Applied Thermal Engineering 145 (2018) 80-97

journal homepage: www.elsevier.com/locate/apthermeng

Contents lists available at ScienceDirect APPLIED
THERMAL

ENGINEERING

Applied Thermal Engineering

Research Paper

Fluid-structure interaction in natural convection heat transfer in an oblique = M)

Check for

cavity with a flexible oscillating fin and partial heating s

A.L Alsabery™™*, M.A. Sheremet®, M. Ghalambaz®, A.J. Chamkha®’, I. Hashim"

@ Department of Refrigeration & Air-conditioning Technical Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq

b School of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

€ Department of Theoretical Mechanics, Tomsk State University, 634050 Tomsk, Russia

d Department of Mechanical Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran

© Department of Mechanical Engineering, Prince Sultan Endowment for Energy and the Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Saudi

Arabia

fRAK Research and Innovation Center, American University of Ras Al Khaimah, P.O. Box 10021, Ras Al Khaimah, United Arab Emirates

HIGHLIGHTS

® FEM and Arbitrary Lagrangian-Eulerian (ALE) procedure are used in the numerical analysis.

® Two different heating sources are places in various locations within the oblique cavity.

® The developed computational code is validated comprehensively using the previous numerical data.
® The obtained results revealed an essential effect of the fin on the flow and heat transfer.
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ABSTRACT

Unsteady natural convection in a differentially heated oblique cavity with a flexible oscillating heat-conducting
fin mounted on the bottom adiabatic wall is studied numerically by using the finite element method. The right
inclined wall is kept at a constant low temperature, while the left one is adiabatic with a local isothermal heater,
the fin is heated isothermally from the basis. The heat-conducting elastic fin is located in the central part of the
bottom adiabatic wall. The Galerkin weighted residual finite element method with the aid of the Arbitrary
Lagrangian-Eulerian (ALE) procedure is used in the numerical analysis. The developed computational code was
validated comprehensively using a grid independency test, and numerical data of other authors. The governing
parameters of this study are the dimensionless time (1078 < ¢ < 3.5), thermal conductivity ratio between the heat-
conducting fin and working medium (1 < K, < 1000), non-dimensional Young’s modulus (10° < E < 10'?), os-
cillating amplitude (0.01 < A < 0.1), left wall heater length (0.1 < H <0.9), and the inclination angle of tilted
walls (—45 < ¢ < 45). The obtained results revealed an essential effect of the flexible oscillating heat-conducting
fin on the fluid flow and heat transfer inside the oblique cavity.

1. Introduction

configurations was reported by Ostrach [1]. The Fluid Structure Inter-
action (FSI) is the study of the interaction of a moveable or deformable

The important phenomenon of natural convective heat transfer in
industrial and engineering systems can be observed from the wide ap-
plications, such as cooling of electronic components, heat exchangers,
double pane windows and cooling systems in nuclear reactors. Natural
convective flow and heat transfer occur within cavities due to the
temperature difference and buoyancy forces. A comprehensive review
on natural convection in different cavities with various shapes and

surface with a fluid. In FSI problems, the fluid domain is subject to a
continuous change (deformation) due to the transformation shape of
the moveable or deformable surface. One way to track the deformation
of the fluid space is using the moving grid. In the moving grid method,
the grid points are relocated by Lagrangian transport to match the
moving or deformable surfaces. Recently, excellent books have been
published on the subject of FSI [2-6].
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Nomenclature

dimensionless amplitude of the fin

thickness of the fin

dimensionless Young’s modulus

dimensionless body force vector

gravitational acceleration

dimensionless length of the heater

thermal conductivity

thermal conductivity ratio of the solid to the fluid
width and height of cavity

average Nusselt number

Prandt]l number

Rayleigh number

stress tensor

dimensionless time

temperature

velocity components in the x-direction and y-direction
dimensionless velocity components in the X-direction and
Y-direction

x,y & X, Y space coordinates & dimensionless space coordinates

a2 B Ve e s T s Rl e R~
SFLELEIE SN

5" 0
%

£
< <«

Greek symbols

thermal diffusivity

thermal expansion coefficient
Frequency of the oscillation

strain

dimensionless temperature
dynamic viscosity

kinematic viscosity

density

stress tensor

dimensionless period of oscillation
inclination angle of the sloping wall
dimensionless stream function
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subscript

