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Abstract
Purpose – The purpose of the present paper is to model a cavity, which is equally divided vertically by a thin,
flexible membrane. The membranes are inevitable components of many engineering devices such as distillation
systems and fuel cells. In the present study, a cavity which is equally divided vertically by a thin, flexible
membrane ismodel using the fluid–structure interaction (FSI) associatedwith amoving grid approach.
Design/methodology/approach – The cavity is differentially heated by a sinusoidal time-varying
temperature on the left vertical wall, while the right vertical wall is cooled isothermally. There is no thermal
diffusion from the upper and lower boundaries. The finite-element Galerkin technique with the aid of an
arbitrary Lagrangian–Eulerian procedure is followed in the numerical procedure. The governing equations
are transformed into non-dimensional forms to generalize the solution.
Findings – The effects of four pertinent parameters are investigated, i.e., Rayleigh number (104=Ra= 107),
elasticity modulus (5� 1012=ET = 1016), Prandtl number (0.7 =Pr = 200) and temperature oscillation
frequency (2p = f=240p). The outcomes show that the temperature frequency does not induce a notable effect
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on the mean values of the Nusselt number and the deformation of the flexible membrane. The convective heat
transfer and the stretching of the thin, flexible membrane become higher with a fluid of a higher Prandtl
number or with a partition of a lower elasticity modulus.
Originality/value – The authors believe that the modeling of natural convection and heat transfer in a
cavity with the deformable membrane and oscillating wall heating is a new subject and the results have not
been published elsewhere.

Keywords Convection heat transfer, Fluid–structure interaction (FSI), Flexible membrane,
Sinusoidal temperature

Paper type Research paper

Nomenclature

ds = vector of displacement;
E = Young’s modulus in dimensional form;
Et = elasticity modulus in non-dimensional form;
f = frequency;
Fv = vector of body force;
g = vector of gravitational acceleration;
L = size of the cavity;
n = number of periods;
ni = normal direction to the flexible separator;
P = fluid pressure;
Pr = Prandtl number;
Ra = thermal Rayleigh number;
t = dimensional time;
T = temperature;
Tp = period of oscillation;
u = vector of velocity;
w = velocity vector of the moving grid;
x = Cartesian coordinate in x-direction; and
y = Cartesian coordinate in y-direction.

Greek symbols

a = thermal diffusivity;
b = volumetric thermal expansion coefficient;
s = Tensor of stress;
t = non-dimensional time;
m = dynamic viscosity;
� = Poisson’s ratio;
r = density; and
rR = density ratio of fluid-to-solid structure.

Subscripts

av = average;
c = cold temperature;
f = fluid;
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h = hot temperature;
p = membrane partition; and
s = membrane domain (solid).

Subscripts

* = indicates the dimensional parameter.

1. Introduction
Membranes are an inevitable part of many engineering devices such as distillation (Cassard
and Park, 2018), filtration (Feng et al., 2017), fuel cells (Jang et al., 2018) and separator (Xie
et al., 2016) systems. Moreover, many engineering applications have promoted the problem
of natural convection inside enclosures, which has attracted intensive research interest. Baïri
et al. (2014) reviewed the applications of free convection in enclosures by explaining the
different solutions to treat natural convection phenomena. The study demonstrated the
importance of natural convection in enclosures.

Moreover, the natural convection in porous pores, fuel cells, buildings and insulation
of heat storage systems can be modeled as a cavity. The cavities have been extensively
studied in previous and recent studies owing to its important engineering applications.
Different characteristics of convection heat transfer were studied to improve or control
the heat transfer process in homogeneous cavities (Tahmasebi et al., 2018; Sheikholeslami
et al., 2019; Mehryan et al., 2019), cavity with MHD effects (Sadiq et al., 2018; Alsabery
et al., 2018b, Bondareva and Sheremet, 2018), conjugate heat transfer (Alsabery et al.,
2018a, Alsabery et al., 2017), layered cavities (Ghalambaz et al., 2018; Mehryan et al.,
2019b, Sheremet et al., 2018; Miroshnichenko et al., 2018), cavity with obstacles (Alsabery
et al., 2019; Abouali and Falahatpisheh, 2009; Astanina et al., 2018; Bondarenko et al.
(2019), Alsabery et al., 2018d), in partitioned cavities such as a cavity partially filled with
a layer of porous media (Chamkha and Ismael, 2014; Mehryan et al., 2019), diagonally
divided square cavity (Varol et al., 2009), gas chamber divided by a permeable membrane
(de Almeida and Hart, 2017), a cavity with an off-center partition (Tatsuo et al., 1987), a
cavity with multiple vertical partitions (Nishimura et al., 1988), a vertically divided cavity
(Oztop et al., 2009), divided cavities with various thermal boundary conditions (Oztop
et al., 2009), a partitioned cavity subject to a uniform heat flux (Kahveci, 2007) and
partitioned cavities with various thermal boundary conditions (Xu et al., 2009; Kalabin
et al., 2005; Küttler andWall, 2008).

