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ABSTRACT 

In this paper, stress distribution of micro cantilever beams in the presence of a dielectric-layer is stud-
ied using an analytic method.  The Modified Adomian Decomposition Method (MADM) is applied to 
obtain a semi-analytical solution for a distributed parameter model of the micro cantilever beam.  The 
important parameters for designing and manufacturing micro-actuators such as shear force, bending mo-
ment and stress distribution along the cantilevers are computed for different values of the dielectric-layer 
parameter.  The results of MADM are compared with the numerical results, and they found in good 
agreement.  It is found that increase of the dielectric-layer parameter increases the dimensionless pull-in 
voltage, tip deflection, internal stress and bending moment of the micro cantilever actuators at the onset 
of pull-in instability. 
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1.  INTRODUCTION 

Many micro-devices consist of beams or plate elec-
trodes suspended above a ground plane.  The sus-
pended beams or plates have many applications such as 
pressure sensors, accelerometers, rate gyroscopes, elec-
trical switches, optical switches, chemical sensors, 
adaptive optical devices, electrostatic actuators, valves 
and pumps and resonators [1-3]. 

A typical MEMS actuator is a micro-beam electrode 
suspended above a conductive substrate.  Applying a 
voltage difference between the micro cantilever beam 
and the ground plane causes the micro-beam to buckle 
toward to the substrate due to electro static forces.  At 
a critical voltage, (pull-in voltage) the micro-beam 
electrode pulls-in onto the substrate plane and instabil-
ity occurs [4].  Different models such as lumped mod-
el, 1D distributed model, planar model and 3D simula-
tion enhanced with the finite-element method (FEM) 
have been used to study the deflection and pull-in pa-
rameters of various beam structures [4]. 

The lumped model of MEMS actuators with one de-
gree of freedom results in easy calculations [5-7], but it 
fails to capture details of the internal filed stress in the 
MEMS.  At the other end, 3D-models can evaluate the 
deflection and internal stress filed of the micro-     
cantilever actuators, but they need expensive calcula-
tions, thus they are time consuming [8].  Furthermore, 
numerical simulation of MEMS near the pull-in insta-
bility may result in divergence of the solution.  The 
two-dimensional distributed parameter models at an 
intermediate level of complexity provide useful results 

with a reasonable computational effort [9]. 
Legtenberg et al. [10] proposed a cantilever beam 

model to obtain the characteristics of large-       
displacement actuators.  Mullen et al. [11] applied the 
finite-element method to simulate buckling behavior of 
micro fabricated beams.  Chan et al. [12] considered 
the effects of electro static fringing field and finite 
beam thickness on the pull-in voltage and capacitance- 
voltage of a two-dimensional model of micro beams.  
A mixed-regime approach is introduced by Li and Aturu 
[13] to combine linear and nonlinear theories of beams 
to handle large buckling of MEMS under substantial 
applied voltages.  Moreover, the nanocantilever beams 
immersed in a liquid electrolyte are theoretically inves-
tigated by Noghrehabadi et al. [14].  The modified 
couple stress theory also is utilized to interpret the size 
effect which appears in micro/nanoscale structures.  
They found that the presence of electrolyte affects the 
critical pull-in parameters of micro/nano actuators. 

Recently, power series methods are employed to ob-
tain analytical solutions for pull-in instability of micro 
and nano actuators.  Kuang and Chen [15] applied the 
modified Adomian decomposition method to investigate 
the nonlinear pull-in behavior of different types of mi-
cro-actuators.  Ghalambaz et al. [16] utilized a sym-
bolic power series method based on Taylor polynomial 
expansions to obtain free standing length, electrostatic 
pull-in instability and stress resultants of cantilevers.  
In a different work, they applied a monotone iterative 
method to obtained deflection of cantilevers in 2D dis-
tributed parameter model [17].  In the both works 
electrostatic forces, fringing field effect and intermo-
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lecular forces have been taken into account.  The 
Adomian decomposition method (ADM) has been used 
by Soroush et al. [18] and Koochi et al. [19] to obtain 
deflection and pull-in parameters of cantilever actuators 
subjected to intermolecular and electrical forces.  It 
has been shown that the Modified Adomian Decompo-
sition Method (MADM) is a powerful and convenient 
method which can effectively solve micro and nano 
mechanics problems [20-24]. 

