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Abstract

Purpose — This paper aims to theoritically investigate the free convection flow and heat transfer of a non-
Newtonian fluid with pseudoplastic behavior in a cylindrical vertical cavity partially filled with a layer of a
porous medium.

Design/methodology/approach — The non-Newtonian behavior of the pseudoplastic liquid is described
by using a power-law non-Newtonian model. There is a temperature difference between the internal and external
cylinders. The porous layer is attached to the internal cylinder and has a thickness of D. Upper and lower walls of
the cavity are well insulated. The governing equations are transformed into a non-dimensional form to generalize
the solution. The finite element method is used to solve the governing equations numerically. The results are
compared with the literature results in several cases and found in good agreement.

Findings — The influence of the thickness of the porous layer, Rayleigh number and non-Newtonian index on
the heat transfer behavior of a non-Newtonian pseudoplastic fluid is addressed. The increase of pseudoplastic
behavior and increase of the thickness of the porous layer enhances the heat transfer. By increase of the porous
layer from 0.6 to 0.8, the average Nusselt number increased from 0.15 to 0.25. The increase of non-Newtonian
effects (decrease of the non-Newtonian power-law index) enhances the heat transfer rate.

Originality/value — The free convection behavior of a pseudoplastic-non-Newtonian fluid in a cylindrical
enclosure partially filled by a layer of a porous medium is addressed for the first time.

Keywords Porous layer, Axis symmetric enclosure cylinder, Free convection heat transfer,
Pseudoplastic non-Newtonian behaviour

Paper type Research paper
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Nomenclature

C = heat capacity (J/kg.K),

C, = specific heat in constant pressure (//kg.K);
L =length of the cylinder;

g = gravity m/sd;

k= thermal conductivity (W/m.K);
AR = aspect ratio (L/R);

D = the thickness of the porous layer;
P = pressure (Pa);

T = temperature (K);

AT = temperature difference;

t =time(s);

L =height (m);

u, =radial velocity (m/s);

u, = vertical velocity (m/s);

7 =non-Newtonian power-law index;
m = consistency index;

Nu = Nusselt number;

Ra = Rayleigh number;

Pr = Prandtl number;

Da = Darcy number; and

7,z = cylindrical coordinates.

Greek symbols

a = thermal diffusivity (m?/s);

w = dynamic Viscosity (kg/m.s);

p = density (kg/m®);

v = kinematic viscosity (m?/s);

& =basis functions;

B = thermal expansion coefficient (1/K);
k = permeability;

& = porosity; and

0 =non-dimensional temperature.

Subscripts

eff = effective;

bf = base fluid;

p =porous layer;

h  =hot;

¢ =cold;

{ = inner; and
0 = outer.
Superscript

* = non-dimensional.

1. Introduction

In many natural and engineering sciences, behavioral and functional analyses are closely
related to heat transfer and momentum of fluids. Besides, many types of fluids, known as non-
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Newtonian, cannot be modeled considering the linear relation between shear stress and the rate
of strain. In nature and industry, most materials show strange behavior, not predictable by the
equation of Newtonian fluids. These materials include suspensions, emulsions, colloidal, glues
and blood. Power-law model is considered as one of the most applicable models in estimating
the behavior of non-Newtonian fluids (Quarteroni ef al., 2000).

Analysis of flow and heat transfer of non-Newtonian fluids in industry and natural porous
media, such as blood flowing through living textures, using non-Newtonian polymer in the
porous condition to increase oil extraction, and many other items, has crucial importance for
engineers and researchers (Chhabra and Richardson, 1999; Siavashi and Vamerzani, 2016).

Various aspects of Newtonian natural convection flows in cavities such as cavities filled
with a porous fin (Asl et al., 2019), one layer of a porous medium (Astanina ef al., 2019), two
(Mehryan et al., 2019) and multiple (Miroshnichenko et al,, 2018) layers of porous media,
tilted (Sheremet and Pop, 2018) and wavy wall (Alsabery ef al., 2019, 2018) porous cavities,
and cavities with non-uniform heating (Alsabery et al., 2017a). The natural convection in the
porous cavities in the presence of a magnetic field (Dogonchi ef al, 2019) and nanoparticles
(Sivasankaran et al, 2018) is also addressed. Sheremet (2012) explored the 3D natural
convection heat transfer in an inclined cylindrical enclosure. Unsteady conjugate natural
convection in cylinders with a layer of porous media (Sheremet and Trifonova, 2014;
Sheremet and Trifonova, 2013) were also addressed.