cold

fluid

hot

the property ratio of the solid to the fluid
solid
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There are many engineering cases in which the deformation of the
moveable surface due to the interaction with the fluid is negligible. In
such problems, the couple between the fluid and the structure is one
way coupling. However, there are also many engineering problems in
which the interaction of the fluid with the structure is important. In
such problems, the fluid would affect the shape of the structure and at
the same time, the shape of the structure would affect the fluid flow and
its characteristics. These problems are two way coupling. Considering
the one-way coupling of the fluid and structure interaction. Oztop and
Dagtekin [7] considered the problem of steady mixed convection in a
double lid-driven vertically heated square cavity. They concluded that
the heat transfer was enhanced by moving the vertical walls in the
opposite direction, while it was reduced by the movement of the walls
in the same direction. The problem of mixed convection flow and heat
transfer in a lid-driven top wall square cavity filled with copper-water
nanofluid was investigated by Talebi et al. [8]. They used the finite
volume method for solving the dimensionless governing equations and
the found that the buoyancy effect and the flow intensity were in-
creased with the augmentation of Rayleigh number. Abu-Nada and
Chamkha [9] made a numerical study on the mixed convection flow in
an inclined square cavity with a hot top lid-driven wall filled water-
ALO; nanofluid. Their study concluded that the effect of Richardson
number was strongly enhanced the heat transfer and the fluid flow.
Rashad et al. [10] have studied the mixed convection of a micropolar
fluid over a moving surface. They solved the governing ODE numeri-
cally using the Keller box method and they explained that the increment
of the chemical reaction parameter led to the reduction of Nusselt
number. Ramesh et al. [11] have extended the study of [10] to the case
of mixed convection over an inclined moving surface. Where they ob-
served that the temperature of the fixed flat plate was much higher than
that of the moving flat plate. In a very recent work, Raju et al. [12] have
taken into account unsteady effects for the problem of mixed convec-
tion over a moving surface. They concluded that the distribution of the
velocity was an increasing function of Soret number. Chamkha et al.
[13] as well as Alsabery et al. [14] have studied the mixed convection
of a nanofluid in a lid-driven cavity. The top and bottom walls of the
cavity was moving with the constant velocity of V. Kareem and Gao
[15] have considered the 3D geometry of cavity with a sliding led.
There are also many other researches which have studied the problems
involving the moving wall or sliding wall. In all of these studies [7-15]
the wall was symmetric and smooth, and hence, its motion was simply
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modeled by a non-zero velocity boundary condition whit out any need
for the grid motion. Hence, all of these studies are one-way coupling in
which the interaction between the wall and the fluid would not affect
the shape of the wall.

In contrast with the mentioned studies of [7-15], there are some
very recent studies in which the couple between the fluid and the
structure is a two-way couple. Hence, the interaction between the fluid
and the boundary not only affects the fluid but also the structure. Using
the finite volume method, Shi and Khodadadi [16] and Shi and Kho-
dadadi [17] numerically studied the problem of fluid flow and heat
transfer in a lid-driven square cavity with an oscillating thin fin ex-
truded from the right vertical wall of the cavity. Ku [18] in a patent has
reported a new type of flexible heat sink which allow its parts to slightly
deform due to the exerted force. The heat sink is composed of a flexible
base which absorbs the heat from a hot component. The side opposite of
the heat sink is covered with a plurality of groups of fins which are
positioned in an array and spaced apart across the base and enabling
the heat sink to flex lengthwise and width wise. Soti et al. [19] nu-
merically investigated the flow-induced deformation of thin flexible
structures coupled with convective heat transfer where they demon-
strated a large-scale flow-induced deformation as an effective passive
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Fig. 1. Physical model of convection in an oblique cavity with a flexible os-
cillating fin and coordinate system.
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Fig. 2. Grid-points distribution for a grid size G6 = 6936.
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Fig. 3. The flowchart of the utilized numerical code.
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Fig. 4. Grid testing of the average Nusselt number on (a) the
t=3.5,Ra=10%K, =10, E=10", A = 0.1, H= 0.5 and ¢ = 30.

heat transfer enhancement technique. Selimefendigil and Oztop [20]
studied numerically the effect of magnetic field on mixed convection
heat transfer in a lid-driven square cavity filled with nanofluid in the
presence of flexible left wall and volumetric heat generation. They re-
ported that for high Richardson numbers, the average Nusselt number
tended to increase as with Young’s modulus of the elastic wall raised.
Selimefendigil et al. [21] explained the Fluid-structure-magnetic field
interaction in a lid-driven square cavity filled with CuO-water nanofluid
and having flexible side wall. They concluded that the heat transfer rate

inclined left wall
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and (b) the solid fin with different grid sizes for

was enhanced with the reduction of Young’s modulus. Ghalambaz et al.
[22] have studied the effect of the presence of an oscillating flexible fin
in a cavity. The side walls of the cavity was isothermal with a tem-
perature difference and the top and bottom walls was well insulated.
The fin was highly thermal conductive and was mounted at the hot
wall. The results show that the flexibility, the oscillation frequency and
the amplitude of the fin can affect the heat transfer in the cavity.
However, the presence of a horizontal fin can negatively block the
natural convection fluid flow circulation, and hence, the presence of the
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Fig. 5. Comparison between the average Nusselt number of the current nu-
merical work and the experimental data demonstrated by Nishimura et al. [40]
and the numerical work based on Churchill’s relation by Churchill [41] with
Rayleigh number for a rectangular cavity when AR = 4 and Pr = 6.