However, the pull-in instability of beam actuators 
has been studied in the large number of papers, but only 
few studies considered the effect of dielectric-layers on 
the pull-in instability characteristics and stress result-
ants at the onset of pull-in instability in micro cantilever 
actuators.  Rollier et al. [25] investigated the effect of 
dielectric-layer on the pull-in stability of MEMS both 
experimentally and analytically.  They used lamped 
parameter model in liquids for their analytical solution 
and showed that the pull-in effect can be shifted beyond 
the one-third of the gap and can even be suppressed.  
They demonstrated that insulating layers of the actuator 
plates play a major role in this phenomenon.  Gorthi  
et al. [9] used CoventorWareTM software to simulate the 
behavior of electrostatic actuators before and beyond 
the pull-in instability in the presence of a dielectric- 
layer.  They have studied transition forms of these 
actuators, and classified all possible types of transitions 
based on the dielectric-layer parameters.  Recently, the 
influence of capillary force on the deflection and pull-in 
instability of fixed-fixed electrostatic micro actuator 
beams in the presence of a dielectric layer is investi-
gated by Yazdanpanahi et al. [26].  They show that 
there are distinct values of the dielectric parameter in 
which the variation of the dimensionless capillary pa-
rameter does not affect the values of maximum deflec-
tion, internal stress and bending moment of the micro 
actuator at the onset of pull-in instability.  These spe-
cial values of dielectric parameter are introduced as the 
Balance Dielectric Layer (BDL) because of their unique 
properties. 

Manufacturing reliable micro-actuators requires cru-
cial knowledge about the pull-in performance and in-
ternal stress field of the micro structures.  Knowledge 
about stress distribution over the length of the micro 
switch and its buckling behaviour is essential for design 
process of these MEMS devices to avoid failures in 
action [27-29]. 

In the present paper, the modified Adomian decom-
position method is implemented to analyze the effect of 
dielectric-layer on the internal stress field of cantilever 
micro-actuators.  The solution obtained by MADM is 
compared with numerical data. 

2.  MATHEMATICAL MODEL 

Figure 1 shows the schematic view of a micro-  
cantilever beam, suspended above a fixed substrate with 
a bended end at x  0 and external voltage difference, V, 
between the beam and substrate.  There is a dielectric- 
layer with thickness of t1 above the substrate layer, and 

 

Fig. 1 Schematic representation of distributed model 
of micro cantilever-beam with a dielectric- 
layer 

the length of the cantilever beam is L.  The rectangular 
cross-section of the beam assumed uniform with thick-
ness h and width w.  The gap between the dielectric- 
layer and cantilever is g that remains constant by the 
increase of the dielectric thickness.  

It is assumed that the constitutive material of the mi-
cro-cantilever is linear elastic, and the finite kinematic 
effects are negligible when L  10 g [30].  Thus, only 
long beams are considered in this study.  This simpli-
fication is acceptable for most cases [18,19,31].  For 
the small values of g/w the fringing field effect is neg-
ligible.  Hence, wide micro cantilevers solely are con-
sidered in this study.  Here, the electrostatic force per 
unit length of the micro-cantilever, electrical force, can 
be defined as [9,25], 
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where 0  8.854 1012c2/Nm2 is the permittivity of 
vacuum, and  is the relative permittivity of the medium.  
t1 is the thickness and 1 is the relative permittivity of 
the insulating layer.  V is the external voltage differ-
ence between substrate and cantilever.  Considering 
only the static elastic small deflection of the micro can-
tilever beam and employing the virtual work principle, 
the appropriate approximation of the beam deflection 
can easily be found in the absence of the non-     
conservative forces [18].  As there are not deflection 
and rotation at the fixed end and due to the absence of 
the bending moment and shear force at the free end of 
the beam, the deflection of the micro cantilever beam 
can be defined as the following boundary-value differ-
ential equation, 

 
4

4
,eff elec

d Y
E I f

dX
  (2a) 

where the geometrical boundary conditions at the fixed 
end are, 

 (0) (0) 0 ,Y Y    (2b) 

and natural boundary conditions at the free end are, 

 ( ) ( ) 0 ,Y l Y l    (2c) 
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where Y is the deflection of the beam, X is the position 
along the beam measured from the clamped end, prime 
denotes differentiation with respect to X.  

