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Abstract
Purpose – This paper aims to investigate melting heat transfer of a non-Newtonian phase change material
(PCM) in a cylindrical enclosure-space between two tubes using a deformedmeshmethod.
Design/methodology/approach – Metal foam porous layers support the inner and outer walls of the
enclosure. The porous layers and clear space of the enclosure are filled with PCM. The natural convection effects
during the phase change are taken into account, and the governing equations for the molten region and solid
region of the enclosure are introduced. The governing equations are transformed into non-dimensional form and
then solved using finite element method. The results are compared with the literary works and found in good
agreement. The non-Newtonian effects on the phase change heat transfer andmelting front are studied.
Findings – The results show that the increase of non-Newtonian effects (the decrease of the power-law
index) enhances the heat melting process in the cavity at the moderate times of phase change heat transfer.
The temperature gradients in porous metal foam over the hot wall are small, and hence, the porous layer
notably increases the melting rate. When the melting front reaches the cold porous layer, strong non-linear
behaviors of themelting front can be observed.
Originality/value – The phase change heat transfer of non-Newtonian fluid in a cylindrical enclosure
partially filled with metal foams is addressed for the first time.

Keywords Non-Newtonian fluid, Cylindrical vertical-cavity, Melting phase change,
Porous metal foam

Paper type Research paper

Nomenclature
Lf = latent heat of fusion (J/kg);
ur = radial velocity (m/s);
uz = vertical velocity (m/s);
DT = temperature difference;
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C = specific heat (J/kg.K);
Cp = specific heat in constant pressure (J/kg.K);
Da = Darcy number;
g = gravity (m/s2);
G
:

= shear rate variable;
k = thermal conductivity (W/m.K);
L = height (m);
L = length of each porous layer;
m = consistency index;
M1 and M2 = dummy variables;
n = non-Newtonian power-law index;
Nu = Nusselt number;
P = non-dimensional pressure;
p = pressure (Pa);
Pr = Prandtl number;
R = radius of the cylinder;
r,z = cylindrical coordinates;
Ra = Rayleigh number;
Ste = Stefan number;
T = emperature (K);
t = time (s);
T0 = initial temperature (K); and
Tf = melting temperature (K).

Greek symbols
m = dynamic Viscosity (kg/m.s);
a = thermal diffusivity (m2/s);
g = shear rate (1/s);
« = porosity;
u = non-dimensional temperature;
t = non-dimensional time;
b = thermal expansion coefficient (1/K);
k = permeability;
r = density (kg/m3)V; and
� = kinematic viscosity (m2/s).

Subscripts
1 = thickness of the inner porous layer;
2 = thickness of the outer porous layer;
C = Cold;
Eff = Effective;
h = hot
i = inner porous layer;
i = interface position;
k = node number;
l = liquid phase;
o = outer porous layer;
p = porous layer; and
s = solid phase.
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Superscript
* = non-dimensional; and
^ = weighting function.

1. Introduction
Flow and heat transfer in cavities with porous media are of essential importance in many
industrial and engineering applications, such as energy storage, geothermal systems, heat
exchangers, and crystallization process. In applications related to energy storage, phase
change materials (PCM) have been used as an alternative to classical storage techniques like
thermochemical reactions widely. This is mainly because of their small volume change and
large latent heat, where a small amount of PCM can absorb and store a large amount of heat
in a solid-to-liquid process or release the same energy when the phase change is in the
opposite direction.

Natural convection flows have been investigated in different cavity configurations, such
as cavities with one layer of porous medium (Astanina et al., 2019), conjugate heat transfer
with a layer of porous medium (Alsabery et al., 2019a), multiple layers of porous media
(Mehryan et al., 2019; Miroshnichenko et al., 2018), tilted porous cavities (Sheremet and Pop,
2018), wavy-walled cavities (Alsabery et al., 2019c; Alsabery et al., 2018) and cavities filled
with porous fins (Asl et al., 2019). Other studies considered the natural convection of
nanofluids in cavities with porous media (Dogonchi et al., 2019; Sivasankaran et al., 2018;
Pop et al., 2016). There are also some studies that investigated the natural convection of
single and two-phase nanofluids (Chamkha et al., 2016; Chamkha et al., 2017; Alsabery et al.,
2019b), and phase change heat transfer nano-encapsulated suspensions (Ghalambaz et al.,
2019a; Ghalambaz et al., 2019b). These studies were undergone using Newtonian fluids as
the heat transfer medium.