oscillating fin did not induce a significant enhancement of heat transfer
in the cavity. Very recently, Selimefendigil and Oztop [23] and Seli-
mefendigil et al. [24] have studied the convective heat transfer by
considering a flexible boundary surface over a backward-facing step
with an elastic bottom as well as a cavity with a flexible side wall. In
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these two studies the boundary surfaces are flexible, and hence, the
interaction between the fluid and the surface would affect both of the
surface and fluid flow. Raisi and Arvin [25] have studied the effect of
the presence of a flexible horizontal baffle inside a cavity. In this study
the flexible component has been embedded in the domain. The baffle in
the cavity was subject to small deformations due to the interaction with
the fluid. As a result, the deformation of the baffle affect the fluid flow
in the cavity. The results show that the flexibility of the baffle and its
size affects the convection heat transfer in the cavity. Selimefendigil
et al. [26] used the finite element method to investigate the problem of
MHD mixed convection heat transfer in a lid-driven square cavity filled
with nanofluid in the presence of flexible fin connected to the top wall.
They observed an enhancement on the heat transfer as the solid volume
fraction increased in the exist of the flexible fin. Ismael and Jasim [27]
have extended the problem to the study of mixed convection in an open
cavity in the presence of a flexible fin subject to the incoming fluid flow.
The results show that a flexible fin can enhance the heat transfer rate
compared to a rigid one. They also reported that the shape of the fin
and the heat transfer rate for strong mixed convection flows show a
periodic behavior.

In reality, convection heat transfer in cavities is a prototype for a
great number of industrial applications, and especially, non-rectangular
cavities (trapezoidal, oblique) which has the attention of many research
papers due to the wide applications in various fields. The moderately
concentrating solar energy collector is an important example involving
an oblique (parallelogrammic) geometry. Natural convection heat

Fig. 6. Streamlines (a), Ghalambaz et al. [22]
Ra=10%E=10",A=01,H=1,¢ =0 and Pr = 0.7.
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(left), present study (right), isotherms (b), Ghalambaz et al. [22] (left), present study (right) for
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Fig. 7. Comparison of the mean Nusselt number with dimensionless time obtained from present numerical simulation with the numerical results of Ghalambaz et al.
[22] for different values of K, at Ra = 10 K, =10, E=10", A=01,H=1,¢ = 0 and Pr = 0.7.

transfer in a non-rectangular geometry is consider to be more difficult
than that of square/rectangular cavities due to the presence of sloping
walls. Generally, the mesh nodes do not lie along the sloping walls, and
consequently, from a programming and computational point of view,
the efforts required for generating the flow characteristics rise sig-
nificantly [28]. An excellent review on the natural convection heat
transfer in particular case of the parallelogrammic ((oblique) cavities
and for various engineering applications was reported by Bairi et al.
[29]. Hyun and Choi [30] studied numerically the flow circulations and
the temperature fields during the unsteady regime within parallelogram
(oblique) cavity for high Rayleigh number (107) using the finite dif-
ference method. Their study considered several values of the inclination
angles of the sloping walls, aspect ratios and Prandtl numbers. The
investigation showed that the flow and temperature fields depended on
the inclination angle of the sloping walls and the aspect ratio. Using the
finite difference method, Han and Hyun [31] studied numerically the
buoyant convection heat transfer in a parallelogrammic (oblique)
cavity filled with a porous medium, where the horizontal walls of the
enclosure are heated to different temperature and the inclined sidewalls
wall are kept adiabatic. The results indicated that the heat transfer rate
is clearly enhanced by increasing the inclination angle of the sloping
walls of the cavity. The work related to the thermal regulation of
electronic devices was presented by Bairi et al. [32]. They considered
the natural convection in parallelogrammic (oblique) cavities filled
with air. They studied experimentally and numerically by the finite
volume method the steady and unsteady regimes for high Rayleigh
numbers (10°-10°) and for different inclination angles (0, 30, 60). They
showed that the strong enhancement of the heat transfer clearly ap-
peared for the case of square cavity in the transient regime. Ghalambaz
et al. [33] considered a numerical study on the natural convection in a
parallelogrammic porous cavity filled with a nanofluid. They reported
that increasing the inclination angle of the sloping wall to the positive
values tended to enhance the heat transfer rate. While, Nayak et al. [34]
presented a Numerical investigation on mixed convection and entropy
generation of in a differentially heated skewed cavity filled with na-
nofluid and they discovered that the flow field, heat transfer and en-
tropy generation were clearly affected by the skew angle. Alsabery et al.
[35] studied the unsteady natural convection heat transfer porous ob-
lique cavity saturated with nanofluid using local thermal non-equili-
brium model. They found that the increasing of the strength of the flow
circulation with the rising of the inclination angle to the positive di-
rection. Alsabery et al. [36] reported a numerical investigation on the
effects of viscous dissipation, radiation and constant heat flux on MHD
convective heat transfer in an oblique porous cavity. Where they de-
scribed the enhancement of the heat transfer rate as the inclination

angle of the sloping walls increased. Recently, Das et al. [37] reported
an excellent review on the natural convection heat transfer within non-
rectangular cavities.