The flow and heat transfer of non-Newtonian fluids have been subject of many previous
studies. For example, Kairi and Murthy (2009, 2012), using the boundary layer analysis,
investigated the flow and heat transfer of a phase change material over an interface of solid-
liquid with the shape of a vertical flat plate. Chamkha et al. (2017) explored the mixed
convection and entropy generation of a Newtonian magneto hydrodynamic (MHD)
nanofluid in a lid-driven cavity.

There are also several recent studies that have analyzed the natural convection heat
transfer of non-Newtonian fluids in an enclosure. Kefayati (2016a) investigated the natural
convection heat transfer of nanofluid as a non-Newtonian fluid in a porous cavity. Cheng
(2009) explored the mixed convection boundary layer of a non-Newtonian fluid over a
vertical cone embedded in a porous medium. Kefayati (2016¢, 2016b) examined the double-
diffusive free convection in an inclined porous cavity with Soret and Dufour effects. In a
very recent study, Kefayati (2019) addressed the natural convection of viscoplastic fluids in
a porous cavity. Loenko et al. (2019) examined the free convection of a power-law fluid in an
enclosure containing in the presence of a heat-generating element.

Pishkar et al (2019) addressed the non-Newtonian free convection in a square
cavity for pseudoplastic non-Newtonian fluids and dilatant non-Newtonian fluids.
The natural convection heat transfer of non-Newtonian fluids in the space between
two vertical plates (Biswal ef al., 2019), the space between two plates partially filled
with a porous medium (Mohebbi et al., 2019), the space between eccentric horizontal
Annulus (Harab et al, 2019) and an L-shape cavity (Jahanbakhshi et al., 2018) is
investigated. Alsabery et al. (2017b, 2015) researched the natural convection heat
transfer of a power-law non-Newtonian fluid in a rectangular cavity (Alsabery et al.,
2015) and a trapezoidal cavity filled with a porous medium (Alsabery et al., 2017h).
The non-Newtonian index of # was in the range of 0.6 =n = 1.4. The outcomes show
that in the case the trapezoidal cavity, the local Nusselt number is higher for a lower
power-law index. The angle of sidewalls of the trapezoidal cavity notably affects the
heat transfer. In the case of the rectangular cavity with a layer of a porous medium, it
was found that for power-law index less than unity, which represents the
pseudoplastic fluids, there is a maximum value of the heat transfer. The increase of



the power-law index significantly decreases the heat transfer rate in the cavity.
Raizah et al. (2018) explored the free convection heat transfer of a non-Newtonian fluid
with the power-law index # from 0.4 to 1 in a porous cavity. The outcomes show that
an increase in the power-index 7 decreases the rate of heat transfer.

As seen, the analysis of free convection flow and heat transfer has been the subject
of some recent studies. However, in all of these mentioned studies (Pishkar et al., 2019;
Biswal et al., 2019; Mohebbi et al., 2019; Harab et al., 2019; Jahanbakhshi et al., 2018;
Alsabery et al., 2017b, Alsabery et al., 2015; Raizah et al., 2018), the enclosure is a
channel shape enclosure. The free convection heat transfer of non-Newtonian fluids in
the axis-symmetric enclosures has been extensively overlooked in the literature. The
free convection in 2D-axis symmetric enclosures can be fundamentally different from
channel cavities due to the gradual increase of the cavity volume by the increase of
axial distance. In the present study, the free convection behavior of a pseudoplastic-
non-Newtonian fluid in a cylindrical enclosure partially filled by a layer of a porous
medium is addressed for the first time. The study aims to address the following
fundamental questions:

QI. What is the effect of Rayleigh number on the flow field and temperature
distribution of a pseudoplastic non-Newtonian fluid?

Q2. How the increase of pseudoplastic non-Newtonian affects the heat transfer and the
temperature distribution in a cylindrical cavity?

@3. What is the effect of a layer of highly conductive metal foam on the thermal
behavior of a cylindrical enclosure?

To answer these questions, a model of flow and heat transfer in the cylindrical enclose is
introduced in the next section.