Similarly, natural convection of non-Newtonian fluids in channel cavities has been
addressed for several geometries, such as square cavities (Pishkar et al., 2019), trapezoidal
cavities filled with porous medium(Alsabery et al., 2017), L-shaped cavities (Jahanbakhshi
et al., 2018), the space between two plates (Biswal et al., 2019; Mohebbi et al., 2019) and the
space between horizontal eccentric annulus (Harab et al., 2019). The case of non-Newtonian
nanofluids in porous cavities has been also considered (Kefayati, 2016; Hatami and Ganji,
2014).

Regarding the natural convection of PCM in cavities, the first works considered the
configuration of two adiabatic walls on the top and bottom and two isothermal walls.
Bertrand et al. (1999) summarized various numerical and experimental studies dealing with
this type of configuration, and presented results that were used as benchmark solutions for
later investigations with different models and methods (Vogel and Thess, 2019; Li et al.,
2017; Gao et al., 2017; Singh and Bhargava, 2015). In addition, Dhaidan and Khodadadi
(2015) summed up the influence of various cavity shapes, while the effect of the cavity
inclination (Yang et al., 2019; Zennouhi et al., 2015) and the presence of a magnetic field
(Bondareva and Sheremet, 2017; Ghalambaz et al., 2017b) have been also considered.

Works dealing with cavities heated from the bottom, in which a Rayleigh-Benard
flow could occur, have been relatively limited. However, these works gave more
attention to the flow patterns inside the cavity. For instance, Gau and Viskanta (1983)
observed experimentally the generation of inside flow regime for a substance with high
Prandtl number melting in a cavity heated from the bottom. Gong and Mujumdar (1998)
conducted a numerical study and found that increasing Ra leads to instability in
natural convection. Recent studies focused on the enhancement of heat transfer in
cavities heated from below using additives under different conditions (Mehryan et al., 2018;
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Sheikholeslami and Mahian, 2019; Ghalambaz et al., 2017a; Motahar et al., 2017).
Additional works extended the study conditions and considered cavities heated from
different sides and with different geometrical configurations (Dai et al., 2018; Iachachene
et al., 2019; Ghosh et al., 2019).

Cavities with porous media, mainly in the form of metal foam, also have been widely
considered in heat transfer enhancement of PCM. In fact, it has been found analytically,
numerically and experimentally that using metal foams increases substantially the
thermal conductivity of PCM (Siahpush et al., 2008; Tian and Zhao, 2013; Chen et al.,
2014; Xiao et al., 2013; Xiao et al., 2014). Zhao et al. (2010) concluded in their
experimental analysis that the heat transfer enhancement of PCM depends on the
material of the foam and its structure. Lafdi et al. (2007) used aluminum foam and found
that conduction dominates the heat transfer when the foam porosity is low while
convection becomes more effective when the porosity increases. This result was
confirmed in the numerical study of Jourabian et al. (2018b) and Jourabian et al. (2018a),
who considered the melting of ice and other PCM in annular cavities. Recently, Dinesh
and Bhattacharya (2019) showed numerically that the duration of the energy absorption
depends on the foam geometry, characterized by the porosity, the pore size, and the
pore overlap. In their experimental-numerical analysis, Wu et al. (2018) compared the
flow and heat transfer behaviors of Newtonian fluids, PCM, and composite PCM in a
cavity, in which parallel steel wires are embedded, and thus, forming a two-dimensional
porous structure. They concluded that increasing Ra lead to a stronger natural
convection of the Newtonian fluid, while in the case of a PCM, decreasing the porosity
weakened the natural convection and the heat transfer was dominated by conduction.

To sum up, the flow and heat transfer of Newtonian and non-Newtonian fluids, as
well as of PCMs in cavities with or without porous media have been widely
investigated. However, the rheological properties of the PCM have not been taken into
account. As some PCM present a non-Newtonian fluid behavior (Wang et al., 2019), the
objective of the current study is to investigate the flow and heat transfer of non-
Newtonian melting PCM in a cavity between two co-axial cylinders with porous media.
Another aspect that this paper is trying to investigate is the presence of two layers of
porous media with different metallic materials. The power-law model is used for the
fluid. The study particularly aims to assess the effects of Rayleigh number, Darcy
number and the power-law index on the melting liquid fraction and the variation of the
melting interface. The paper is organized as follows: The geometrical and mathematical
models are introduced in Section 2, and the equations governing heat transfer and fluid
flow are formulated in the dimensionless form. In Section 3, the numerical method used
to solve the non-dimensional equations is shown. The validation of the method by
comparing its solutions to benchmark solutions is also illustrated. The results of the
numerical study are then presented and thoroughly discussed in Section 4. Section 5 is a
conclusion where the main results are summarized, and future work directions are
discussed.