Flow-through devices incorporated with diaphragms like pump and sensors, flow-
through flexible conduits and reciprocating pistons or fluid splashing in containers of
flexible wall (Engel and Griebel, 2006) are deformable-domain problems. The most efficient
and robust numerical method developed in such problems is the arbitrary Lagrangian–
Eulerian method (ALE) (van Loon et al., 2007). Fu and Huang (2006) straddled this numerical
approach to study the free convection in a vertical channel containing a vibrated surface.
They found lesser convection effect compared with a stationary surface. Lee et al. (2012)
investigated the impact of the elasticity property of flapping wings on the thrust generation.
They indicated a major role of the modulus of elasticity on the drag exerted by the flow.
Mehryan et al. (2019a) investigated the mixed-convection flow of induced by oscillating of a
cylinder in a cavity using the ALE approach.

Kalmbach and Breuer (2013) have provided experimental reference data regarding the
fluid–structure interaction (FSI) benchmark case under turbulent flow conditions. Their
structure consisted of a rigid cylinder tailed with a para-rubber sheet acting as a splitter.
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At the end of the para-rubber sheet, a mass was attached to reduce the flutter effect. They
found the flexible splitter reduced the drag of flow compared with a rigid splitter. De Nayer
and Breuer (2014) utilized the FSI experiments of (Kalmbach and Breuer, 2013) along with
the large-eddy simulation to show that the modulus of elasticity of rubber had an essential
effect on the FSI phenomenon. Ghalambaz et al. (2017) and Alsabery et al. (2018c) used the
ALE approach to study the effect of an oscillating-fin on the convective heat exchange in a
differentially heated cavity. The oscillating fashion of the fin did not overcome its drag
action. Therefore, they recognized the deterioration of the heat exchange despite the mixing
effect introduced by the fin.

Very recently, Jamesahar et al. (2016) and Mehryan et al. (2017b) considered the free
convection in cavities subdivide by flexible membrane by studying the fluid–solid
interaction between free convection and membrane. Jamesahar et al. (2016) showed that the
reformable cavities affected the rate of heat exchange compared with a rigid partition. The
results of Mehryan et al. (2017b) confirmed that the fluid interaction with the solid
significantly influenced the shape of a very thin, flexible partition (membrane). Studies of
both Jamesahar et al. (2016) and Mehryan et al. (2017b) concluded that the deformable
membrane could influence the flow and heat patterns in the cavity. Therefore, both fluid and
structure were coupled and should be solved simultaneously. In both studies (Mehryan et al.,
2017b, Jamesahar et al., 2016), the cavities were differentially heated. However, in many real
applications, imposing the perfectly constant wall temperature is hard to be attained.
Practically, the wall temperature fluctuates about a range of temperature with a periodic
fluctuation frequency. By careful study of the physics of a cavity containing a flexible
partition, it can be inferred that the transient effect of heat exchange could be very important
because the free convective flow is the result of the temperature difference (buoyancy
forces). The membrane also affects the flow owing to its interaction with the fluid. In a
cavity with a membrane, imposing a transient thermal boundary condition to the cavity
walls produces a transient flow and heat exchange together with a transient shape of the
membrane. For low frequencies of temperature fluctuations, the variation in the shape of the
membrane may follow the induced thermal patterns (De Nayer and Breuer, 2014). However,
for moderate frequencies of the temperature fluctuations, the response time of the membrane
could not be as fast as the induced changes in the flow and heat patterns, and hence,
the membrane could also act as a filter medium for temperature and flow fluctuations in the
cavity.

The membranes are very thin, and hence, in many applications, the interaction of the
fluid and the membrane can easily change the shape of the membrane. The change in the
shape of the membrane would also change the flow and heat transfer mechanism.
The present study aims to point out a novel approach, the FSI approach, associated with a
moving grid domain to model the deformation of a membrane owing to the interaction with
a fluid flow. This paper is a sequel to the author’s work (Mehryan et al., 2017b) on a cavity
subdivided by a partition. The main novelty of the current paper is that we imposed two
fundamental intrinsic matters: the first is that a cyclic thermal boundary condition heats the
cavity and the second is the effect of a wide range of Prandtl number. These two effects are
important in the modeling of fuel cells and the separators, in which the membrane acts as
the selective layer and is exposed to fluid flow.

2. Mathematical modeling
A view of the geometry of the considered problem is shown schematically in Figure 1 along
with the coordinate system and imposed boundary conditions. The dimensions of the
enclosure in x*, y* coordinates are so much higher than the dimensions in z*. Accordingly, a
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two-dimensional scope of the geometry can correctly model the problem. The heat source
associated with the hot bound imposes a time-periodic temperature so that

T* ¼ T*
c þ T*

h � T*
c

� �
Aþ Bsin v tð Þð Þ, while the opposite cold one has the uniform

temperature of T*c. The lower and upper bounds of the enclosure are thermally impervious. A
thin, flexible membrane is used to partition the enclosure into two smaller ones. The thickness
of the membrane is t*p . The fluid filling the enclosures behaves as an incompressible and
Newtonian one. The boundary condition of time-periodic temperature on the left bound
necessitates that the flow is unsteady. The present buoyancy-driven flow applies the
Boussinesq approximation. This approximation neglects the variations of density except where
they are in terms containing the gravity acceleration. Because the flexible separator is thin and
with low thermal resistance, the gradient of temperature in it is zero.