In the case of w  5h the effective modulus Eeff can 
be approximated by the plate modulus E/(1 ν2); oth-
erwise Eeff is the Young’s modulus E [32].  I is the 
moment of inertia of the beam cross section [33].  By 
substituting Eq. (1) into Eq. (2) and introducing the 
non- dimensional variables as, 
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The mathematical model can be parameterized in the 
non-dimensional form for convenience as, 
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4
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 (4a) 

subject to the following conditions, 

(0) (0) 0 , at 0 ,u u x    (4b) 

(1) (1) 0 , at 1 ,u u x     (4c) 

where  is the non-dimensional applied voltage, and K 
is the dielectric-layer parameter.  

3.  MODIFIED ADOMIAN DECOMPOSITION 
METHOD 

The modified Adomian decomposition was estab-
lished as a very effective, simple and convenient meth-
od to solve nonlinear initial and boundary value prob-
lems.  The main idea of this method is explained in 
Wazwaz [20].  Here, Eq. (4) by using the substitution 
of y(x) 1 u(x) can be rewritten as,  

  
4

4
( ) ,

d y
N y x

dx
  (5a) 

subject to,  

(0) 1 , (0) 0 , at 0 ,y y x    (5b) 

(1) (1) 0 , at 1 ,y y x     (5c) 

where  

  
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Equation (5a) can be represented as the following form, 

    (4) ( ) ( ) ,L y x N y x  (6) 

where L(4) is fourth order differential operator which is 
defined as, 
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The inverse operator L(4) can be define as a 4-fold 
integral operator as [15], 

 (4)
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By using the introduced operator and applying the 
modified Adomian decomposition method to the Eq. 
(5a) [20], the dependent variable, y(x), can be written as 
[34],  
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where the constants of C0 to C3 are, 

0 1( )0 0(, ' ,)C y C y   (9b) 

2 3( )" 0 , ("' ,)0C y C y   (9c) 

where N(y(x)) is the nonlinear function at the right side 
of the Eq. (5a), and it can be approximated by series of 
Adomian polynomials, 
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Implementing the boundary condition at x  0 and 
using the above equation, Eq. (9a) can be summarized 
as, 
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where C2 and C3 can be evaluated later by the solution 
of the algebraic equations come from the boundary 
conditions at x  1 (i.e. Eq. (9c)).  According to the 
modified Adomian decomposition method from [20], 
the recursive relations of Eq. (11) can be demonstrated 
as follows, 
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 (4)( ) ( ) ,k ky x L A x   (12c) 

Here, the Adomian polynomial An can be determined 
by the following convenient equations [20,21], 
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 0 0 0( ) / ( ) ,v v
vH y d dy N y  (13c) 

where ki is the number of repetition in ypi and the values 
of pi are selected from the above range by combination 
without repetition.  Expanding Eq. (13a) yields, 
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The Eq. (12) by using Eq. (14) becomes, 
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Therefore, using modified Adomian technique, the 
polynomial solution of Eq. (5a) is obtained for four 
terms, which can be summarized as, 
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The undetermined coefficients C2 and C3 are equiva-
lent to the second and third derivatives of the beam de-
flection with respect to x at x 0, accordingly.  The 
coefficients of C2 and C3 will be evaluated later by us-
ing the boundary conditions at the free end of the can-
tilever beam (i.e. Eqs. (5b) and (5c)).  Finally, using 
the modified Adomian decomposition method, the pol-
ynomial solution of Eq. (5) is obtained and can be 
summarized in Eq. (16b).  In order to verify the accu-
racy and convergence of the obtained power series, the 
deflection of a typical micro actuator is evaluated using 
different series size of MADM, and it is compared with 
the numerical results.  The numerical results are ob-
tained using the Runge - Kutta- Fehlberg method 
[35,36]. 

The variation of the cantilever tip deflection (utip) of 
a typical cantilever beam for different sizes of the 
MADM series is shown in Table 1 when K  1.184 and  
 17.  The results of this table reveal that the higher 
accuracy can be achieved by evaluating more terms of 
the modified Adomian series.  The relative error 
shown in Table 1 has been computed from the follow-
ing equation, 

 , ,

,

,tip MADM tip Num

tip Num

u u
Error

u


  (17) 

where utip,MADM and utip,Num are the micro cantilever tip 
deflection evaluated from the analytical and the numer-
ical method, respectively, and the Error represents the 
relative error.  