2. Geometric and mathematical models
2.1 Physics of the problem
A cylindrical enclosure with height L, inner radius of ri and outer radius ro, is filled with a
PCM. Each of the inner and outer vertical walls of the enclosure is covered with a layer of
porous metal foam. The thickness of the porous layers at the inner and outer walls are l1 and
l2, respectively. The physical model of the enclosure and the coordinate system are depicted
in Figure 1. The inner wall is isothermal at a hot temperature Th while the outer wall is at a
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cold temperature Tc. The top and bottom walls are well insulated. The porous layers for
inner and outer walls are indicated by subscripts of 1 and 2, respectively. The porosity and
the permeability of porous metal foams are denoted by « and k , respectively. The enclosure
and the porous layers are completely filled with the PCM.

In this study, the enclosure is considered as axisymmetric, and the flow is unsteady,
laminar and non-Newtonian. The radiation effects are assumed to be negligible, and the
buoyancy forces are modeled using the Boussinesq approximation. The PCM is in the solid
phase at a uniform temperature of Tc. The temperature of the inner wall suddenly raises to
an isothermal temperatureTh and remains constant.

2.2 Governing equations
The continuity and momentum equations for a two-dimensional non-Newtonian fluid in a
cylindrical coordinates system of (r, z), are as follows:

rr*: u!ð Þ (1)

where u! is the vector of velocity.

r

«

@ u!
@t

þ r

« 2 : u!:r*ð Þ u!¼ r*: �pl þ m

«
r u!þ r u!ð ÞT
� i

� m

k
u!þ r g!b T � Tf

� ��
(2)

in which r , « , t, p, m , b , k and g! are, respectively, density, porosity, time, pressure,
dynamic viscosity, volumetric thermal expansion coefficient, permeability and gravity,
respectively. Here, the dynamic viscosity, m , is not a constant and is a function of shear rate.
To consider the non-Newtonian behavior of the fluid, the power-law is used. Based on this
model dynamic viscosity can be written as (Shenoy, 2018):

Figure 1.
Schematic

representation of the
physical problem
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m _gð Þ ¼ mm a !

m a ¼ _gð Þn�1

_g ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0½ � : D0½ �p

; _g min

� �

D
0 ¼ 1

2
r u!þ r u!ð ÞT
� �

8>>>>>><
>>>>>>:

(3)

where m is a consistency index for non-Newtonian viscosity, and n is called power-law
index. Here _g is the shear rate. The deviation of n from unity indicates the degree of
deviation from Newtonian behavior that is<1 for pseudoplastic, = 1 for Newtonian, and>1
for dilatant fluids. Pseudoplastic fluids are characterized by an apparent viscosity, which
decreases with increasing shear rate; however, in dilatant fluids, the apparent viscosity
increases with increasing shear rate.

Energy equation for melted PCM is expressed as follows:

rcpð Þeff ;l
@T
@t

þ rcpð Þl u
!:r*T ¼ r*: keff ;lr*T

� �
(4)

The energy equation for the solid PCM is as follows:

rcpð Þeff ;s
@T
@t

¼ r*: keff ;sr*T
� �

(5)

where in the above equations:
T is the temperature, Cp is the heat capacity at constant pressure, and keff is the effective

thermal conductivity coefficient. The subscript “eff” denotes the effective properties of PCM
and the porous layer. The superscript * in the above equations represents the dimensional
variables. The effective heat capacity (rCp)eff and the effective thermal conductivity keff in
the above equations can be evaluated as (Nield and Bejan, 2013):

rcð Þeff ;l ¼ 1� «ð Þ rcpð Þp þ « rcpð Þl
keff ;l ¼ 1� «ð Þkp þ «kl

(6)

rcð Þeff ;s ¼ 1� «ð Þ rcpð Þp þ « rcpð Þs
keff ;s ¼ 1� «ð Þkp þ «ks

(7)

where « is the porosity of each of the porous layers, and in the clear space with no porous
layer, « approaches to unity. In the present study, the volumetric changes due to phase
change are neglected, and it is assumed that the density of the liquid is the same as density
of the solid, and hence, as follows:

r l ¼ r s ¼ r (8)

Considering the Stefan condition at the interface of phase change, the following energy
balance equation can be considered for the displacement of the phase change interface:

keff ;l
@T
@r

�����
l

� keff ;s
@T
@r

�����
s

¼ « r lLf ur (9)
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keff ;l
@T
@z

�����
l

� keff ;s
@T
@z

�����
s

¼ « r lLf uz (10)

According to the relations in equations (9) and (10), the equation for the velocity of the
interface in r and z-directions are obtained as follows:

ur ¼
keff ;l@T@r

���
l
� keff ;s@T@r

���
s

« r lLf
(11)

uz ¼
keff ;l@T@z

���
l
� keff ;s@T@z

���
s

« r lLf
(12)