According to the above mentioned studies and to the authors’ best
knowledge, no studies have been reported on the problem of fluid-
structure interaction in natural convection heat transfer in an oblique
cavity with a flexible oscillating fin. Thus, the authors of the present
study believe that this work is valuable. Therefore, following the study
of Ghalambaz et al. [22], the present study aims to analyze the FSI in
natural convection heat transfer in an oblique cavity with a flexible
oscillating fin and partial heating. Two different heating sources are
placed in various locations within the oblique cavity. Such a work can
be used for improving the thermal performance and the heat transfer
enhancement in some engineering instruments, solar-energy systems
and nuclear energy systems. In addition, the geometry of oblique cavity
has found important applications in shielding of electronic components.
The electronic component with surface generated heat flux can be
mounted over a portion of the side wall of the oblique cavity while the
geometry of the enclosure can be utilized as an extended surface heat
sink. The oblique enclosure geometry has also found applications in
building of semi-honeycomb metal structures. When a metal structure,
covered with a thick insulated mesh cover, is exposed to a laser heat
flux, solar radiation or a high convective hot area, the walls of the
oblique shape cavity are subject to partial heating boundary conditions.

2. Mathematical formulation

Two-dimensional transient natural convection in an oblique cavity
with side L and inclination angle of the sloping wall ¢ is considered in
this study as presented in Fig. 1. The right inclined wall of the cavity is
maintained at a constant cold temperature T, and the left inclined wall
is heated partially with length h, while the remainder of the left wall is
adiabatic. The horizontal walls are thermally insulated except the part
that attached the elastic of the bottom wall which is maintained at a
constant hot temperature T;,. A hot elastic thin fin with a length d and a
thickness b is attached in a cantilever form on the mid height of the
bottom horizontal wall. The free end of the elastic fin oscillates sinu-
soidally as presented in the following equation:

. (Zm*)
X = asin ,

Tt €))
where x is the horizontal position of the free end of the fin, t* is the
dimensional time, a is the dimensional oscillation amplitude and 7*
presents the dimensional oscillation period. The oscillation frequency

can be defined as A* = Ti The fluid within the oblique cavity is

*
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considered to be laminar, incompressible, and Newtonian. The fluid
thermo-physical properties are independent of the temperature varia-
tion and the Boussinesq approximation for density is applicable. The
dimensional governing equations for the geometrically nonlinear
elasto-dynamic structural displacement and energy of the fin can be
written as [22]:

dzd*
S _Vo* = F*,
Plgre Y7 = @
oT
— = a,V3T.
a “ 3)

The dimensional governing equations of conservation of mass, mo-
mentum and energy in the Arbitrary Lagrangian-Eulerian (ALE) for-
mulation are written as follows [22]:
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V-u* =0, Q]
ou* 1 )
— + | u'—w* |-V u= ——VP* + » V2u* + fg(T-T),
or + |u*—w* |- VT = ay V2T,
ot (6)

here o* presents the stress tensor, di shows the dimensional solid dis-
placement vector, F; is the dimensional applied body force, u* presents
the fluid velocity vector, w* shows the dimensional moving coordinate
velocity, P* is the dimensional fluid pressure while T presents the di-
mensional fluid/solid temperature. The fluid and solid densities are
denoted by p; and p,, respectively. ay and a; are represent the thermal
diffusivity of the fluid and solid, respectively. v; shows the kinematic



A.L Alsabery et al.

Applied Thermal Engineering 145 (2018) 80-97

t=5x10"3

S
N
0.50
S
< 0.50
920 0.50
970 0.50
0.50
0.50

0.56]1 0.50

0.69

.75 0.63
/ 0.63
0.50
0.44
0.50
0.50
0.38

t=20.1

0.69 013
0.56 0.56 0.63
0.5
0.50 0
0.4 %
- 03 o1
- 031
025 038
0.44
k] g 0.50

0.6 0.69
0.63
0.56 0.56
0.50

0.44
031

0.5 0.25
0.19 /
3 /003

013 e

0.69
0.63
0.56
0.44
038
031
025 025
0.19
0.13 =
L0.13

Fig. 9. Isotherms for various dimensionless times (t) for K, = 10, E = 10"}, A = 0.1, H = 0.5 and ¢

viscosity of the fluid, g is the acceleration due to gravity, and f presents
volumetric thermal expansion coefficient.

Considering the fin as linearly elastic, and taking into account the
nonlinear geometry effects, the stress tensor ¢ is written as:

o = JIFSFT, 7
where F= (1 + Vd}) and J = det.(F). The second Piola-Kirchhoff stress
tensor S is related to strains € as

1

£ =

S=2C:(e) =3

(Vd: + va&:T + vd:T.vdy), ®
where C = C(E*, v). The dimensional boundary conditions for the fluid-
solid interaction at the fin surfaces are continuity of kinematic forces
and dynamic movements. The no-slip boundary condition is consider
for the fluid at the solid interface as:
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0.69
0.50
0.44
0.31 0.31
025
0.19 0.19
0.13 )
= 30.
od;
— =u* and o* n= —P* + u,Vu*.
ar Ky ©

The energy balance equation at the interface of the fluid-solid inter-
action can be written as:

3T T
T on “on’ (10)
The fin clamps with the condition %E = 0. The pressure constraint is

assumed as follows:

p*

0. an

We now introduce the following dimensionless variables:
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T This then yields the dimensionless governing equations are:
x=X vy, (A,H,B @b [u,v): VL
af 2
« « N ~ 1d ‘15 —E-Vo = E'F,,
T . P di a4
le ) E—TL‘ ) s L ) E* ) I2 )
Ty 12 a6
T=—, P= P*, Fi=p-g — = a,-V?6,
L2 pfaf v s (12) ot (15)
In addition, the dimensionless stream function (¥) is defined to de- V-u=0, (16)
scribe the fluid motion and can be evaluated as the following:
_o¥ _ oy g—ltl + (u—w)v u= —VP + Pr-V? u+ Pr-Ra-6-¢,
T T (13) an
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a0
— +

(u—w)-V@ = V24,
ot

18
where Ra = gpfﬁ(n—ﬂ)ﬁ/(yfocf) is the Rayleigh number, Pr = v;/ay is
the Prandtl number, E = E*Lz/pfaf is the flexibility parameter,
F, = (o;—p,)Lg/E* is the body force parameter, p. = p,/p;, ar = ay/a are
the thermal diffusivity ratio and the density ratio parameter and F,
denotes the dimensionless body force.

The values of the dimensionless velocity are zero in the solid walls
of the oblique cavity. The dimensionless initial and boundary condi-
tions of Egs. (14)-(18) are:

¥ =0, 6=0.5 onthewallsofthecavity at t=0, 19
¥ =0, onallwalls, >0, (20)
OnAD,6=1,at 1-H)/2<Y< (1 + H)/2, 21)
on the adiabatic parts of AD % =0

P v 22)
OnBC, 6 =0, (23)
OnAB, 6=1, at (1-B)/2< X< (1 + B)/2, (24
On the adiabatic parts of AB, and DC % _ 0.

P : Tax (25)
(@) =K, (E) for the solid fin,

on on (26)

where K, = ky/k; is the thermal conductivity ratio. The solid-fluid in-
teraction boundary conditions are also can be written as follows:

aad: =u and E-c- n= —P + Pr-Vu. @7

88

The dimensionless initial temperature at the fluid and the fin is assumed
as 6 = 0.5. The dimensionless initial velocity is u= 0. For the pressure
point constraint, the following dimensionless pressure constraint is also
considered:

P=0. (28)
The dimensionless tip displacement of the fin is also obtained as:
X= Asin(ﬂ).

T (29)

On using the transformation ¢ = X-Ytang, n = % [35], the local
Nusselt number at the inclined left hot boundary may now be defined as
follows [36]:

1o
cos¢ ¢ 520’

Nuy = —tan ¢@ +
9 (30)

and the local Nusselt number at the basis of the solid fin, which can be
written as:

6
"ox

Nug

=0 (31

The average Nusselt number at the heated part of the inclined left wall
of the cavity can be introduced as [36]:
1+H

Nu; = 2 Nugdn,
f ‘/;—ZH rdn (32)

and the average Nusselt number at the basis of the fin can be introduced
as:

- Sa
Nu, = js' - Nuydy, 33)
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1 b

where S; = 575 and S, = % + g

3. Numerical method and validation

The dimensionless governing Egs. (14)-(18) subject to the initial
and boundary conditions (19)-(26) are solved numerically by the Ga-
lerkin weighted residual finite element method. The computational
domain is discretized into triangular elements as shown in Fig. 2. Tri-
angular Lagrange finite elements of different orders are used for each of
the flow variables within the computational domain. Residuals for each
conservation equation are obtained by substituting the approximations
into the governing equations. To simplify the nonlinear terms in the
momentum equations, a Newton-Raphson iteration algorithm was used.
The convergence of the solution is assumed when the relative error for
each of the variables satisfies the following convergence criterion:

Fi+1_ri
e,

ri+1

where i represents the iteration number and 7 is the convergence cri-
terion. In this study, the convergence criterion was set at 7 = 107°.

In the present study, the period of the fin oscillation, is adopted as
7 = 0.1. The results are obtained for 7/100 or At = 0.001. However, for
the calculation an automatic time scheme is utilized. The Backward
Differentiation Formula (BDF) with free time steps is employed as an
implicit time step method. The maximum and minimum order of BDF
are set as 1 and 2, respectively. The BDF solver interpolates between the
accuracy of the previous time steps, and automatically determines the
adequate computational time steps to ensure the accuracy and time
convergence of the calculations. Details of BDF scheme can be found in
[38,39]. Fig. 3 shows the flowchart of the utilized numerical code. As
seen, the heat, flow, elastic structure, and the grid motion are solved

iteratively. Then, the convergence is monitored until the convergence
in the time step is reached. After that, BDF automatic time step solver is
updated and an adequate time step is selected, and calculations are
repeated for a new time step.

We have employed grids with various sizes to ensure that the pre-
sent numerical solution is independent on the grid size for the numer-
ical domain, we have used different grid sizes to calculate the average
Nusselt number on the inclined left wall and the average Nusselt
number on the solid fin for the steady case (t=3.5),
Ra =10°% K, = 10, E = 10!, A = 0.1, H = 0.5 and ¢ = 30. Based on the
results examined in Fig. 4, insignificant differences surrounding the G6
grids and above were observed. Therefore, the G6 uniform grid is used
to perform all the computations in this paper to solve similar problems
as in this subsection.