Two eyelets of L/100 height are located on the top of the vertical bounds, while the other
bounds and the flexible membrane are impervious against the mass flow. The goal of the
eyelets is to control the fluid flow. The eyelets are considered very small, and hence, the only
effect of these eyelets is to balance the pressure in the two sides of the cavity. The densities
of the fluid and the flexible membrane are the same. The flexible divider behaves as a
hyperelastic material reacting non-linearly against the imposed forces by the fluid.

2.1 Fluid–structure interaction model
Description of the correlative effects of the fluid and deformable solid material is performed by
the known technique of the Arbitrary Lagrangian-Eulerian (ALE). The fluid flow within the
enclosure is portrayed by the incompressible mass conservation and the linear momentum
equations for the pressure and velocityfields (Mehryan et al., 2017a, Zargartalebi et al., 2018):

r* � u* ¼ 0 (1)

Figure 1.
Physical problem and
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@u*

@t
þ u* �w*ð Þ � r*u* ¼ � 1

r f
r*P* þ vfr*2u* þ b g T* � Tc

*
� �

(2)

Also, the energy equation which describes the temperature field can be represented as
follows (Zargartalebi et al., 2018):

@T*

@t
þ u* �w*ð Þ � r*T* ¼ afr*2T* (3)

The structural deformations of the flexible membrane can be achieved by the following
nonlinear geometric and elastic formulation (Mehryan et al., 2017b):

r s
d2ds

*

dt2
�r*r* ¼ F v

* (4)

Fv
* of the above-written equation is the applied volume forces on the deformable membrane,

r* is the solid stress tensor, ds
* is the displacement vector of moving coordinate system so

that dds
*/dt=w* and r s is the density of the membrane.

In this study, the neo-Hookean solid model has been used for assigning the stress tensor s *

(Ogden, 1997). This model is applied to characterize the stress–strain nonlinear behavior of a
hyperelastic material with large deformations (Ogden, 1997). The hyper-elastic theory is used
more for modeling of rubbery behavior of a polymeric material and polymeric foams that can
have large deformations. Themodel can be written as follows (Jamesahar et al., 2016):

r* ¼ J�1FSFtr (5a)

where:

F ¼ I þr*d*
s

� �
; J ¼ det Fð Þ and S ¼ @Ws=@« (5b)

are the deformation gradient, the determinant of the matrix F and the partial differential of
the density function of strain energy. Also, the density function of the strain energyWs and
strain « is defined through the equations (6) and (7) (Jamesahar et al., 2016):

Ws ¼ 1
2
m l J

�1I1 � 3
� �

� m l ln Jð Þ þ 1
2
l ln Jð Þð Þ2 (6)

« ¼ 1
2

r*d*
s þr*d*

s
tr þr*d*

s
trr*d*

s

� �
(7)

l and m l of the above equations, known as Lame’s first and second constants, respectively,
are related to Poisson’s coefficient and elasticity module using m l = E/2(1þ v), and l = Ev/
(1þ v) (1� 2v). I1 is called the first constant of the deformation tensor.

2.2 Boundary conditions
All the bounds of the enclosure are motionless (u* = v* = 0). The lower and topper bounds of
both sub-cavities are thermally insulated (@T*/@y* = 0). The right-hand wall is at a constant
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temperature T* ¼ T*
c , while a time-sinusoidal function of temperature is imposed on the

left-hand wall such that its period-averaged value is A T*
h � T*

c

� �
þ T*

c . This function is

written in the term T* ¼ T*
c þ T*

h � T*
c

� �
Aþ Bsin v tð Þð Þ, where v shows the oscillation

frequency, and values ofA andB are 1 and 0.1, respectively.
Along the FSI, continuity of the dynamic motion and kinematic forces are the boundary

conditions used to model the fluid and deformable membrane interaction. These conditions
can be represented as:

@d*
s

@t
¼ u* and r* � n*i ¼ � P* þ m fr*u* (8)

Applying the conservation of energy on the flexible membrane along with the previous
assumptions results in equation (9) as follows:

@T*þ

@n*i
¼ @T*�

@n*i
(9)

In this equation, the plus and minus symbols denote the right and left sides of the
deformable membrane, respectively. Also, the boundary condition for both eyelets can be
represented as follows:

�P* þ m fr*u*
h i

� n*i ¼ 0 (10)

2.3 Non-dimensional form of governing equations
To provide with dimensions, non-dimensional parameters are introduced as follows:

ds ¼ d*
s

L
; r ¼ r*

E
; t ¼ taf

L2 ; x; y; nið Þ ¼
x*; y*; n*i

� �

L
(11a)

u ¼ u*L
af

; w ¼ w*L
af

; P ¼ L2

r fa
2
f

; T ¼ T* � T*
c

T*
h � T*

c
(11b)

r ¼ r*

1=L
; r2 ¼ r*2

1=L2 ; tp ¼ t*p
L

(11c)