According to the model definition in Figure 1, the corresponding boundary conditions for
equations (1), (2), (4) and (6) are:

r ¼ ri; z; t ! u!¼ 0;T ¼ Th (13)

r ¼ ro; z; t ! u!¼ 0;T ¼ Tc ¼ Tf (14)

r ¼ rf ; z ¼ zf ; u
!¼ uf ;T ¼ Tf (15)

r; z ¼ 0; t ! u!¼ 0;
@T
@z

¼ 0 (16)

r; z ¼ L; t ! u!¼ 0;
@T
@z

¼ 0 (17)

The initial condition of the problem is also defined as the equation below:

r; z; t ¼ 0 ! u!¼ 0;T ¼ T0 (18)

The initial temperature is assumed equal to the cold temperature Tc, and hence, T0 =
Tc=Tf.

The dimensionless variables in these equations are defined as:

R ¼ r
L
; Z ¼ z

L
; U
!¼ u!L

al
; u ¼ T � Tf

Th � Tf
; t ¼ tal

L2 ;P ¼ pL2

ra2
l

;al ¼ kl
rcpð Þl

;Pr ¼ m
r

an�2
l

L2n�2 ;

Ra ¼ rgb Th � Tf
� �

L2nþ1

man
l

;Da ¼ k

L2 ; Ste ¼
cp Th � Tf
� �

Lf
; k s=lð Þ ¼ ks

kl
; rc p=lð Þ ¼

rcpð ÞP
rcpð Þl

;

rcpð Þs=l ¼
rcpð Þs
rcpð Þl

; kp=l ¼ kp
kl
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L1 ¼ l1
L
;L2 ¼ l2

L
(19)

where Pr, Ra, Da and Ste are the Prandtl number, Rayleigh number, Darcy number and
Stefan number, respectively. Some of the non-dimensional parameters are adopted from Cao
and Faghri (1990).

Introducing the above dimensionless dependent and independent variables in the
governing equations, the following equations are obtained:

r r:U
!� �

¼ 0 (20)

1
«

@U
!
@t

þ 1
« 2 : U

!
:r

� �
U
!¼ r: �Pl þ Pr _G

n�1

«
rU
!þ rU

!� �T� i
� Pr
Da

_G
n�1

U
!þ PrRau z

"

(21)

Energy conservation for melted PCM:

1� «ð Þ rcpð Þp
rcpð Þl

þ «

 !
@u

@t
þ U

!
:ru

� �
¼ 1� «ð Þ kp

kl
þ «

	 

r2u (22)

Energy conservation for solid PCM:

1� «ð Þ rcpð Þp
rcpð Þl

þ «
rcpð Þs
rcpð Þl

 !
@u

@t
¼ 1� «ð Þ kp

kl
þ «

ks
kl

	 

r2u (23)

The boundary conditions are also transformed into the following non-dimensional form:

R ¼ Ri; Z ; t ! U
!¼ 0; u ¼ 1 (24)

R ¼ Ro; Z ; t ! U
!¼ 0; u ¼ 0 (25)

R ¼ Rf ; Z ¼ Zf ; U
!¼ 0; u ¼ 0 (26)

R; Z ¼ 0; t ! U
!¼ 0;

@u

@Z
¼ 0 (27)

R; Z ¼ 1; t ! U
!¼ 0;

@u

@Z
¼ 0 (28)

R; Z ; t ¼ 0 ! U
!¼ 0; u 0 ¼ T0 � Tf

Th � Tf
¼ 0 (29)
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Here, the parameters of interest are the volume fraction of melt and the Nusselt number at
the hot wall. The volume fraction of melt is normalized with respect to the volume of the
void space in the cavity. The void space in the porous space and the clear space is filled with
PCM. Hence, the normalized melt volume fraction is introduced as:

NVF ¼
Ð 1
0

Ð Rm

Ri
2pr« Rð ÞdRdZÐ 1

0

Ð Ro

Ri
2pr« Rð ÞdRdZ

(30)

where NVF denotes the Normalized Volume Fraction of the melt and the subscript m
denotes the location of the melt-solid interface. As the cavity is cylindrical, the elements are
axis-symmetric, thus, an element far away from the axis contains more volume compared to
an element near the axis. Hence, the integrals of equation (30), sweep over the cylindrical
space.

