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ABSTRACT 
The natural convection heat transfer in a cavity filled with three layers of 
solid, porous medium, and free fluid is addressed. The porous medium and 
free fluid layers are filled with a nanofluid. The porous layer is modeled using 
the local thermal nonequilibrium (LTNE) model, considering the temperature 
difference between the solid porous matrix and the nanofluid phases. The 
nanofluid is modeled using the Buongiorno’s model incorporating the 
thermophoresis and Brownian motion effects. The governing equations are 
transformed into a set of nondimensional partial differential equations, and 
then solved using finite element method in a nonuniform grid. The effects of 
various nondimensional parameters are discussed. The results showed that 
the Brownian motion and thermophoresis effects result in significant 
concentration gradients of nanoparticles in the porous and free fluid layers. 
The increase in Rayleigh (Ra), Darcy (Da), the thermal conductivity ratios for 
the solid wall and solid porous matrix, i.e., Kr and Rk, enhanced the average 
Nusselt number. The increase in the convection interaction heat transfer 
parameter between the solid porous matrix and the nanofluid in the pores 
(H) increases the average Nusselt number in the solid porous matrix but 
decreases the average Nusselt number in the nanofluid phase of the porous 
layer. 
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1. Introduction 

The rise in energy consumption due to industrial development and population growth along with 
their consequence environmental issues has led to a complex global crisis in the world. One of the 
best possible solutions to alleviate this issue is through improving the efficiency of conventional 
energy generation technologies. This can be done through passive heat transfer augmentation tech-
niques, which require no additional external power and usually can be implemented easily in current 
thermal systems. As one of the passive methods, porous inserts have found considerable interest in 
industrial applications. Using porous medium, heat transfer increases because of changing the distri-
bution of flow field and resulting a thinner boundary layer. They also increase the effective thermal 
conductivity of the fluid, which leads to higher heat transfer rates. To this end, convective flows 
through porous media have gained a great deal of attention in recent years due to their wide range 
of engineering applications such as solar energy collectors, heat exchangers, fuel cell, drying technol-
ogies, etc. Natural convection in rectangular cavities fully or partially filled with porous media has 
been investigated by many researchers [1, 2]. In an early study, Beckerman et al. [3] investigated 
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the effect of porous layer on natural convection of a vertical cavity. The flow in porous region was 
simulated using Brinkman–Forchheimer-extended Darcy model. The results showed that high- 
permeable porous layer highly affects the natural convection patterns in the cavity. The degree of 
influence depends approximately on the product of Rayleigh and Darcy number. For values greater 
than 50, the effect of porous layer on natural convection is significant. Wu et al. [4] numerically 
analyzed the non-Darcy natural convection heat transfer in a 2D square cavity filled with a porous 
media. Uniform heat generation was considered inside the porous region. Half of the left and right 
walls of the cavity was maintained at lower temperature while the remaining sections were insulated. 
They studied the effects of cooling location and porous layer parameters such as Darcy number on the 
flow and thermal fields. Enhanced heat transfer rate was reported as the Darcy number increases. 

The studies have shown that further heat transfer improvement can be achieved through adding 
high conductive nanosized particles to the fluid filling the porous media [5]. Bourantas et al. [6] 
performed a numerical investigation to study the natural convection in a porous cavity saturated 
by a nanofluid. A heat source was situated at the bottom wall of the container while the other walls 
were kept at a constant temperature. The results indicated an increase in Nusselt number as the solid 
volume fraction of nanoparticles increases. Chamkha and Ismael [7] considered the steady natural 

Nomenclature 

Latin symbols 
C nanoparticle volume fraction 
C0 ambient nanoparticle volume fraction 
d wall thickness (m) 
D dimensionless wall thickness 
Da Darcy number 
DB Brownian diffusion coefficient 
DT Thermophoretic diffusion coefficient 
g gravitational acceleration vector (m s� 2) 
hnfs volumetric heat transfer coefficient between 

the nanofluid and solid porous matrix 
(W m� 3 K� 1) 