To dimensionalize the equations, the above parameters are substituted for the
equations (1)-(4). Therefore, we have:

1
rR

d2ds

dt 2
� Etrr ¼ EtF v (12)
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r � u¼ 0 (13)

@u
@t

þ u �wð Þ � ru ¼ �rP þ Prr2u þ PrRaT (14)

@T
@t

þ u �wð Þ � rT ¼ r2T (15)

where:

Ra ¼
gb T*

h � T*
c

� �
L3

y faf
; Pr ¼ y f

af
; Et ¼ EL2

r fa
2
f

; F v ¼
r f � r sð ÞLg

E
; rR ¼ r f

r s

(16)

The vectors of Ra and Fv act in the direction of the y-axis, upwards and downwards,
respectively. Since the Rayleigh number includes the vector of gravity acceleration, it has
been represented as a vector. Indeed, the Rayleigh numbers in the x and y directions are zero
andRa= |Ra|, respectively.

Finally, the non-dimensional forms of the velocities and temperatures on the bounds
are:

x ¼ 0; y : u ¼ v ¼ 0 andT ¼ Aþ B sin f tð Þ (17a)

x ¼ 1; y : u ¼ v ¼ 0 andT ¼ 0 (17b)

y ¼ 0; x : u ¼ v ¼ 0 and @T=@y ¼ 0 (17c)

y ¼ 1; x : u ¼ v ¼ 0 and @T=@y ¼ 0 (17d)

For the fluid–membrane (solid) interface:

Etr � ni ¼ � P þ Prru

@ds=@t ¼ u

Tþ ¼ T�; @Tþ=@ni ¼ @T�=@ni

8><
>: (17e)

For both of the eyelets:

Prru � P½ � � ni ¼ 0 (17f)

where the dimensionless frequency of the periodic temperature is defined as f = vL2/
af. Here, two definitions are expressed to evaluate the rate of heat transfer: first, the
average Nusselt number along with the left- or the right-side walls at a specified time
is:
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Nuav ¼ �
ð1

0

@T
@x

dy (18)

Secondary, the average Nusselt number in one period is defined as:

Nuav;Tp ¼ �
ðnþ1ð ÞTp

nTp

ð1

0

@T
@x

dydt (19)

where n and Tp are the number of periods and the period, respectively. Also, the
dimensionless mean temperature in the whole enclosure is calculated as follows:

Tav ¼

ð

A

TlocaldA

ð

A

dA
(20)

Here, A denotes the domain of the enclosure. To describe the fluid flow inside the sub-
cavities, the concept of the stream function can be used as follows:

u¼ @c

@y
and v¼ � @c

@x
(21)

3. Numerical method, grid independence test and validations
The interdependent, complex and non-linear equations (12)-(15) are solved by employing the
Galerkin finite element approach with the aid of the ALE technique. The numerical
approach of the finite element are expressed in Donea and Huerta (2003) and Basak and
Chamkha (2012) in details. A mesh of non-uniform triangular elements is employed to
discretize the computational domain. The three-point Gaussian quadrature with bi-
quadratic functions were used for calculating the residuals. In each time step, the Newton–
Raphson method was applied to iteratively solve the residual equations until they reach
10�5 or lower. Owing to the coupling of fluid and structure, using an adequate time step is
very important. In the present study, the time step is controlled automatically using a free
time step backward differentiation formula (BDF). The utilized BDF is of variable order (1-2)
(Süli andMayers, 2003).

For as much as the results of the numerical solutions depend on the number of grid cells,
first, it must be proven that the results are independent of the grid size. In the present
investigation, a grid independence test has been done. A grid independence study has been
performed for the mean Nusselt number in a period of oscillation and the dimensionless
temperature at Point A with the position of x=0.025 and y=0 next to the flexible bound
when Ra = 107, Et = 1013, Pr = 6.2 and f=20p . The increase of the Rayleigh number
enhances the strength of the convection regime and reduces the thickness of the boundary
layer which, as a result, boosts the gradients of the temperature and velocity in the vicinity
of the enclosure walls. The increase of the stiffness of the membrane also increases the
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tension gradients in the flexible structure. The Prandtl number of 6.2 is common in the
literature, and it is close to the Prandtl number of water. The set of Ra = 107, Et = 1013

indicates the most sensitive case in the present study. Thus, the grid check has been
performed for this set of non-dimensional variables.

Figure 2 shows the general and zoomed views of the selected grid. Figure 3 shows the
temperature at the coordinate of Point A (x=0.025, y=0) for several meshes of different
sizes. The results for Nusselt number are presented in Table I. The temperature time series
of Point A are plotted in Figure 3. The outcomes show that the grid of size 11,406 elements is
appropriate for the numerical simulation.