The heat transfer at the surface of the hot wall is defined using the energy balance at the
surface as h(Th � Tc) = �keff,l(@T/@r)|r = ri. At the initial time, there is a very thin layer of
molten PCM at the hot surface. Hence, the effective thermal conductivity of the liquid PCM
and porous medium is adopted. Using the non-dimensional variables of equation (19), the
local Nusselt number can be rewritten as:

NuZ ¼ hZ
keff ;l

¼ @u

@R

!
R¼Ri

(31)

where the average Nusselt number can be evaluated as:

NuAvg: ¼
ð1
o
NuZdZ (32)

3. Numerical method, grid check and validation
3.1 Numerical method
The finite element method is used to solve the governing equations. Following the standard
finite element method, the governing equations are first written in a weak form and then
integrated over the produced grid. The weak form of the equations can be written as:

� 1=«ð Þ � test Uð Þ � Ut þ test UXð Þ � �2� PrG
: n�1

=«

� �
� UX þ P

� �
þ test UYð Þ

� � PrG
: n�1

=«

� �
� UY þ VXð Þ

� �
þ test Uð Þ Pr=Dað ÞG

: n�1 � U � 1=« 2
� �

test Uð Þ
� U � UX þ V � UYð Þ þ Ra� Pr� test Uð Þ � u

(33a)

� 1=«ð Þ � test Vð Þ � Vt þ test VYð Þ � �2� PrG
: n�1

=«

� �
� VY þ P

� �
þ test VXð Þ

� � PrG
: n�1

=«

� �
� UY þ VXð Þ

� �
þ test Vð Þ Pr=Dað ÞG

: n�1 � V � 1=« 2
� �

test Vð Þ
� U � VX þ V � VYð Þ

(33b)
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�test Pð Þ � UX þ VYð Þ (33c)

�M1 � test uð Þ � u t � test uð Þ � U � u X þ V � u Yð Þ þ test u Xð ÞM2 � u Y þ u Xð Þ
(33d)

where test(U), test(V), test(P) and test(u ), are the weighting function of Û , V̂ , P̂ and û ,
respectively. The subscript of t denotes the time derivative while the subscripts of X and Y

denote the spatial partial derivatives. In equation (33d), M1 = 1� «ð Þ r cpð Þp
rcpð Þl

þ «
� �

and

M2 = 1� «ð Þ kp
kl
þ «

� �
in the melted region, and M1 = 1� «ð Þ rcpð Þp

rcpð Þl
þ «

rcpð Þs
rcpð Þl

� �
and

M2 = 1� «ð Þ kp
kl
þ « ks

kl

� �
in the solid region. Each of the above equations shall be integrated

over the domain of the solution where here the integration sign is omitted for convenience.
Second-order Gaussian quadrature method was used for the integration of the residual

equations. Then, the Newton method was used to iteratively solve the residual equations at
each time step up to the relative accuracy of 10�3. Adequate selection of time-step is very
important in transient phase change problems, and hence, an automatic time-step scheme
based on free-step automatic Backward Differentiation Formula (BDF) is used to handle the
time-step sizes during the solution. The free-steps are controlled in the order of one and two
using the BDF scheme (De Los Reyes and González Andrade, 2012). At each time step, the
residual equations are interactively solved by using the Newton method based on a
PARDISO solver (Schenk and Gärtner, 2004; Wriggers, 2008; Verbosio et al., 2017) up to the
absolute error of 10�6. A fixed damping factor of 0.9 was adopted for the Newton method.
Because of the limitation of our deformed grid approach in removing the deformed grids at
the end of the phase change. The grid movement next to the cold wall was forced to zero to
avoid the deformed grid collide with the cold wall. The grid-check and validations will be
discussed in next sub-chapters.

3.2 Grid check
A grid independence test has been performed to find the acceptable grid size, with a
reasonable computational cost and accuracy. To check the grid independency of the
solution, the calculations were repeated for four types of triangular grids with sizes 1,993,
2,468, 2,717 and 3,316, and the computations are performed for the following set of non-
dimensional parameters: Pr = 60, Ra = 7� 105, Ste = 0.012, Da1 = 1.2� 10�3, Da2 =
6� 10�3, «p1 = 0.2, « p2 = 0.3, (rcp)s/(rcp)l = 1.15� 10�4, (rcp)p1/(rcp)l = 1.6, (rcp)p2/(rcp)l =
2.3, ks/kl = 1, kp1/kl = 1000, kp2/kl = 2005, l1 = 0.2, l2 = 0.2 and n = 0.7. These non-dimensional
parameters are in agreement with Paraffin wax materials for PCM, and copper foam and
aluminum foam for porous layers. In the present study, the thickness of the porous layers l1
and l2 is kept constant equal to 0.2.