2. Geometric and mathematical models

2.1 Physic of the problem

The cylindrical enclosure-space between two vertical pipes is filled with a non-
Newtonian liquid. The model is two coaxial pipes, 7; and 7, height L. A schematic view
of the physical model, coordinate system, and boundary conditions are shown in
Figure 1. Figure 1(a) illustrates the 3D view of the model and Figure 1(b) and (c) depicts
the side view and top view of the cylindrical cavity. The inner pipe is hot at the constant
temperature of 73, and the outer pipe is cold at the constant temperature of 7. There is
a layer of porous medium with the thickness of D over the hot pipe. The bottom and top
geometry of the enclosure are adiabatic, 97/0z = 0, where T is the temperature. The
flow and heat transfer are assumed axisymmetric and unsteady. Due to the buoyancy
force, there is a laminar natural convection flow and heat transfer in the enclosure. The
buoyancy effects are modeled using Boussinesq approximation. Preparing and cooking
ketchup for food is a good example of the application of the present problem. If the
sauce is inside the porous chamber, the heat transfer is better transmitted, and the
sauce experiences a more uniform heat.

2.2 Governing equations

The governing equations in two-dimensional cylindrical coordinates (r,z) for continuity,
laminar flow, and heat transfer in solid and liquid in the unsteady can be introduced as
follows:
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Porous Layer (g, k, K)

Figure 1.
Schematic
representation of the
physical problem (a)
2D view; (b) 2D view
with boundary
conditions;

(¢) 3D view

Continuity equation:
pV (W) =0 (1)

where % is the vector of velocity.
Momentum equation:

ouw * *
Pre L@ w0 =V | —pl + 22 (vaw) + Vi)' | - B2 4 p g B, AT
e Ot & & K

@



in which p, &, t, p, B, I and g are, respectively, density of the base fluid, porosity, time,
pressure, permeability, thermal expansion coefficient, identity matrix and Gravity. Here, %’
is the velocity vector, and its components are «# and v in 7 and z directions, respectively. The
non-Newtonian dynamic viscosity is denoted by w. To consider the non-Newtonian
behavior of the fluid, the Power-law is used, based on this model can be written (Parmentier
et al., 1976; Panda and Chhabra, 2010; Sheela-Francisca et al., 2012):

pa= ()"

/J“f(;y):m/‘La - j/=max( Vv [D,] : [UL ;Ymin) (3)

D= % (V—> u+ (V- M)T)

where u, is an apparent viscosity, ¥ is shear rate, [D'] is Strain rate tensor in fluid, V%’ is
velocity gradient tensor, 2 is a consistency index for non-Newtonian viscosity, and # is
called power-law index the deviation of # from unity indicates the degree of deviation from
Newtonian behavior, that is <1 for pseudoplastic, = 1 for Newtonian, and >1 for dilatant
fluids. Pseudoplastic fluids are characterized by an apparent viscosity, which decreases with
increasing shear rate.

Energy equation:

oT o (o
(%) 5 + (p) T VT = V(g V'T) @

where (Gao and Chen, 2011; Nield and Bejan, 2013):

(Peo) = (L= £)(pcs), + £(pCy), ®)

kefj = (1 — S)kp + €kf (6)

Here, T is the temperature, C, is the heat capacity at constant pressure, &, is the effective
thermal conductivity coefficient of the porous matrix. The subscripts of eff, p and f denote
the effective properties, the porous medium and non-Newtonian fluid, respectively. The
superscript * represents the dimensional variables.

According to problem definition in Figure 1, the corresponding boundary conditions for
equations (1), (2) and (4) are:

r=r,zt—u=0T=T, (7)
r=rynzt—u =0,T="T, )
N oT

r,z2=0,t > u =0 0 )

7&2
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y,z:L,HW:o,%:o (10)

The initial condition of the problem is also defined as:
rz,t=0—u =0,T=T, 11

where in the present study it is assumed that the initial temperature is the same as the fusion
temperature as Ty = T.. The following dimensionless variables are used to transform the
governing equations into a non-dimensional form:

7 7, L z — uwlL T-T. tay pL?
Ri== RU:_vAR: 7Z:_7 =" = ) :_7P: )
LML P ALl e L ¢ prd
an—Z T, — T L2n+1 pc k
P i _ psEB (T, nc) ,Da:%,a':( p)p,gz_p
prL maot L (PC), kr
12)

where some of these parameters have also been used in the study of Cao and Faghri (1990)
for analysis of natural convection of a Newtonian fluid in a cavity. In the above equations,
AR, 7, o, {, Pr, Ra and Da represent the aspect ratio, non-dimensional time, ratio of heat
capacity, ratio of thermal conductivity, Prandtl number, Rayleigh number and Darcy
number, respectively. Here ay is the thermal diffusivity introduced as thermal diffusivity
(kd(pcy)p). It should be noted that the Prandtl number or Rayleigh number maybe not in a
full non-dimensional form as a non-integer index of 7 is involved.