To ensure the accuracy of the current modeling and simulation, the used solution method
has been used to resolve several problems investigated in the literature. In the first
validation, the results obtained in this study and those by Xu et al. (2009) have been
compared. Xu et al. (2009) have studied the heat transfer of transient free convection in an
enclosure divided into two parts using a rigid partition. It is worth noting that in the work of
Xu et al. (2009), the variable t is defined as t = taf Ra

2/L2. It is evidently shown in Figure 4

Figure 2.
General and zoom
views of the grid
selected

Figure 3.
Time series of the
dimensionless
temperature at Point
A (x=0.025, y=0)
obtained in different
grids �

T
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that there is an excellent agreement between the outcomes of this work and those reported in
(Xu et al., 2009). This validation verifies the sufficiency of the present solution to simulate
the transient natural convection in the fluid domain and the partition.

Another validation is the comparison of the deformation of the lower bound of a lid-
driven enclosure computed by the present study and that computed by Küttler and Wall
(2008). The schematic view of the study of Küttler and Wall (2008) along with the used
physical values have been depicted inside (Figure 5). In Küttler and Wall (2008), the bottom
bound was flexible, and the induced flow owing to the lid movements would change the
configuration of the bound. From Figure 5, it can be observed that the current solution
method is highly acceptable. This comparison confirms the capability of the present
formulation and the solution for dealing with the FSI physics in an ALE system of meshing.

The last validation compares the experimental outcomes reported by Tatsuo et al. (1987)
and the numerical results calculated of this investigation. Also, the validation compares our
results and Churchill’s relation (Churchill, 1983). As previously mentioned, Tatsuo et al. (1987)
conducted experimental research on free convection in a regular quadrilateral divided vertically
byNmultiplex rigid plates. In the case ofN=1 andAr= 4 (height/length), the study of Tatsuo
et al. (1987) is very similar to the present study. From Figure 6, great accordance is established
between the experimental outcomes and Churchill’s relation. This comparison confirms the

Table I.
Grid independency
test for Ra = 107,
Et = 1013, f=20p

and Pr = 6.2

cases No. of elements Nuav;Tp Average of error (%)*

1 3064 84.06
2 5644 82.15 1.91
3 8575 81.45 0.70
4 11406 81.10 0.35
5 16302 80.74 0.36
6 20158 80.75 0.10

Note: *Error = |Nuav, Tp, i+1 – Nuav, Tp, i|/|Nuav, Tp, i|

Figure 4.
Comparison of the

dimensionless
temperature reported
by Xu et al. (2009) and
this study at a certain
point (0.0083, 0.375)
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correctness of the results from the natural convection heat transfer point of view for the large
values of t where the convective heat transfer reaches to its steady state.

4. Results and discussion
Here, the impacts of the dimensionless parameters of Rayleigh number (104 # Ra #
107), elasticity modulus (5� 1012 # Et # 1016) and frequency (2p # f# 40p ) on the rate
of heat transfer, stress in the solid flexible partition and the patterns of the flow and
temperature are investigated. This range of elasticity modulus is in agreement with

Figure 5.
Deformation of the
flexible bottomwall
of the lid-driven
cavity perused by
Küttler andWall
(2008) and the present
study at t=7.5 s

Figure 6.
Comparison of
average Nusselt
between the results of
the present study and
experimental results
reported by Tatsuo
et al. (1987) and
Churchill’s (1983)
relation at Pr= 6 and
Ar= 4 Ra

N
u a
v

106 107 108
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Experimental (Tatsuo et al., 1987)
Churchill's equation (Churchill, 1983)
Present study
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most of membrane and rubber materials. For instance, by assuming that the cavity is
filled with water r f = 1,000 kg/m3, af = 0.155� 10�6, L= 0.1, and the membrane as
rubber (E= 0.01� 109 to 0.1� 109), the non-dimensional elasticity modulus parameter
can be evaluated as Et = 4.2� 1015 to 4.2� 1016. The values considered for Prandtl
number are 0.71, 6.2 and 200, which correspond to the working fluids of air, water and
engine oil, respectively. As discussed by Markatos and Pericleous (1984), for a regular
square cavity, the critical Rayleigh number starts from 106, and for a Rayleigh number
higher than this value, the transient phenomenon can be expected. However, it should
be noticed that the presence of the membrane, acting as a partition, suspends the
commencing of the transient phenomenon to much higher Rayleigh numbers. For
instance, Xu et al. (2009) addressed the heat transfer of laminar free convection in a
square enclosure partitioned into two equal parts by a rigid partition for a Rayleigh
number up to 9.2� 108. More details regarding the range of non-dimensional values can
be found in Ghalambaz et al. (2017) and Jamesahar et al. (2016).