The details of the used grids are reported in Table I.
The time history of the normal volume fraction of the melt is summarized in Table II for

various grid sizes and time steps. The results of Table II indicate that the refining of the
mesh shows a fluctuation but converging behavior. Grid of Case 3 provides about 4 per cent
relative accuracy, which is acceptable for most engineering applications. Hence, Case 3 is
adopted for computations. Moreover, the computational volume of the non-dimensional void
space, which was used for the calculation of NVFwas 4.002.
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3.3 Validation
The results of the present model and numerical method are validated against several works
available in the literature. As the first validation, the study of Basak et al. (2006) is adopted.
Basak et al. (2006) addressed the free convection flow and heat transfer in a cavity filled with
a porous medium. The vertical walls of the cavity were at isothermal cold temperature while
the bottom of the cavity was as hot temperature. The top wall of the cavity was well
insulated and considered as adiabatic. Figure 2 shows a comparison between the
streamlines of the present study and those reported in Basak et al. (2006) when Ra = 106,
Pr = 0.71 and Da = 10�5. As seen, a very good agreement between the results of the present
study and Basak et al. (2006).

Bertrand et al. (1999) investigated the phase change heat transfer in a cavity heated from
the sidewall. A comparison between the results reported in Bertrand et al. (1999) and the
results of the present study for a Newtonian fluid when Pr = 50, n = 1, Ste = 0.1 and Ra =

Table II.
NVF at various time
steps and grid sizes

Cases t = 2 t = 3 t = 4 *Max error (%)

Case 1 0.6426 0.8090 0.8363 10
Case 2 0.7482 0.8371 0.8521 4
Case 3 0.6884 0.8319 0.8521 4
Case 4 0.7183 0.8354 0.8521 –

Note: *Max Error = |NVF� NVF@Case4|/NVF@Case4

Table I.
Different grid-sizes
for melting volume

fraction

Cases Grid size

Case 1 Consists of 1,993 domain elements and 163 boundary elements
Case 2 Consists of 2,107 domain elements and 185 boundary elements
Case 3 Consists of 2,486 domain elements and 223 boundary elements
Case 4 Consists of 3,316 domain elements and 275 boundary elements

Figure 2.
A comparison
between the

streamlines of
the present study and
the literature results
when Ra = 106, Pr =
0.71 and Da = 10�5
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1� 107 is performed and reported in Figure 3 at two different time steps of Ste � t = 0.002
and 0.01. As seen, the trend of the results of the present study is in agreement with the
literature data. However, there are also some differences between the outcomes of different
researchers. The reason for such difference is that measuring an accurate melting interface
in the experiment of Lacroix was difficult due to the fact that at the fusion state, the melting
interface is soft. The divergence between the numerical results is because of the adopted
models. The literature studied have used the enthalpy-porosity approach to model the phase
change heat transfer. In the enthalpy-porosity approach, it is assumed that the phase change
occurs at the fusion temperature range rather than a fixed fusion temperature. Thus,
interpreting an accurate fusion interface depends on the size of the fusion temperature
range. Using a narrow temperature range also results in discontinuity of heat equation, a
problem, which researchers typically avoid by adopting a sufficiently wide fusion
temperature range. Therefore, some differences between the results of literature studied
could be expected.

Considering the heat transfer in porous media, the results are obtained for the natural
convection in a trapezoidal porous cavity heated from below. The local Nusselt number is
compared with the study of Basak et al. (2009) whenDa= 10�3, Pr= 7.2, n= 1 and Ra= 106.
The results are plotted in Figure 4. This figure also depicts excellent agreement between the
results.

Matin and Khan (2013) investigated the steady-state two-dimensional free convection of
a power-law non-Newtonian fluid in a horizontal annulus enclosure. The inner and other
walls of the enclosure are isothermal with temperature difference. A comparison between
the average Nusselt number calculated in the present study and those reported byMatin and
Khan (2013) is depicted in Figure 5 when Ra = 103 and Pr = 10 for various values of the non-
Newtonian power-law index of n. As seen, there is an excellent agreement between the
results.

As a final validation, the natural convection heat transfer in the space between two
vertical annuli as addressed by Kakarantzas et al. (2017) is selected. In the absence of phase
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change or magnetic field effects, the temperature profile at the middle of hight of the
enclosure along the radial direction is adopted for comparison. The results are plotted for a
case with Ra= 105, n = 1 and Pr= 0.0321 in Figure 6 for two enclosure aspect ratios ofAR=
0.5 andAR= 1. Figure 6 shows excellent agreement between the results.

4. Results and discussion
Using the above-described model, numerical computations were carried out to simulate the
melting of a non-Newtonian PCM between two coaxial pipes, with the thickness of porous
media being equal to l1 = 0.2 and l2 = 0.2 on the inner and outer pipes, respectively.