For the validation of the present work, the results of present study
have been compared with the experimental results reported by
Nishimura et al. [40] and the numerical results described by Churchill
[41] for natural convection in a cavity with temperature difference at
its side walls. The results are depicted in Fig. 5 when Pr = 6.0. As seen,
there is a good agreement between the results of both studies. Also, the
current results are compared with the earlier published works of Gha-
lambaz et al. [22] for the case of natural convection heat transfer over a
horizontal flexible oscillating fin within a square cavity differently
heated vertical walls and filled with air at
Ra=10%K,=10,E=10"',A=01,H=1,¢=0 and Pr=0.7, as
shown in Fig. 6. In addition, another validation is achieved by com-
paring the average Nusselt number with dimensionless time of the
present work with the numerical results of Ghalambaz et al. [22] for
different values of K, at Ra = 10°, E = 10", A=0.1, H=1, ¢ = 0 and
Pr = 0.7, as displayed in Fig. 7. Based on these validations, it is found
that the present result is in a very good agreement with the results of
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Fig. 14. Streamlines for various dimensionless times (t) and dimensionless length of the heat source (H) for K, = 10, E = 10}, A = 0.1, ¢ = 30.

the previously published works.

4. Results and discussion

We present numerical results for the streamlines and isotherms with
various dimensionless times (1078 < ¢ < 3.5), thermal conductivity ratio
between the heat-conducting fin and working medium (1 < K, < 1000),
dimensionless Young’s modulus (10° < E < 10'2), amplitude of the os-
cillating fin (0.01 < A £0.1), dimensionless length of the heater
(0.1 <H<09), and inclination angle of the sloping wall
(—45 < ¢ < 45). The values of the Rayleigh number, dimensionless fin
thickness and Prandtl number are fixed at Ra = 10°, B = 0.01 and
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Pr = 6.2, respectively.

Figs. 8 and 9 show an evolution of the streamlines and isotherms for
K, =10, E =101, A =0.1, H= 0.5 and ¢ = 30. The initial time level
(t = 1077) characterizes a formation of low intensive convective flows
near the left wall heat source and the right cold wall, where one can
find a great temperature difference taking into account the used non-
dimensionalization. A further time moment (t = 1073) reflects more
intensive circulation with heating near the left heat source and cooling
close to the right cold wall. At the same time, a presence of the local
heater leads to an appearance of the convective cell core near the upper
border of the heater, while near the right wall the convective cell core
displaces to the bottom wall. Such behavior can be explained by the
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directions of major flows near the hot and cold elements taking into fin. Further growth of time reflects an attenuation of convective flow
account the dependence of the density on the temperature. It should be due to the homogenization of temperature inside the cavity with a re-
noted that the flexible heat-conducting fin is heated from the bottom duction of the temperature difference. For 5-1073 < ¢t < 0.1 the con-
and one can find in Fig. 9 for t = 1073 a distribution of high temperature vective cell core displaces to the left wall heater with an intensification
from this point. In the case of t = 5-10~3 two convective cells are of recirculation near the flexible heat-conducting fin. At the same time,
combined with a formation of major one near the right cold wall. This the isotherms illustrate a formation of a temperature stratification core
convective cell has maximum value of the circulation intensity in for t = 0.1. The considered time moments from 107 till 0.1 reflect an
comparison with other time moments. Isotherms for this time moment evolution of the fluid flow and heat transfer where the flexible heat-
illustrate a formation of descending thermal boundary layer near the conducting fin is motionless. In the case of t = 0.8, one can find a dis-
right cold wall and ascending thermal boundary layer near left local placement of the upper fin part to the right side due to strong re-
heater with more essential heating of the flexible heat-conducting fin. circulation near this fin presented for t = 0.1. Further growth of time
The latter leads to an appearance of minor circulation to the left of this characterizes an oscillation of this heat-conducting fin that changes the
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fluid structure near this fin, while the major convective cell core also
has weak changes. It should be noted that the temperature field also
reflects a modification of the temperature near and inside this fin. It
seems that an origin of fin oscillation reflects a formation of periodical
temperature field and fluid structures close to this fin.

Fig. 10 demonstrates the average Nusselt number behavior at the
heat source (Fig. 10a) and at the fin surface (Fig. 10b) at the initial time
level where 1078 < t < 1.0 for different values of the thermal con-
ductivity ratio. It is worth noting that for 1078 < ¢ < 107° the average
Nusselt numbers are constant which reflects the development of heat
conduction, while for 107° < ¢ < 1073 the average Nusselt numbers de-
crease due to the domination of heat conduction where the temperature
difference reduces due to heating of the domain near the left wall
heater and the fin surface. Further convective heat transfer develops
and one can find a weak augmentation of the average Nusselt numbers
with further oscillations due to the oscillations of the flexible fin. A
growth of the thermal conductivity ratio due to an increase in the solid
fin thermal conductivity, illustrates a rise of the average Nusselt
number at the fin surface during the considered initial time level.
Moreover, for 1078 < t < 10~ differences for Nu, at different K, are
large due to the heat conduction domination, for ¢ > 107> these differ-
ences are reduced. At the same time, for the left wall heater Nu; does
not depend on K, for t < 1073, while for ¢t > 1073 a growth of the thermal
conductivity ratio leads to a diminution of the average Nusselt number
at the heater element. Such a behavior can be explained by more es-
sential heating of the flexible fin that leads to a reduction of the tem-
perature gradient near the left wall heat source.