4.1 Effects of Rayleigh number
In the current category, the dimensionless parameters Et , f and Pr are fixed at 10

13, 10p
and 6.2, respectively, while the Rayleigh number Ra varies from 104 to 107. Figure 5
shows the streamlines for the mentioned range of Ra in different periods of oscillation.
As envisaged, the maximum value of stream function |c |max, introduced as the
intensity of the flow increases as Ra increases. This result is referred to the fact that an
increase of Ra enhances the buoyancy force in the momentum equation. This effect can
be seen in the four considered periods of oscillation. Besides, a single clockwise (CW)
circulation (negative stream function) is formed in the cases of low Ra values (Ra = 104

and 105) in both sub-cavities. However, at high Ra numbers (Ra = 106 and 107), the CW
vortex created in the right part of the enclosure becomes stronger, and as a result, it
breaks up into two vortices. Hence, the fluid–solid interaction forces increase slowly
until it deforms the impermeable flexible membrane to the left as shown in Figure. 7. It
is worth mentioning that the streamlines get crowded close to the flexible membrane,
which indicates an intensified flow there. Besides, at lower Ra, the intensity of the
flowing fluid is relatively weak, and the pressure is approximately identical in both
sub-cavities, and therefore, the deformation of the flexible membrane is marginal.

The corresponding isotherms contours are presented in Figure 8. These contours
demonstrate the variation of the heat transfer mechanism as Ra is varying. The isotherms
tend to possess a stratification pattern as the Rayleigh number increases. This is the result
of the augmentation of the strengthening of the convective currents as a result of the
augmentation of the buoyancy forces. Additionally, Figure 8 states that at Ra = 104, the
isotherms look mostly vertical, which is an indication to the dominance of the conduction
mode against the convection one. As Ra increases, the impact of the conduction mechanism
diminishes while the effect of the convection mode increases. In general, the onset of the
buoyancy force dominance can be characterized when the isotherms are mostly horizontal
and the membrane is deformed noticeably; this can be seen at Ra= 106.

Figures 9(a)-(b) and 10 show the evolution of the average Nusselt number Nuav, average
temperature Tav and the maximum stress smax for the flexible membrane. These figures are
plotted for Pr = 6.2, f=10p and Et = 1013. The results are monitored after one cycle of
the temperature oscillation (t = 0.2). From Figure 9(a) and (b), Nuav (as a representation of
the convective heat flux) and Tav vary in a sinusoidal fashion. The average Nusselt number
doubles for each one order of magnitude of the Rayleigh number. Also, these figures show
that an increase of Ra leads to an enhancement of the oscillation range of both Nuav and Tav
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functions. Also, it is clear that with increasing Ra, the increased heat transfer rate Nuav
reduces Tav. Figure 10 illustrates that smax extremely enhances with an increase of Ra. In
the case of Ra= 104, smax is almost constant. In this case, the maximum stress in the flexible
membrane is in the order of 1010, while it is clear that the oscillation function of smax is
amplified as Ra increased. This can be attributed to the increasing deflection of the flexible
membrane with Ra.

4.2 Effects of Prandtl number
The effects of Prandtl number (Pr) on the streamlines and isotherms contours in five periods
of oscillation are displayed in Figures 11 and 12, respectively, for Ra = 107, Et = 1014, and
f=10p . Increasing the Prandtl number means increasing the momentum diffusion over the
heat diffusion. As a result, it is clear from Figure 11 that in all periods of oscillation, the
intensity of the flowing fluid increases with increasing values of Prandtl number, so that the

Figure 7.
Streamlines patterns
for the cavities with
Rayleigh numbers (a)
Ra= 104, (b) Ra=
105, (c)Ra= 106 and
(d) Ra=107 in a
period of oscillation
(A: nTp, B: nTpþTp/
4, C: nTpþTp/2, D:
nTpþ 3Tp/4) for
f=10p , Et = 1013

and Pr= 6.2
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fluid interaction stretches the flexible membrane to the right. Also, it can be seen that the
stretching of the flexible membrane grows slightly as time increases.

Figure 12 (whose parameters are the same as those labeled in Figure 11) shows that the
isotherms follow the variations of the streamlines completely for all Prandtl numbers and
times. In other words, the volumes of the warm (left) and cold (right) regions shrink and
expand, respectively, as Prandtl number increases.

The variations of Nuav and Tav inside the whole cavity are shown in Figure 13(a) and (b),
respectively. For a better presentation of the results, the variations of Nuav and Tav have
been depicted in several periods of oscillation. As portrayed in Figure 13(a), the increase of
Pr enhances the momentum exchange between the fluid molecules which in turn enhances
the average Nusselt number Nuav. In comparison with Pr = 0.71 (air), the amplitude of
graphs with Pr = 6.2 (water) and Pr = 200 (engine oil) enhances 8.2 per cent and 22.5 per
cent, respectively. According to these observations of Nuav, Figure 13 (b) shows clearly that
the Tav inside the whole enclosure decreases as Prandtl number increases. Here, unlike the

Figure 8.
Isotherms patterns
for the cavities with

Rayleigh numbers (a)
Ra= 104, (b) Ra=

105, (c) Ra= 106 and
(d)Ra=107 in a

period of oscillation
(A: nTp, B: nTpþTp/
4, C: nTpþTp/2, D:

nTpþ 3Tp/4) for
f=10p , Et = 1013

and Pr= 6.2
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trend of the Nuav, the sinusoidal graphs of the average temperature shift downwards and
also, their amplitudes decrease with increasing values of Prandtl number. This reduction of
the amplitude based on the amplitude of the sinusoidal function results for Pr = 0.71 equals
1.15 (with water) and 23.3 per cent (with engine oil).