H interface heat transfer coefficient parameter 
k thermal conductivity (W m� 1 K� 1) 
K permeability of the porous medium (m2) 
Kr nanofluid to solid porous matrix thermal 

conductivity ratio parameter 
L square cavity size (m) 
Le Lewis number 
Nb Brownian motion parameter 
Nr buoyancy ratio parameter 
Nt thermophoresis parameter 
Nu local Nusselt number 
Nu average Nusselt number 
p pressure (Pa) 
P dimensionless pressure 
Pr Prandtl number 
q00i total interfacial heat flux (W m� 2) 
Qw dimensionless local heat transfer through 

the wall 
Qw dimensionless average heat transfer through 

the wall 
Ra Rayleigh number 
Rk wall to nanofluid thermal conductivity ratio 

parameter 
s porous layer thickness (m) 
S dimensionless porous layer thickness 

Sh local Sherwood number 
Sh average Sherwood number 
T temperature (K) 
u, v velocity components along x, y directions, 

respectively (m s� 1) 
U, V dimensionless velocity components along x, 

y directions, respectively 
x, y Cartesian coordinates (m) 
X, Y dimensionless Cartesian coordinates 

Greek symbols 
α effective thermal diffusivity (m2 s� 1) 
β thermal expansion coefficient of the fluid 

(K� 1) 
Δ difference value 
ε porosity of the porous medium 
θ dimensionless temperature 
μ dynamic viscosity (kg m� 1 s� 1) 
ν kinematic viscosity (m2 s� 1) 
ρ density (kg m� 3) 
(ρc) effective heat capacity (J K� 1 m� 3) 
τ parameter defined by τ ¼ (ρc)p/(ρc)nf 
ϕ relative nanoparticle volume fraction 
Ψ dimensionless stream function 

Subscripts 
0 ambient property 
c cold 
eff effective 
h hot 
max maximum 
nf nanofluid 
nff nanofluid of free fluid layer 
nfp nanofluid of porous layer 
p nanoparticle 
s solid porous matrix 
w wall   
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convection in a square cavity totally filled with porous medium and saturated by a nanofluid. Heating 
was conducted through a triangular solid wall located at the lower left corner. It was found that the 
heat transfer may be strengthened or suppressed as the nanoparticle volume fraction varies. The trend 
will be determined by the Rayleigh number and triangular heating block thickness. In an experimental 
study by Solomon et al. [8], enhanced heat transfer was observed for nanofluid concentration less 
than 0.05% while the performance was deteriorated for greater concentrations. More studies investi-
gating the natural convection in porous cavities saturated with nanofluids under different boundary 
and operating conditions can be found in the literature [9, 10]. 

The study of nanofluid-filled container is not limited to square cavities filled entirely with a porous 
medium. The porous layer can be placed vertically or horizontally inside the container. In another 
study, Chamkha and Ismael [11] demonstrated heat transfer enhancement in a nanofluid-saturated 
cavity by locating a vertical porous layer adjacent to the hot wall. It was reported that for the Rayleigh 
number less than 10� 5, Nusselt number will be maximum for a certain thickness of the porous layer. 
In a configuration presented by Al-Zamily [12], a vertical porous layer was positioned at the center of 
the cavity. The left wall was isothermally cooled while the right wall was partially heated. TiO2–water 
was used as the nanofluid to saturate the clear and porous regions. The results showed higher heat 
transfer rate when the heat source was located at the bottom half of the left wall. They also presented 
that the average Nusselt number decreases as the Darcy number or the porous layer thickness 
increases. 

Modeling of a composite problem including a porous medium and a clear region both saturated 
with nanofluid has its own complexities. A proper model should be able to describe the thermal fluid 
phenomena associated with the porous media and nanofluid as well as the interface between the two 
regions. Dating back in 1856, Darcy’s law was introduced to describe the flow through porous 
medium where the fluid rate is proportional to the pressure drop and viscosity of the fluid [13]. How-
ever, the model was only generating acceptable results for low flow rates. As the flow rates increase, 
the flow does not obey the Darcy law due to the inertial and wall viscous forces. The deviations from 
the Darcy regime due to the abovementioned forces are generally referred to the non-Darcian effects. 
Forchheimer–Brinkman-extended Darcy model was proposed to overcome this issue [14]. The model 
has been adopted by some of the researchers to describe the natural convection in cavities filled totally 
or partially with porous materials [15–17]. 