It is worth noticing that considering the non-Newtonian index of 7, some of the
introduced non-dimensional parameters may be not in full non-dimensional form. However,
the multiplex of these parameters is in non-dimensional form. By introducing the above
dimensionless dependent and independent variables in the governing equations (1), (2)
and (4), the following non-dimensional equations are obtained:

p(V.T) =0 (13)
100 1 prG" | Pra1
— — — — cn—1—
S (UVU=v.|-P+ (VU) + (VU)' | =-2G""'U +Pr Rao,
e Ot &2 e Da
(14)
00 —
(a+a(1—g))§+(U.va) = (e+¢(1— ) (V.V0) (15)
The boundary conditions are also transformed into the following non-dimensional form:
R=R.Z7—U=00=1 (16)
R=R,Z,7—U=0,0=0 (17)
RZ=0r-0=02%_y (18)

7%:



06

RZ=1,7—0U=05%=0 19

) - 7T - 762_ ( )
= CTy-T.

RZ7=0-T=060) =7 =0 (20)

It is worth noticing that in the above equation, the effect of cylindrical coordinate system
and the cylindrical elements is also taken into account. The heat transfer at the surface of the
hot wall, is defined using the energy balance at the surface as (7T}, — T;) = —keff%),:,,i.
Using the non-dimensional variables of equation (12), the local Nusselt number can be
rewritten as:

hZ 06

where the average Nusselt number can be evaluates as:

1
NML :/ Nude (22)

3. Numerical method

The finite element method is employed to solve the partial differential equations introduced
in the governing equations of equations (14)-(16) along with the boundary conditions of
equations (17)-(22). Following the standard finite element method, the governing equations
are written in the weak form. The boundary equations for the velocities and isothermal
walls are Dirichlet boundary conditions; hence, Lagrange multiplier is employed. The
momentum and continuity equations are discretized and solved by constricting algebraic
equations over a structured grid. The first-order discretization is used for the heat equation.
The heat and momentum equations are solved as fully coupled equations. More details
about the finite element method can be found in recent study regarding the finite element
solution of non-Newtonian fluids by Castillo and Codina (2014) and the textbooks by
Huang et al. (2012), Nithiarasu et al. (2016), and Pepper and Heinrich (2017).

A time-dependent automatic time-stepping approach based on the backward
differentiation formulas (BDF) with minimum BDF order of 1 and maximum BDF order of 2
and free time steps is used (De Los Reyes and Gonzalez Andrade, 2012). Newton method
with the damping factor of 0.9 along with the PARDISO solver (Schenk and Gértner, 2004;
Wriggers, 2008) are used to residual equations. The computations are repeated until the
error of computation reaches below 10~° in each time step. The results were reported for a
steady-state solution. The steady-state solution was obtained after a sufficiently long time.

3.1 Grid check

The adequate size of the grid was found by testing several structured grid sizes of NV, xN,.
The profiles of non-dimensional vertical velocity and non-dimensional temperature along the
centerline of the cylindrical cavity, Z= 0.5, are monitored and reported for the selected grid
sizes. Figure 2 depicts a sample of the structured grid with the size of 150 x 150. Figure 3
shows the vertical velocity (U,) and temperature profile (0) along R at Z=0.5 when aspect
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Figure 2.

An adapted
structured grid on the
case

Figure 3.

Profiles of
dimensionless axial
velocity (a), and
dimensionless
temperature; (b) for
different grids
(AR=1,R;=04,
D=0.1andn=0.5,
Pr=60,Da=10"",
Ra=10%

ratio AR=1,R;=04,D=0.1,n=05, Pr=60, Da=10""*and Ra = 10". The specific heat ratio
o and the thermal conductivity ratio ¢ are adopted as o = 30.68 and ¢ = 1000.