The variations of the maximum stress smax in the flexible membrane versus the
dimensionless time for several values of the Prandtl number are represented in
Figure 14. The results state that the value of smax increases extremely when the Pr
grows. The reason for this is the strengthening of fluid recirculation within the two
sub-cavities. It is interesting to know that the enhancement of the amplitude of the
sinusoidal variations of smax is 447.8 per cent and 15453 per cent for water and
engine oil, respectively, compared with air.

Figure 9.
Average Nusselt
number (a) and the
average temperature
(b) versus
dimensionless time
for different values of
Ra in f=10p , Et =
1013 and Pr= 6.2 (a)
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membrane versus
dimensionless time
for different values of
Ra in f=10p , Et =
1013 and Pr= 6.2 �

� m
ax

1 1.1 1.2 1.3 1.4

0
1E
+1
2

2E
+1
2

3E
+1
2

4E
+1
2

Ra = 104

Ra = 105

Ra = 106

Ra = 107

HFF
30,6

2898



Figure 11.
Streamlines contours
for Prandtl number a:
Pr= 0.71 b: Pr= 6.2
and c: Pr= 200 in a
period of oscillation
(A: nTp, B: nTpþ

Tp/5, C: nTpþ 2Tp/5,
D: nTpþ 3Tp/5, and
E: nTpþ 4Tp/5) for
Ra= 107, f=10p

andEt = 1014
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Figure 12.
Isotherm contours for
Prandtl number (a)
Pr= 0.71, (b) Pr= 6.2
and (c) Pr= 200 in a
period of oscillation
(A: nTp, B: nTpþ
Tp/5, C: nTpþ 2Tp/5,
D: nTpþ 3Tp/5, E: n
Tpþ 4Tp/5) forRa=
107, f=10p and
Et = 1014
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4.3 Effects of the temperature oscillation frequency
Figures 15 and 16 illustrate the efficacies of the oscillating temperature frequency on the
flow and temperature fields, respectively, while the other parameters are fixed at Ra = 107,
Et = 1014 and Pr = 6.2. As can be observed from the streamlines’ patterns, the frequency
influences the strength of the fluid flow, while the patterns of the streamlines are
indiscernible. Also, there are no noticeable variations in the streamlines trend with different
times. At a specific time, the frequency increases the strength of flow (t = Tp), while at
another time, there is no certain trend (for example, t = Tp þ 3Tp/4). According to the
corresponding isotherms (Figure. 16), we conclude that in the left sub-cavity, the isotherms
move up with the frequency when t = Tp and Tp þ Tp/4, while if t is nTp þ Tp/2 or nTp þ
3Tp/4, the isotherms shift downward as the frequency augments.

Figure 13.
The average Nusselt
number on the right

wall (a) and the
average temperature
inside whole cavity

(b) for different
periods of oscillation
with Prandtl number
Pr= 0.71, 6.2 and 200
forRa= 107, f=10p

andEt = 1014(a)                                                         (b)
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Figure 15.
Streamline contours
for the different
values of frequency in
different periods of
oscillation (A: nTp,
B: nTpþTp/4, C:
nTpþTp/2, D: nTpþ
3Tp/4) forRa= 107,
Pr= 6.2 and
Et = 1014
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Figure 16.
Isotherms contours

for different
frequency values and
different periods of
oscillation (A: nTp,

B: nTpþTp/4, C: nTp

þTp/2, D: nTpþ
3Tp/4) for Ra= 107,

Pr = 6.2 and
Et = 1014
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From Figures 17 (a) and (b), obviously, the frequency increment decreases both the
amplitude of the Nuav and Tav for Ra = 107, Pr = 6.2 and Et = 1014. The Nusselt
number and the average temperature time functions for all frequency values oscillate
around certain values which are 8.1 and 0.435, respectively. Therefore, it can be
concluded that the frequency influences only the amplitude of the Nuav and Tav as
time functions and has no effect on the period-averaged Nuav and Tav. The graph of
the maximum stress in the flexible membrane shown in Figure 18 also follows the
trend of Nuav and Tav with the frequency. Accordingly, it seems that when f tends to
infinity, the amplitude of the oscillatory functions mentioned approaches constant
values. Physically, when f tends to infinity, the left wall temperature oscillates very
quickly so that the fluid does not have enough time to receive the temperature
oscillation effects.