There are two approaches to represent the heat transfer through a porous medium saturated with a 
liquid: the local thermal equilibrium (LTE) model and the local thermal nonequilibrium (LTNE) 
model. LTNE model accounts for the temperature difference between the solid and liquid phases 
in the porous matrix, while the LTE assumes LTE between the two phases [18]. The search in the 
literature shows that the LTE has been widely used to model natural convection in porous cavities 
[19–21]. However, it might fail to give accurate results for some specific conditions such as cases with 
low Biot number or when there is a significant difference between the thermal conductivities of the 
fluid and porous structure [18]. Baytas and Pop [22] utilized the LTNE model to investigate the 
natural convection heat transfer in a porous cavity. They reported that using such model modifies 
the flow behavior and heat transfer rates. Haddad et al. [23] investigated the validity of LTE assump-
tion for natural convection near a vertical flat plate. They concluded that there are four parameters 
controlling the LTE assumption including Biot number, modified Darcy number, modified Rayleigh 
number, and dynamic viscosity ratio. Although LTNE plays an important role in thermal–fluid beha-
vior of the porous enclosure, articles adopting this model when dealing with nanofluid in partial 
porous cavities are limited. Alsabery et al. [24] applied LTNE assumption to describe the natural 
convection in a nanofluid-saturated porous cavity. The left wall of the cavity was kept at a constant 
temperature, while the right wall was heated sinusoidally. 

The interface between the porous region and the clear fluid plays a significant role in 
determination of convective heat transfer characteristics of the composite systems. 

Several approaches have been proposed to describe the convective flow and heat transfer of 
nanofluids, including homogenous, dispersion, and Buongiorno model [25]. In homogenous 
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modeling, the nanofluid is assumed uniform with no slip between the base fluid and nanoparticles. 
The pure fluid equations are applied using thermophysical properties of the nanofluid [25]. Ghasemi 
and Siavashi [26] utilized homogenous model along with Forchheimer–Brinkman-extended Darcy 
equation to study the natural convection of nanofluid in square cavity with different boundary 
conditions. 

Dispersion model has been developed assuming that enhanced heat transfer occurs because of the 
nanoparticle dispersion as well as the increased thermal conductivity. Using dispersion model, 
Shermet et al. [25] analyzed the transient natural convection in a wavy porous cavity. 

Buongiorno developed a nonhomogeneous model incorporating the effects of Brownian diffusion 
and thermophoretic forces, that are proven to be important slip mechanisms in nanofluids [25]. 
Recently, the model proposed by Buongiorno has been applied to simulate nanofluid-free convection 
in porous cavities [27–30]. Yekani Motlagh et al. [29], using the Buongiorno model, investigated the 
natural convection of Al2O3–water and Cu–water in an inclined porous cavity. They studied the 
effects of porous matrix porosity, inclination angle of the enclosure, particle volume fraction, and 
porous Rayleigh numbers on the fluid flow and heat transfer rate. 

To the author’s knowledge, most of the available studies regarding the free convention in porous 
cavities saturated by nanofluids are limited to those the container is entirely filled with a porous 
media. Given the importance of cavities partially filled with a porous structure, this paper intends 
to explore the effects of nanoparticles on the fluid and thermal characteristics of such problems. 
The LTNE model is implemented to describe the heat transfer within the porous layer. The nanofluid 
is modeled using the Buongiorno’s model to incorporate the thermophoresis and Brownian motion 
effects. 

2. Mathematical formulation 

Consider a steady, incompressible natural convection flow and heat transfer in a two-dimensional 
square cavity partially filled with a porous medium. As shown in Figure 1, the heat conducting solid 
wall with the thickness of d is considered at the left side. The isotropic and homogenous porous 
layer with a thickness s is saturated with a nanofluid, which also fills the remaining portion of the 
enclosure. The left vertical surface of the impermeable wall is at constant temperature Th, while 
the right vertical surface of the cavity is kept at a constant temperature Tc. Horizontal walls are 
considered as adiabatic. All boundaries are assumed impermeable and nonslip boundary condition 

Figure 1. Schematic of the physical model and coordinate system.  
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is applied. In addition, it is assumed that the enclosure walls are impermeable to the nanoparticles; 
thus, the mass flux of nanoparticles is zero at the cavity walls. Furthermore, the nanoparticles are 
suspended in the nanofluid utilizing a surface charge technology or a surfactant. In fact, this prevents 
the nanoparticles from agglomeration on the solid porous matrix or agglutinating together [31, 32]. 
All thermophysical properties are assumed constant except for the density of nanofluid, which varies 
with temperature based on the Boussinesq approximation. It is also assumed that there is a LTE 
between the base fluid and the nanoparticles while the LTNE exists between the solid porous matrix 
and nanofluid. In the porous medium, the Brinkman–Forchheimer-extended Darcy model without 
the Forchheimer’s inertia term has been adopted [3]. 