The results of Figure 3 show that the variation of the results by the change in the size of
the grid is very small. To determine the optimal number of meshes in the grid for different
directions, the dimensionless axial velocity (U,), and the dimensionless temperature (6) were
compared for three different grids at mid-height of the annulus (Z=0.5). The grid size of
150 x 150 can produce adequate accuracy for most engineering applications and graphical
illustrations. Hence, the grid size 150 x 150 is selected for future calculations in this study.

3.2 Validation of computation

The numeric results of the present work are compared with the literature results in several
cases. As a first comparison, the study of Basak et al. (2009) adopted. In Basak et al. (2009),
the natural convection flow and heat transfer in a trapezoidal enclosure were explored. They
employed the Galerkin finite element method to solve the governing differential equations
for continuity, momentum, and energy in the enclosure. Considering a 2D Cartesian
coordinate system and heating from bottom, and assuming a Newtonian fluid, the results of
the present study can be compared with the study of Basak et al. (2009). The comparison is
depicted in Figure 4. Figure 4 illustrates the variation of local Nusselt number at the hot wall
when Pr="7.2, Da=10"° and Ra = 10°. As seen, the results show a very good agreement
between the results of the present numerical solution and the literature results.
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As another validation, the results of the current work are compared with (Kakarantzas et al.,
2017). Kakarantzas et al. (2017) addressed the natural convection flow and heat transfer of
MHD liquid metal in an enclosure space between two coaxial vertical cylinders. The liquid
metal was subject to a uniform magnetic field which was applied horizontally and the
enclosure walls were electrically insulated. In Kakarantzas et al. (2017) the vertical walls are
isotherm, and the outer cylinder is hotter than the inner cylinder. Assuming a Newtonian
flow, considering a zero magnetic field (Ha=0), the results of the present study are
compared to the benchmark study of (Kakarantzas et al, 2017) when Ra = 10°, Pr=0.0321.
Figure 5 illustrates an acceptable agreement between the results of the present study and the
results of Kakarantzas et al. (2017).

Matin and Khan (2013) addressed the steady-state natural convection flow and heat
transfer of a power-law fluid in the space between two concentric horizontal cylinders. The
cylinders were isothermal with different temperatures. Figure 6 compares the Nusselt
number obtained in the current work and those reported in (Matin and Khan, 2013) when
Pr=10and Ra = 10°, The results are plotted for the various value of non-Newtonian index 7.
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Figure 4.

Variation of local
Nusselt number at the
hot wall in the
presence of uniform
heating

Figure 5.

A comparison
between the radial
distribution of
temperature for
Ha=0,AR=0.5,and
AR=1andthe
current results when
Ro — Ri =0.6at
middle height
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Figure 6.

A comparison
between the results of
present work and the
study of Matin and
Khan (2013)

Figure 6 also indicates an excellent agreement between the results of the present study and
the literature results.

4. Results and discussion

4.1 Effect of Rayleigh number

The default value of the non-dimensional parameters are selected as AR=1, R; =04, & =
0.2, Ra=10", Pr=60,Da=10"", D=0.1, o = 30.68, { = 1000 and = 0.9. The high value of
Pr corresponds to paraffin materials. These non-dimensional parameters will be used to
represent the results; otherwise, the value of the non-dimensional parameter will be stated.

Figure 7 shows the streamlines and the temperature profiles in the cavity for various
values of Rayleigh number. The dashed line shows the thickness of the porous layer D. The
red dash line shows the region of the porous medium. When the Rayleigh number is small,
there is no or only one streamline in the porous space. The velocity and fluid movements are
very limited in the porous space due to the high hydraulic resistance of the porous medium.
By the increase of Ra, the buoyancy forces get stronger, and hence, the number of
streamlines in the enclosure increases. Considering Ra number, defined as the ratio of
Buoyancy to diffusion, for low values of Ra, the effects of buoyancy are low, convective heat
transfer is weak, and the isothermal lines are nearly vertical following the conduction heat
transfer. By the increase of Ra, the isothermal lines assume a wave shape, and the
convective heat transfer gets stronger. A Ra = 10°, the isotherms are nearly horizontal. This
is due to the strong flows of the fluid at the top and bottom of the cavity. At the top of the
cavity, the fluid is hot, and at the bottom, the fluid is cold. Therefore, the dominant
temperature gradient is in a vertical direction from top to bottom.