Figure 17.
Variations of (a)
average Nusselt
numberNuav and (b)
average temperature
Tav versus
dimensionless time
for the different
values of frequency in
Ra= 107, Pr= 6.2,
andEt = 1014

Figure 18.
Variations smax

according to
dimensionless time
for the different
values of frequency in
Ra= 107, Pr= 6.2 and
Et = 1014
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4.4 Effects of elasticity modulus
The thermal and dynamical behaviors of the fluid under the influence of the variation of the
elasticity modulus are presented in Figures 19 and 20. In these figures, each of the vertical
columns illustrates the flow and temperature fields at a specific time. For all elasticity
modulus values, the intensified fluid flow occurs in the second column, at a period of
oscillation equals to nTp þ Tp/4. For a low value of the elasticity modulus, the flexible
membrane experiences substantial deformation when faster circulated fluid exerts larger
forces; as such, the highest flexible membrane stretching is noticed for the lower values of
the elasticity modulus. The stretched membrane results in a substantial space available for
the right sub-cavity; thus, the highest fluid flow intensity is recorded for the lower elasticity
modulus. The vortex created in the left part of the enclosure for the lowest elasticity
modulus (Et = 5� 1012) case breaks into two vortices when Et changes from Et = 5� 1012

to Et = 1013. After that, the general patterns of the streamlines are the same for all values of
the elasticity modulus. Figure 20 shows that the isotherms contours are formed following
the streamline patterns. Among the times defined for displaying the streamlines and the
isotherms, the maximum temperature is observed at nTpþTp/4.

Figure 21(a) and (b) displays the variations of Nuav and Tav versus several periods of
oscillation for different values of Et . In general, it can be stated that the Nuav was
decreased and Tav was augmented by the increase of the elasticity modulus. However, it
should be noted that the reduction and augmentation rate of Nuav and Tav decay when
the value of Et is higher than Et = 1014. To justify these behaviors, it can be said that

Figure 19.
Streamlines for the

cavities with modulus
elasticity (a)Et =

5� 1012, (b) Et = 1014

and (c)Et = 1016 in
different periods of
oscillation (A: nTp,
B: nTpþTp/4, C:

nTpþTp/2, D: nTpþ
3Tp/4) for Ra= 107,
f=20p and Pr= 6.2
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when the elasticity modulus of the membrane is low, an interaction between the solid
material and the fluid takes place, the movement of the membrane is easier and more in
a period of oscillation; hence, some fluid exits from the embedded eyelets. Some cold
and fresh fluid substitutes this quantity of fluid. In contrast, when the elasticity

Figure 20.
Isotherms contours
for the cavities with
modulus elasticity a:
Et = 5� 1012, b:Et =
1014 and c: Et = 1016

in different periods of
oscillation (A: nTp, B:
nTpþTp/4, C: nTpþ
Tp/2, D: nTpþ 3Tp/4)
for Ra= 107, f=20p
and Pr= 6.2

Figure 21.
Variations ofNuav (a)
andTav (b) versus
oscillation period for
different values of Et

atRa= 107, f=20p
and Pr= 6.2 (a)                    (b)
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modulus is high, the deflection of the flexible partition is restricted; consequently, the
fluid entry and exit cannot be seen significantly. This claim is proven by the
representation of the discharge or charge of the enclosure through the eyelets in
Figure 22. In Figure 22, Q is the dimensionless flow rate through the left eyelet. The
negative and positive values of Q depict the intake and the discharge of the fluid
through the eyelets.

Finally, Figure 23 provides information about the variations of smax versus the
oscillation period for different values of Et when Ra = 107, f=10p and Pr = 6.2. The
obtained results show a noticeable increase in the maximum stress in the membrane smax
with the increase of Et . This is because the increase of the elasticity modulus gives rise to

Figure 22.
Dimensionless flow
rate through the left

embedded eyelet
versus oscillation

period for different
values of Et atRa=

107, f=20p and
Pr= 6.2τ
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the stiffness of the membrane wall, which in turn leads to much high resistance against the
force exerted by the fluid circulation. Besides, the oscillation amplitude of smax increases as
Et is increased.

5. Conclusions
The investigated problem in this work is a fluid–structure interaction (FSI) representing a
periodically heated square cavity divided vertically into half by a flexible membrane. The
left vertical wall is exposed to a sinusoidal time-varying temperature, while the right surface
is kept isothermal at a cold temperature. There is no thermal diffusion from the upper and
lower horizontal boundaries. The interdependent, complex and non-linear governing
equations are solved by using the Galerkin finite element approach with the aid of ALE
technique. Four pertinent parameters are altered in this study. According to these studied
parameters, the following concluding remarks are drawn:

� Owing to the applied boundary conditions, the general behavior of the flexible
partition is stretched to the left, resulting in shrinking the left sub-cavity and
expanding the right one.

� A fluid with a high Prandtl number enhances the convective heat transfer and
robustly stretches the flexible membrane, and as a result, the associated maximum
stress increases.

� The lower the elasticity modulus of the flexible membrane is, the higher are the
flexible partition deflection, mean Nusselt number and the maximum stress of the
partition.

� The frequency of the oscillating left wall temperature does not affect the
deformation and the stress of the flexible membrane, the Nuav, and Tav.
Nevertheless, the amplitudes of Nuav, Tav and smax are decreasing functions of the
wall temperature frequency.

� The periodic state values of both Nuav and smax of the flexible partition increase
significantly with the increase of Ra.

In the present study, as a pioneer study, the membrane was modeled as a flexible thin
divider, and the effects of membrane permeability, porosity and extra layers are neglected.
Modeling themembrane with more details can be subject of future studies.
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