Figure 7 depicts the deformed grid patterns during the melting process for various
Fourier number (t ). As depicted, the structured and unstructured grids are used to discretize
melted fluid and solid substances, respectively. The used code uses a re-meshing technique
during melting progress to improve the accuracy of the results. It is clear that the mesh is
coarser in the solid region because of the fact that the temperature gradient in that region is
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negligible. It is shown that increasing Fourier number leads to a larger melted liquid region
and increases the depth of the melting front surface.

The effect of Fourier number t on the streamlines and temperature contours during the
melting process is illustrated in Figure 8. It can be seen that the streamlines, and
consequently, the temperature contours, are noticeably influenced by t . This is related to the
change of the melted region, which is growing accordingly with t . As this region grows,
the streamlines are expanded throughout a greater area, and a circular shape can be seen in
the center of the region. This also affects the temperature distribution, as the isotherms
move closer to the cold wall.

Figure 9 illustrates the progress of the melt front for different values of t . It shows that
as t increases, the depth of the melting front remarkably grows. The Fourier number is a
dimensionless parameter, which represents the ratio between the conduction rate and the
thermal energy storage rate during the time. In addition, it is shown that the melting regions
increase drastically when t is increased between 0.4 and 8. However, when t is varied
between 8 and 1000, the melting front is almost the same near the bottomwall, but it deflects
toward the cold wall as it goes far from the bottom, thus, leading to an increase in the
melting region surface.

The effect of Rayleigh number on the variation of the melting liquid fraction as a function
of t is illustrated in Figure 10, for Da1 = Da2 = 1.2� 10�3, « p1 = «p2 = 0.2, (rcp)p1/(rcp)l =
(rcp)p2/(rcp)l = 1.6 and kp1/kl = kp2/kl = 1,000. The remaining properties, such as Prandtl
number, Stefan number, Darcy number, the thickness of the porous layers and non-
Newtonian power-law index, are set equal to the default values. It can be seen that for low
values of t , mainly lower than 1, Ra has little effect on the variation of the liquid fraction. As
Ra increases, a higher liquid fraction is obtained for the same value of t , and consequently,
complete melting is attained earlier.

The melting front for different Rayleigh numbers, at t = 0.1, t = 1, t = 5 and t = 500, is
depicted in Figure 11. It is shown that for t = 0.1, the melting front remains almost the same
when Ra increases. This is, as the heat transfer is a conduction-dominant regime at the early
stage of the melting heat transfer. Moreover, the presence of the metal foam also weakens
the convection heat transfer regime in the porous domain. Hence, the increase of the
Rayleigh number does not induce a notable influence on the melting interface. For t = 1,
increasing Ra moves the melting front toward the cold wall, and thus, leads to a larger
meting region, especially in the center of the cavity and near the top wall. This behavior is
less evident near the bottom wall. For t = 100, the melting region grows when Ra increases.
The melting front is almost the same near the top wall and close to the cold wall, and its

Figure 6.
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variation is occurring near the middle of the height. Similar behavior can be seen for t = 500.
However, the variation of the melting region is less evident as the melting front is almost the
same near the top and bottomwalls, and is slightly deviating near themiddle of the height.

The effects of the Darcy number Da on the melting liquid fraction and on the melting
front for the constant parameters mentioned above and Da1 = Da2 = Da « p1 = «p2 = 0.2,
(rcp)p1/(rcp)l = (rcp)p2/(rcp)l = 1.6 and kp1/kl = kp2/kl = 1000 are depicted in Figures 12 and
13, respectively. Figure 12 shows that a higher value of Da increases the liquid melting
fraction when the value of t is fixed. By consequence, complete melting is achieved earlier
when Da increases. It is also shown that when Da is less than 10�5, the melting liquid
fraction remains almost the same for every value of t . This is because, for the very low
values of Darcy number, the porous medium is almost impermeable, and there is a very
weak natural convection flow in the metal foam layer. Hence, a further decrease of Darcy
number does not influence the thermal behavior of the cavity, as the natural convection flow
is suppressed in the porous layer.