The periodicity behavior of the fluid flow rate, average Nusselt
numbers at the heater surface and the fin surface is presented in Fig. 11
for different values of the thermal conductivity ratio. As has been
mentioned above, a growth of K, leads to both a rise of Nu, (Fig. 11c)
due to a formation of high temperature gradient between the hot fin
surface and cold right wall, and a reduction of Nuy (Fig. 11b). The
reason for the latter behavior was described above. At the same time,
the fluid flow intensity increases with K, (Fig. 11a). It is interesting to
note that the oscillations amplitude and frequency for the fluid flow
rate increase with the thermal conductivity ratio. The oscillations fre-
quency for the average Nusselt numbers rises also with K. It seems that
the following growth of the dimensionless time results in a reduction of
the oscillations frequency for the average Nusselt at the left wall heater
(Fig. 11b).

Fig. 12 shows the effect of the dimensionless Young’s modulus on
the fluid flow rate and the average Nusselt numbers at the heater sur-
face and the fin surface. For the case of fluid flow rate, a growth of the
dimensionless Young’s modulus leads to the convective flow in-
tensification for 10° < E < 10'°, while for 10'° < E < 10'2 one can find a
weak attenuation of the convective flow. Such a behavior can be

92

explained by the effect of the fin form on the convective flow and fluid
flow structure. It should be noted that the Young’s modulus char-
acterizes a stiffness of the considered solid fin and low values reflect an
opportunity to have essentially a curved fin. In the case of Nuy, a
growth of E leads to a rise of the average Nusselt number. Such beha-
vior can be explained by a more stable convective flow due to a pre-
sence of a stiff element. At the same time, Nu, decreases with the di-
mensionless Young’s modulus due to a more stable convective flow near
the fin and low temperature gradient in this zone.

The effect of the oscillation amplitude on the considered integral
parameters is demonstrated in Fig. 13. A growth of the oscillation
amplitude for the free end of the elastic fin leads to a growth of the
amplitude for the fluid flow rate and heat transfer rates, while the time
averaging of the fluid flow rate and the average Nusselt number at the
fin surface leads to a reduction of these values with A. At the same time,
the time averaging of the average Nusselt number at the heater surface
increases with the oscillation amplitude. Fig. 13(b) shows that there are
two types of fluctuations of the Nusselt number at the inclined left wall
during each oscillation period, 7 = 0.1. There is fluctuation with high
amplitude and a fluctuation with low amplitude. The high amplitude
fluctuation corresponds to the motion of the fin toward the left wall,
and the low amplitude one corresponds to the motion of the fin in a
direction away from the wall. When the fin moves toward the wall, it
pushes the flow toward the element and increases the convective heat
transfer. When, the fin moves in a direction away from the wall, it in-
duces two opposite convection mechanisms. The motion of the fin away
from the wall tends to induce a flow current opposite to the natural
convection circulation flow. The deformed shape of the fin would re-
duce the pressure drop and flow resistance in a natural convection
circulation flow. Therefore, when the fin moves away from the wall,
small fluctuations which are the results of these two mechanisms can be
seen for the Nusselt number over the wall.

Figs. 14 and 15 present the streamlines and the isotherms for dif-
ferent values of the left wall heater length and for three time moments
describing different locations of the free end of oscillation fin. A growth
of the heater length leads to the intensification of the major convective
vortex, while the minor convective cell attenuates and its size is re-
duced. A diminution of the minor circulation size can be explained by a
growth of the left wall heater surface where one can find a formation of
intensive ascending flow, while near the heated fin from each side, an
ascending convective flow is also formed. Therefore, at H = 0.9 small
vortices are formed near the left side of the fin. The temperature fields
(Fig. 15) reflect a growth of the heat source surface along the left
sloping wall with a strong ascending thermal boundary layer. At the
same time, the major convective cell core displaces to the left bottom
corner with H, while the intensity of the right one decreases. It is in-
teresting to note that in the case of a vertical fin (t = 1.45), the intensity
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Fig. 17. Streamlines for various dimensionless times (t) and inclination angle of the sloping wall (¢) for K, = 10, E = 10}, A = 0.1 and H = 0.5.

of the convective cell near this fin and the major convective cell in-
tensity are maximum in comparison with the other two positions of the
fin.

Fig. 16 presents the effect of the left wall heater length on the
average Nusselt numbers. A growth of the heater length leads to a rise
of the average Nusselt numbers at the heater surface and the fin surface.
At the same time, the oscillations amplitude and frequency for the
average Nusselt number at the left wall heater surface rise with H, while
the oscillations frequency changes weakly.