The results of Table 1 show the analytical solution 
converges to the numerical solution as the number of 
the selected terms increase.  The evaluated values of 
C2 and C3 for the micro-cantilever of Table 1 using 
eight terms (i.e. x28) of the modified Adomian decom-
position method are 2.983 and 5.145, respectively.  
The results of Table 1 represent that the eight terms of 
the modified Adomian series have the global error less 
than 0.5 which shows that they are in good agreement 
with the numerical results.  Hence, eight terms of 
modified Adomian series are selected in the following 
text for convenience. 
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Table 1 The variation of the tip deflection of a micro 
cantilever beam (utip) evaluated with different 
selected terms of MADM for K 1.184 and  
  17 

Tip 
deflection 

5 terms 
(x16) 

6 terms 
(x20) 

7 terms 
(x24) 

8 terms
(x28) 

9 terms
(x32) 

MADM 0.74664 0.77471 0.78858 0.79479 0.79737

Numerical 0.79904 

Error  6.56 3.05 1.31 0.53 0.21 

4.  INSTABILITY STUDY 

In order to study the instability of the micro-    
actuators in the presence of a dielectric-layer, Eq. (5) is 
solved numerically, and the results are compared with 
equation Eq. (16b).  For any given  and K, the canti-
lever tip deflection at the onset of pull-in can be ob-
tained from Eq. (16b) by setting du(1)/d → .  No 
physical solution exists for u(x) by increasing  beyond 
PI.  

It is found that for KCR  1.184 and PI 17.6, evalu-
ated using MADM, the cantilever’s tip reaches to the 
dielectric-layer due to deflection.  These values cause 
the maximum deflection and consequently the maxi-
mum bending moment and maximum shear stress in the 
cantilever.  The numerical method computed these 
values as KCR 1.258,  19.3. 

5.  STRESS RESULTANTS  

The stress distribution in any arbitrary cross-section 
of the micro-beam can be evaluated from the variation 
of stress resultants (bending moment and shear force) 
[32].  In order to determine internal stress resultants, 
the dimensionless internal shear force (F) and bending 
moment (M) of the beam can be defined as [18], 

 
3

,
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FL
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E Ig
  (18a) 
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,
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ML
M

E Ig
  (18b) 

where F  is the internal shear force and M is the 
bending moment at the arbitrary cross-section of the 
beam.  Figures 2 and 3 show distribution of F and M 
along the beam at the onset of instability for different 
values of the dielectric-layer parameter K, respectively.  
These figures reveal that the bending moment decreases 
with the increase of x.  The maximum value of bend-
ing moment and shear stress occur at x  0 while the 
minimum value of them occurs at x 1.  These figures 
reveal that the increase of the dielectric-layer parameter 
increases the bending moment and shear stress.  

 

Fig. 2 Distribution of momentum (M) along micro 
beams at the onset of instability for different 
values of dielectric-layer parameter 

 

Fig. 3 Distribution of shear force (F) along micro 
beams at the onset of instability for different 
values of dielectric-layer parameter 

The variation of FPI,max and MPI,max of micro cantile-
vers (or C3,PI, C2,PI) as a function of PI and K for dif-
ferent values of the dielectric-layer parameter is pre-
sented in Figs. 4 and 5, respectively.  

For cantilevers with h  L the magnitude of PI,max 
is much larger than PI,max.  Therefore, PI,max is usual-
ly the primary consideration in design process.  For 
these micro cantilevers, the following relations easily 
can be derived, 

,max ,max 2
,

2
eff

PI PI

ghE
F

L
   (19a) 

2

,max ,max 3
,

8
eff

PI PI

gh E
M

L
   (19b) 

where PI,max is the maximum normal stress, and PI,max 

is the maximum shear stress in the cantilever beam.  In 
the case of KCR  1.184,   17.6 the values of FPI,max 
and MPI,max are 3.681 and 6.071, respectively.  Table 2 
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Fig. 4 Relationship of PI and K with the maximum 

resultant moments at pull-in instability of mi-
cro actuators 

 
Fig. 5 Relationship of PI and K with the maximum 

shear force at pull-in instability of micro actu-
ators 

Table 2 Relation of maximum dimensionless internal 
shear force (FPI,max), bending moment 
(MPI,max), pull-in voltage (PI) and tip deflec-
tion of micro-cantilevers for variation of die-
lectric-layer parameter obtained by MAD 
method 