In Figure 13, it can be seen that varying Da has little effect on the melting interface
for t = 0.1 (Figure 13(a)), t = 1 (Figure 13(b)) and t = 500 (Figure 13(d)). Conversely, for
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t = 5 (Figure 13(c)), increasing Damoves the melting interface toward the cold wall and
increases the size of the melting region. As mentioned, in the early stages of the melting
process, the heat transfer mechanism is conduction dominant. Hence, as the flow
circulation is weak the effect of Darcy number is not notable. At the middle of the
melting process, the natural convection flows in the clear region of the cavity, which is
in the molten state gets stronger. At this stage, any convection flow inside the porous

Figure 8.
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layer gets important as it interacts with the high thermally conductive metal foam and
gets notably hot. Thus, as seen in Figure 13(c), the effect of Darcy number at the middle
of the melting process is notable on the advancement of the melting interface. Moreover,
the effect of Darcy number gets weaken at the end of melting process as the interface
enter the metal foam layer again and the natural convection-dominant heat transfer
shifts to the conduction-dominant heat transfer. Besides, the melting front and the size
of the melting region are the same in all the cases when Da is lower than 10�5.

Figure 14 illustrates the effect of the non-Newtonian index n on the melting liquid
fraction for different values of t . It shows that decreasing n, and thus, increasing the non-
Newtonian effects in the liquid, increases the liquid fraction for the same value of t . This
also indicates an earlier complete melting for a higher value of n. Moreover, it can be seen
that n has almost no effect when t < 0.5. This is, as the melting interface is in the porous
layer with a conduction-dominant heat transfer mechanism at the early stage of phase
change. Hence, the flow circulation, and thereby, the n effects are very weak.

Figure 15 depicts the effect of n on the melt interface and the size of the melting region. It
is shown that while decreasing n for t = 0.1moves the melt front toward the hot wall and
reduces the size of the melting region, increasing n for t = 1 leads to an opposite result and
grows the melting region. For t = 5, the melting interface does not change substantially
when n is varied between 0.7 and 0.9. When n = 0.5, the melting interface moves closer to the
cold wall near the top of the cavity and farther toward the hot wall near the bottom, and the
overall size of the melting region is slightly reduced. For t = 500, the melting interface is
the same near the top and toward the middle for all the values of n, and deviates near the
bottom wall. Therefore, the general result is that the effect of n on the melting interface is
greatly affected by t , and no general trend of variation can be inferred.

5. Conclusion
The phase change heat transfer of a non-Newtonian PCM in a cylindrical enclosure partially
filled with two layers of the porous medium was theoretically addressed. A deformed grid
approach is used to model the phase change heat transfer at an exact fusion temperature.
The governing equations are transformed into a non-dimensional form and then solved
using the finite element method. Grid study was performed, and the results were compared
with various works available in the literature and found in good agreement. The effects of
Darcy number, Rayleigh number and the non-Newtonian power-law index on the phase
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Figure 11.
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change heat transfer and melt volume fraction were investigated in the enclosure. The main
outcomes of the present study can be summarized as below:

� the results of the deformed grid approach are in good agreement with the results
available in the literature. Hence, the deformed grid approach can model the phase

Figure 13.
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change heat transfer in models involving natural convection effects using Stephan
condition at an exact fusion temperature;

� in the porous layer, over the hot surface, the transfer is a conduction dominant heat
transfer mechanism with a very low-temperature gradient. Hence, the porous layer
over the hot wall mainly acts as an isotherm layer containing PCM;

� the increase of Rayleigh number up to order of 105 significantly accelerates the
melting process as it changes the conduction heat transfer dominant regime to a
convection-dominant regime. Further increase of Rayleigh number slightly
enhances the melting process. In the case of Rayleigh number higher 105, the
patterns of natural convection start to shift from top to bottom area of the enclosure;

� the increase of Darcy number enhances the melting process by allowing flow
circulation in the porous layers. However, this effect is only important when the
Darcy number is sufficiently large as an order of 0.1. Considering small values of
Darcy number (order of 10�5) the porous layer does not allow flow in the layer and
further variation of Darcy number does not change the heat transfer behavior of the
enclosure; and

� the decrease of the non-Newtonian power-law index (n) significantly enhances the
melting process, particularly at middle stages of the phase change heat transfer. At
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large times, when the flow reaches the cold porous layer, some non-linear behavior
for the melting front and phase change heat transfer can be observed. Indeed, the
increase of non-Newtonian effects (decrease of n) also notably affects the shape of
melting front at large times.

The results of the present study indicate that the power-law index significantly affects the
melting heat transfer in the enclosure. Moreover, the temperature gradients at the hot porous
layer were small, while there was a significant temperature gradient at the clear region of
the enclosure with no porous media. Hence, it can be concluded that the used metal foam
enhanced the thermal conductivity in the porous layer. Maybe, using a porous metal foam
with higher porosity but with a wider layer or a non-uniform porous layer results in more
enhancement of heat transfer and phase change with a similar metal foam mass. Therefore,
optimization of the porous layer for each index of the non-Newtonian power-law can be
subject of future studies.
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