction and 
convection.  Therefore, contrary to what is com-
monly stated in the literatures, the nanoparticles in-
deed affect convective heat transfer in the nanofluids 
only by affecting the thermo-physical properties.  
However, the thermal conductivity and viscosity are 
strongly dependent on the concentration of nanopar-
ticles.  Therefore, the concentration gradient can 
significantly influence the local values of thermal 
conductivity and viscosity. 

3. Increase of variable viscosity parameter increases the 
velocity profiles whereas decreases the concentration 
profiles.  Moreover, variation of viscosity parame-
ter does not show significant effect on the tempera-
ture profiles. 

4. As variable viscosity parameter increases, the mag-
nitude of reduced Nusselt and Sherwood numbers 
would also increase. 

5. Increase of variable thermal conductivity parameter 
increases the velocity and temperature profiles, but it 
does not show significant effect on the concentration 
profiles. 

6. Increasing the variable thermal conductivity param-
eter decreases the reduced Nusselt number whereas 
increases the reduced Sherwood number. 
In summary, it can be concluded that the concentra-

tion gradient of nanoparticles (because of thermophore-
sis and Brownian motion forces) affects the local vis-
cosity and thermal conductivity of nanofluids and con-
sequently heat transfer of nanofluids.  Hence, the ad-
vantage and disadvantage of these effects should be 
considered in future engineering designs.  Some new 
experimental tests also are needed.   
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NOMENCLATURES 

 DB Brownian diffusion coefficient 

 DT thermophoretic diffusion coefficient 
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 f rescaled nano particle volume fraction, 
nano particle concentration 

 g gravitational acceleration vector 

 K permeability of porous medium 

 k thermal conductivity 

 km effective thermal conductivity of the porous 
medium 

 h local heat transfer coefficient of natural 
convection 

 Le Lewis number 

 m proportionality coefficient of viscosity 

 mk proportionality coefficient of thermal 
conductivity 

 Nb Brownian motion parameter  

 Nc variable thermal conductivity parameter 

 Nr buoyancy ratio 

 Nt thermophoresis parameter 

 Nv variable viscosity parameter 

 P pressure 

 Rax local Rayleigh number 

 S dimensionless stream function 

 T temperature 

 T ambient temperature 

 TW wall temperature of the vertical plate 

 U reference velocity 

 u, v Darcy velocity components 

 (x, y) Cartesian coordinates 

Greek Symbols 

 (c)f heat capacity of the fluid 

 (c)m effective heat capacity of porous medium 

 (c)p effective heat capacity of nano particle 
material 

  viscosity of fluid 

 m thermal diffusivity of porous media 

  volumetric expansion coefficient of fluid 

  porosity  

  dimensionless distance 

  dimensionless temperature 

 f fluid density 

 p nano particle mass density 

  parameter defined by Eq. (5) 

  proportionality coefficient 

  nano particle volume fraction 

  ambient nano particle volume fraction 

 r constant defined by Eq. (10) 

 w nano particle volume fraction at the wall of 
the vertical plate 

  stream function 
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