Considering all the abovementioned assumptions, the conservation equations for the total mass, 
momentum, thermal energy, and nanoparticles are represented for the nanofluid and porous domains 
as follow [13, 25, 31, 33–36]: 

2.1. Nanofluid layer 

qu
qx
þ
qv
qy
¼ 0 ð1Þ

qnf u
qu
qx
þ v

qu
qy

� �

¼ �
qp
qx
þ mnf

q2u
qx2 þ

q2u
qy2

� �

ð2Þ

qnf u
qv
qx
þ v

qv
qy

� �

¼ �
qp
qy
þ mnf

q2v
qx2 þ

q2v
qy2

� �

þ � qp;0 � qf ;0

� �
C � C0ð Þ þ 1 � C0ð Þqf ;0b Tnf � Tc

� �h i
g

ð3Þ

u
qTnf

qx
þ v

qTnf

qy
¼

knf

qcð Þnf

q2Tnf

qx2 þ
q2Tnf

qy2

 !

þ s DB
qC
qx
qTnf

qx
þ
qC
qy
qTnf

qy

� �

þ
DT

Tc

qTnf

qx

� �2

þ
qTnf

qy

� �2
" #( ) ð4Þ

u
qC
qx
þ v

qC
qy
¼ DB

q2C
qx2 þ

q2C
qy2

� �

þ
DT

Tc

q2Tnf

qx2 þ
q2Tnf

qy2

 !

ð5Þ

where u and v are the velocity components in x and y directions, respectively, C is the nanoparticle 
volume concentration, ρ is the density, T is the temperature, DT is thermophoretic diffusion 
coefficient, DB is the Brownian diffusion coefficient, and τ is defined as (ρc)p/(ρc)nf. 

2.2. Porous layer 

qu
qx
þ
qv
qy
¼ 0 ð6Þ

qnf

e2 u
qu
qx
þ v

qu
qy

� �

¼ �
qp
qx
þ
mnf

e

q2u
qx2 þ

q2u
qy2

� �

�
mnf

K
u ð7Þ

258 A. TAHMASEBI ET AL. 



qnf
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where τ ¼ (ρc)p/(ρc)nf. 

2.3. Wall layer 

The energy equation for the impermeable wall layer is: 

q2Tw

qx2 þ
q2Tw

qy2 ¼ 0 ð12Þ

3. Interface boundary conditions 

3.1. Free nanofluid–porous interface 

Several researches on the proper fluid–porous interface boundary conditions for the fluid flow and 
heat transfer phenomena have been performed [34, 37–40]. In the present study, the continuities 
of velocity and stress are considered. Moreover, continuous temperature is assumed at the interface 
between the nanofluid and porous regions [37, 40]: 

ufree nanofluid ¼ uporous ; vfree nanofluid ¼ vporous

mnf
qu
qx

�
�
�
�

free nanofluid
¼ mnf ; eff

qu
qx

�
�
�
�

porous
; mnf

qv
qx

�
�
�
�

free nanofluid
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�
�
�
�

porous

Tnf
�
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�
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�
�
�
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�
�
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Cfree nanofluid ¼ Cporous ;
qC
qx

�
�
�
�

free nanofluid
¼
qC
qx

�
�
�
�

porous

ð13Þ

Here q00i is the total interfacial heat flux, which characterizes the heat transfer through the porous 
region. In addition, the effective thermal conductivity of the nanofluid and solid matrix can be 
expressed by knf,eff ¼ εknf and ks,eff ¼ (1-ε)ks, respectively. It is worth mentioning that due to utilizing 
nanofluid in the enclosure, the interfacial heat transfer between the fluid and the solid phases is high 
enough; therefore, considering the fluid and solid temperatures at the interface to be identical seems 
reasonable [41]. 
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3.2. Wall–porous interface 

The boundary conditions for the velocity and the pressure fields at the interface of a pure solid 
domain and a porous region are well known and are similar to the conditions that are generally 
applied at impermeable boundaries. The typical no-slip and no-penetration conditions are utilized 
for the velocity at the interface, while the pressure is simply obtained by extrapolation using the 
porous domain interior pressure values. 