The effect of the inclination angle of the sloping side walls on the
streamlines and the isotherms at K, = 10, E = 10'}, A = 0.1 and H = 0.5
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is shown in Figs. 17 and 18. A growth of the inclination angle from 0 till
45 results in an attenuation and sizes reduction of the minor circulation
near the fin. At the same time, the major fluid flow rate changes non-
monotonically. The temperature fields characterize an opportunity to
form the confined temperature stratification zone with a quasi-confined
vortex when the free end of the fin is near the sloping wall (see the cases
of ¢ = +45, t = 1.325 and t = 1.575). It is interesting to note that a more
intensive circulation inside the central part of the cavity occurs when
the upper end of the fin has the right side slope. Such feature does not
depend on the inclination angle of the sloping side wall. It is possible to
explain this nature by the volume of medium that is under the influence
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of the left heater and by a small recirculation formed near the left side
of the fin.

Fig. 19 demonstrates the evolution of the average Nusselt numbers
at the left wall heater surface and the fin surface at the initial time level
for K, = 10, E = 10", A = 0.1 and H = 0.5 and different values of the
sloping wall inclination angle. In the case of Nuy, one can find a re-
duction of this parameter with a growth of the absolute value of the
sloping walls inclination angle. A more essential diminution of Nu; with
|¢| occurs for 1078 < t < 1074, while for ¢t > 10~* this reduction is not so
significant. In the case of Nuy, the influence of ¢ is visible for
107 < t < 10™* and for this time range a growth of |¢| leads to a non-
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monotonic behavior of the average Nusselt number at the solid fin.
Fig. 20 shows the effects of the dimensionless time and the sloping
walls inclination angle on the considered average Nusselt numbers for
the periodical time level. A growth of the absolute value of ¢ leads to
the reduction of the average Nusselt number at the left wall heater
surface, while the oscillations amplitude of this average Nusselt number
increases. It should be noted that for positive values of the inclination
angle the oscillations amplitude is greater in comparison with negative
values of the inclination angle. At the same time, a growth of the in-
clination angle from —45 to 45 characterizes a diminution of the
average Nusselt number at the fin surface. Moreover, a more essential
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reduction occurs for positive values of the inclination angle. It should
be noted that the value ¢ = 45 characterizes a more complicated time
dependence for Nuy and Nu;.

Fig. 21 demonstrates the effects of ¢ and E on the average Nusselt
numbers. As it has been mentioned above, a growth of the di-
mensionless Young’s modulus leads to a rise of Nuy, while Nu, de-
creases. As for the sloping walls inclination angle, a growth of this angle
from —45 to 45 results in a reduction of the average Nusselt number at
the fin surface, while Nuy increases for —45 < ¢ < 0 and it decreases for
0 < ¢ <45.

The effects of the oscillations amplitude and the sloping walls
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inclination angle on the considered average Nusselt numbers are shown
in Fig. 22. A growth of the oscillations amplitude leads to a rise of the
average Nusselt number at the left wall heater surface, while Nug
changes non-monotonically.

Fig. 23 shows the effects of the left wall heater length and the
sloping walls inclination angle on the average Nusselt numbers. A
growth of the left wall heater length leads to a heat transfer enhance-
ment for the left wall heater and fin. It should be noted that a more
essential impact of H on Nuy occurs for 0.6 < H < 0.9.
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5. Conclusions

In the present study, the Galerkin finite element method combined
with the Arbitrary Lagrangian-Eulerian procedure is used to study the
unsteady laminar natural convection in a differentially-heated oblique
cavity with a flexible oscillating heat-conducting fin. The governing
equations in dimensionless form have been formulated using the
Arbitrary Lagrangian-Eulerian procedure. The detailed results for the
streamlines, isotherms, fluid flow rate, and the average Nusselt num-
bers are shown graphically for wide ranges of the dimensionless time,
thermal conductivity ratio, non-dimensional Young’s modulus, oscil-
lating amplitude, left wall heater length, and the inclination angle of
sloping walls. The important conclusions for this investigation are as
follows:

1. A growth of the thermal conductivity ratio leads to a rise of the
average Nusselt number at the fin surface. At the same time, for the
left wall heater Nu; does not depend on K, for t < 1073, while for
t > 1073 a growth of the thermal conductivity ratio leads to a di-
minution of the average Nusselt number at the left wall heater
element.

. An increase in the dimensionless Young’s modulus results in the
convective flow intensification for 10° < E <10, while for
10° < E < 10'2 one can find a weak attenuation of the convective
flow. A rise of E leads to an increase in Nuy. At the same time, Nu;
decreases with the dimensionless Youngs modulus.

. A rise of the oscillation amplitude for the free end of the elastic fin
leads to a growth of the amplitude for the fluid flow rate and the
heat transfer rates, while the time averaging of the fluid flow rate
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and the average Nusselt number at the fin surface leads to a re-
duction of these values with A. At the same time, the time averaging
of the average Nusselt number at the heater surface increases with
the oscillation amplitude.

. A growth of the absolute value of the sloping walls inclination angle
leads to the reduction of Nus. A more essential diminution of Nuy
with |@| occurs for 1078 < ¢ < 1074, while for ¢ > 10~ this reduction
is not so significant. In the case of Nuy, the influence of ¢ is visible
for 107 < t < 107*. An increase in the inclination angle from —45 to
45 characterizes a diminution of the average Nusselt number at the
fin surface. Moreover, a more essential reduction occurs for positive
values of the inclination angle.
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