As mentioned, by the increase of Ra to 10° the buoyancy force gets stronger. The
streamlines enter effectively into the porous region, and they also induce a temperature
gradient at the porous medium. Indeed, for the Rayleigh numbers about 10° or lower,
the resistance in the clear-region liquid layer was the dominant resistance mechanism in the
cavity. Therefore, the temperature gradient in the porous medium was almost negligible due
to the high value of the effective thermal conductivity of the porous medium. By the increase
of Rayleigh number to 10, the thermal resistance of the liquid layer is comparable with
the resistance of heat diffusion in the porous layer, and hence, the temperature gradients in
the porous region boost. Thus, the contours of isotherm enter into the porous region. In this
case, the isothermal lines of 0.85 and 0.95 are inclined into the porous region.

351
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4.2 Effect of non-Newtonian index

Figure 8 illustrates the streamlines and temperature contours for various values of non-
Newtonian index 7. As seen, the variation of the non-Newtonian index 7 notably
changes the streamlines and temperature contours in the cavity. In the case of 7 =0.9
which the fluid is almost a Newtonian fluid, the streamlines are circular. The symmetry
between the isotherms at the cold and hot walls can be observed. By the decrease of #,
in which the fluid exhibits stronger non-Newtonian effects, the streamlines lose their
circular shape and deflect toward the upper wall of the cavity. As seen, in the case of
n =10.5, there is no symmetry in the streamlines. This is because of the cylindrical shape
of the enclosure. In a cylindrical enclosure by the increase of the distance from the axis,
the premiere of the cavity increases, and hence, the velocity and velocity gradients
drop. In the case of strongly non-Newtonian fluid, Figure 8(a), in which the dynamic
viscosity is a strong function of shear rate (velocity gradients), the symmetrical shape
of the streamlines lost. Following the significant change in the velocity profiles and
streamlines, the temperature distribution in the cavity is also affected. As seen in
Figure 8(a), the temperature contours are concentrated at the top-left region of the
cavity where the streamlines are also concentrated.

The local Nusselt number along the hot wall is plotted in Figure 9 for the various
value of non-Newtonian index #. This figure reveals that increasing the non-Newtonian
effect of the fluid (decreases of 7) significantly increases the Nusselt number. As it was
observed in streamlines and temperature contours of Figure 8, in the case of strong non-
Newtonian pseudoplastic fluid, i.e. #»=0.5, the increase of the shear rate reduces the
apparent dynamic viscosity, and hence, the velocity of the fluid increases. The increase
of the fluid velocity consequently enhances the local Nusselt number and heat transfer
in the cavity.
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Figure 7.
Streamlines and
temperature contour
for D=0.5and
different Rayleigh
number when (a)
Ra=10%(b) Ra = 10";
(©) Ra=10°and (d)
Ra=10°
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Figure 8.
Streamline and
temperature contours
for (@) n=0.5;
(b)n=0.7 and
©n=09

Figure 9.
Variation of the
Nusselt number
along the wall

4.3 Effect of thickness of porous layer

Figure 10 shows the streamlines and the temperature profiles for various thicknesses of the
porous layer, D. The results are plotted for a very low porous thickness (D =0.05), the
thickness of the porous layer lays up to the middle of the cavity (D =0.5), and the porous
layer almost filled all of the cavity D= 0.9. The temperature profiles show that in all of the
cases, the temperature in the porous layer is almost uniform and high. This is due to the
high value of the effective thermal conductivity of the porous medium. Hence, in the porous



(d)

layer, the dominant mechanism of heat transfer is diffusion, and the thermal resistance of
the porous medium is much lower than that of the clear region. Thus, no significant
temperature gradients can be seen in the porous layer. The streamlines show when the
porous layer is narrow, and the clear flow is wide, the fluid can easily circulate in the clear
region. By the increase of the porous layer to D = 0.9, the clear flow region is narrow, and the
fluid is under the significant influence of the no-slip at the boundaries and the porous
medium. In this case, the hydraulic resistance of the clear flow is comparable with the
porous medium, and the streamlines enter into the porous medium. However, the distance
between the streamlines is high and the flow velocities are very low. The attention to
isotherms in the cases of D = 0.1 and D = 0.5 shows that the isotherms are under the influent
of the flow convection, but by the increase of D, this influence decreases. In the case of
D=0.9, a dominant thermal diffusion in both clear flow and solid region can be seen.