K PI UPI MPI,max FPI,max 

0 1.691 0.4570 1.6834 2.7772 

0.1 2.251 0.5027 1.8517 3.0549 

0.2 2.923 0.5487 2.0210 3.3338 

0.3 3.716 0.5943 2.1892 3.6113 

0.4 4.641 0.6404 2.3586 3.8904 

0.5 5.709 0.6863 2.5276 4.1690 

0.6 6.928 0.7321 2.6964 4.4472 

0.7 8.310 0.7779 2.8652 4.7254 

0.8 9.865 0.8238 3.0343 5.0041 

0.9 11.602 0.8693 3.2019 5.2810 

1 13.532 0.9157 3.3726 5.5615 

1.1 15.665 0.9611 3.5397 5.8378 

1.184 17.621 0.9995 3.6811 6.0711 

shows the relation of dimensionless pull-in voltage (), 
maximum dimensionless internal shear force (F), 
maximum dimensionless bending moment (M) and tip 
deflection of micro cantilevers at the onset of pull-in 
instability for variation of the dielectric-layer parameter 
obtained using MAD method.  Results of this table 
reveal that the increase of the dielectric-layer parameter 
increases the non-dimensional pull-in voltage, tip de-
flection, bending moment and shear stress at the onset 
of instability. 

6.  CONCLUSIONS 

A distributed beam model and the modified Adomian 
decomposition were utilized to analyze micro cantilever 
electrostatic actuators with an intermediate dielectric- 
layer.  The Pull-in parameters and deflection of micro- 
cantilevers in the presence of dielectric-layer were 
computed using modified Adomian decomposition 
method as well as the numerical method.  The results 
of the present study demonstrate that the increase of the 
dielectric-layer parameter increases the non -dimension-
al pull-in voltage, tip deflection, internal stress and 
bending moment of micro-cantilever actuators at the 
onset of instability.  The analytical solution was com-
pared with the numerical solution.  It is found that the 
results of MADM with eight terms (i.e. x20) are in good 
agreement with the numerical results.  Therefore, the 
modified Adomian decomposition method could easily 
evaluate the maximum stress induced in the cantilevers 
at the onset of instability.  The results of present paper 
can be useful in designing the micro-actuators consid-
ering the effect of a dielectric- layer parameter.  Fur-
thermore, the proposed closed- form MAD solution 
makes the parametric study possible. 
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NOMENCLATURES 

 F  internal shear force at arbitrary cross-section 
of the beam 

 M  internal bending moment at arbitrary cross- 
section of the beam 

 An Adomian polynomial 
 C2 dimensionless internal bending moment 
 C3 dimensionless internal shear force 
 E Young’s modulus 
 Eeff effective Young’s modulus 
 F dimensionless internal shear force  
 Felec electrical force 

 g initial gap between the upper electrode and 
the ground plane 
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 h cantilever beam thickness  
 I moment of inertia of the beam cross section 
 K dielectric-layer parameter 
 L length of cantilever beam 
 M dimensionless internal bending moment 
 N nonlinear function 
 t1 thickness of insulating layer 
 nvu non-dimensional deflection 

 V applied voltage between the upper electrode 
and the ground plane 

 w width of cantilever beam 
 X position along the beam measured from the 

clamped end 
 x non-dimensional position along the beam 

 Y distance between cantilever beam and 
dielectric-layer 

 y non-dimensional distance between cantilever 
beam and dielectric-layer 

  non-dimensional voltage 
  relative permittivity of the medium 
 0 permittivity of vacuum 
 1 relative permittivity of the dielectric layer 

  dimensionless normal stress at the pull-in 
instability 

  dimensionless shear stress at the pull-in 
instability 

Subscripts 

 CR Critical 
MADM modified Adomian decomposition method  

 max Maximum 
 Num Numerical 
 PI pull-in 
 tip value at the free end of the cantilever 
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