Figure 11 shows the temperature profile at different horizontal sections of the cylinder
when D = 0.5. Figure 11(a) and (b) depict the results for Rz = 10* and Ra= 10°, respectively.
As shown in the figure, isothermal lines are so close together in the porous region, while in
the clear flow region, the difference between the temperature profiles is obvious. The
comparison of the temperature profiles in Figure 11(a) and (b) in the porous region shows
that by the increase of Rayleigh number the slope of the temperature profiles at the porous
region increases. This is due to the reduction of the thermal resistance of the clear flow
region by the increase of Rayleigh number.

The average Nusselt number as a function of the porous layer thickness (D) is plotted in
Figure 12. This figure shows the increase of the porous layer slightly increases the heat
transfer rate in the enclosure as the thickness of the porous layer increases when the
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Figure 10.
Streamlines and the
temperature profiles
for (@) D=0

(No porous layer); (b)
D=01;00D=05
and (d) D=0.9
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Figure 11.
Temperature profile
at different horizontal
section of the cylinder
for different (a) Ra =
10% (b) Ra = 10°

Figure 12.

The Nusselt number
for different
thicknesses of the
porous medium
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thickness of the porous layer is low, D < 0.6. This is since the increase of the porous
thickness suppresses the convection heat transfer in the clear region and increases
the thermal resistance of this region. However, as the temperature in the porous region is
uniformly close to the temperature of the hot wall, in fact, the increase of the thickness of the
porous region reduces the distance between the hot wall and the cold wall which tends to
enhance the heat transfer rate. By the competition of these two opposite effects, the Nusselt
number increases smoothly up to D = 0.6. By further grow of D, the distance between the hot
wall and the cold wall reduces while as it was observed in Figure 10(c) the convection flow
also enters into the porous region and further decreases the thermal resistance of the clear
flow by mixing of the fluid with the hot flow inside the porous region. As a result, the
Nusselt number increases gradually.

5. Conclusion

In this study, flow and heat transfer of a non-Newtonian fluid in a cylindrical vertical
enclosure partially filled with a layer of porous medium is investigated numerically. The
finite element method was employed to solve the governing equations. The grid



independence of the results and validations are performed. The effect of the non-Newtonian
power index (n) and the thickness of the porous layer (D) on the natural convection flow and
heat transfer were investigated. The outcomes can be summarized as follows:

e Local Nu number is maximum at the lower corner of the internal cylinder and
minimum at the upper corner. For a larger Rayleigh number, temperature gradients
are larger and are confined in a small area near the vertical walls.

e The decrease of the power index 7 reduces the symmetry of the streamlines and
velocity distributions in the cavity. This is due to the geometry of the cylindrical
cavity and the axis-symmetric elements. Local Nu number is maximum at the lower
corner of the internal cylinder and minimum at the upper corner. For a larger
Rayleigh number, temperature gradients are larger and are confined in a small area
near the vertical walls. The increase of pseudoplastic plastic behavior of the fluid in
the cavity (decrease of 7) enhances both local Nusselt number and the average
Nusselt number in the cavity.

* The increase of the thickness of the porous layer enhances the heat transfer in the
cavity. When the thickness of the porous layer is low, D < 0.6, the enhancement in
the heat transfer due to the presence of the porous layer is low. In the case of a
porous layer with a higher thickness (D > 0.6), a notable enhancement in the
average Nusselt number can be observed. By increase of the porous layer from D =
0.6 to D = 0.8, the average Nusselt number improved by 1.6 fold from Nu; = 0.15 to
Nuy =0.25.

The geometry of a cylindrical vertical cavity is of interest for its various practical
applications in the storage tanks and heat exchangers. The important point about the
cylindrical cavity is the fact that by an increase of distance from the axis, the perimeter of
the cavity in the 3D model increases. Therefore, considering the continuity equation, the
natural convection flow and shear rates next to the inner wall of the cavity are stronger than
that of the outer wall of the cavity. Hence, the apparent viscosity for the fluid next to the
inner wall, and the outer wall of the cavity are not similar. This leads to a non-symmetric
distribution of velocity and temperature profiles in the cavity. There are many unexplored
aspects of natural convection in the cylindrical cavities with non-Newtonian behavior such
as a cavity with partially heated wall and heating from below which can be subject of future
studies.
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