Considering continuous temperature distribution and using energy balance at the interface, the 
corresponding thermal boundary conditions at the interface between the wall and porous regions 
can be written as [40, 42]: 

Twjwall¼ Tnf
�
�

porous¼ Tsjporous

kw
qTw

qx

�
�
�
�
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ð14Þ

4. Dimensionless equations 

To nondimensionalize Eqs. (1)–(14), the dimensional variables are scaled utilizing the following 
dimensionless parameters: 
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x
L
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where DT ¼ Th � Tc. 
Consequently, by substituting the introduced dimensionless parameters into Eqs. (1)–(14), the 

nondimensional governing equations and boundary conditions can be written as: 

4.1. Nanofluid layer 
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4.2. Porous layer 
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4.3. Wall layer 

q2hw

qX2 þ
q2hw

qY2 ¼ 0 ð27Þ

4.4. Nondimensional interfacial boundary conditions 

4.4.1. Nanofluid–porous interface 

Ufree nanofluid ¼ Uporous ; Vfree nanofluid ¼ Vporous

qU
qX

�
�
�
�

free nanofluid
¼

1
e

qU
qX

�
�
�
�

porous
;

qV
qX

�
�
�
�

free nanofluid
¼

1
e

qV
qX

�
�
�
�

porous

hnf
�
�

free nanofluid ¼ hnf
�
�

porous¼ hsjporous

qhnf

qX

�
�
�
�

free nanofluid
¼ e

qhnf

qX

�
�
�
�

porous
þ K � 1

r
qhs

qX

�
�
�
�

porous
¼

q00i L
knf DT

¼ Qi

/free nanofluid ¼ /porous ;
q/

qX

�
�
�
�

free nanofluid
¼
q/

qX

�
�
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�

porous

ð28Þ
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4.4.2. Wall–porous interface 

hwjwall¼ hnf
�
�

porous¼ hsjporous

Rk
qhw

qX

�
�
�
�

wall
¼ e

qhnf

qX

�
�
�
�

porous
þ K � 1

r
qhs

qX

�
�
�
�

porous
¼

q00i L
knf DT

¼ Qi

Nb
q/

qX

�
�
�
�

porous
þ Nt

qhnf

qX

�
�
�
�

porous
¼ 0

ð29Þ

Furthermore, the other dimensionless boundary conditions on the vertical and horizontal walls 
can be written as: 

hw 0;Yð Þ ¼ 1

U 1;Yð Þ ¼ V 1;Yð Þ ¼ 0; hnf 1;Yð Þ¼ 0; Nb
q/ 1;Yð Þ

qX
þ Nt

qhnf 1;Yð Þ

qX
¼ 0

U X; 0ð Þ ¼ V X; 0ð Þ ¼ 0;
qhw X; 0ð Þ

qY
¼
qhnf X; 0ð Þ

qY
¼
qhs X; 0ð Þ

qY
¼ 0;

q/ X; 0ð Þ

qY
¼ 0

U X; 1ð Þ ¼ V X; 1ð Þ ¼ 0;
qhw X; 1ð Þ

qY
¼
qhnf X; 1ð Þ

qY
¼
qhs X; 1ð Þ

qY
¼ 0;

q/ X; 1ð Þ

qY
¼ 0

ð30Þ

The physical quantities of interest in this problem are the heat transfer through the wall Qw, the 
local Nusselt numbers Nunfp, Nus, Nunff, the local Sherwood number Sh, the average heat transfer 
through the wall Qw, and the average Nusselt Nunfp, Nus, Nunff , and Sherwood Sh numbers, which 
are defined as below: 

Qw ¼ �
qhw

qX

� �

X¼0;D

Nunfp ¼ �
qhnf

qX

� �

X¼D;DþS
;Nus ¼ �

qhs

qX

� �

X¼D;DþS
;Nunff ¼ �

qhnf

qX

� �

X¼DþS;1

Sh ¼ �
q/

qX

� �

X¼D;DþS

ð31Þ

Qw ¼

Z1

0

Qw dY;Nu ¼
Z1

0

Nu dY; Sh ¼
Z1

0

Sh dY ð32Þ

where Nunfp, Nus, and Nunff denote the Nusselt number of the nanofluid in the porous layer, the 
Nusselt number of the porous matrix in the porous layer, and the Nusselt number of the nanofluid 
in the free nanofluid, respectively. 

It should be mentioned that based on the conservation of energy, 

Nuffp ¼ �
qhnf
qX

� �

X¼DþS

�
�
�
�

�
�
�
� ¼ �

qhnf
qX

� �

X¼1

�
�
�

�
�
� and Qw ¼ � qhw

qX

� �

X¼0

�
�

�
� ¼ � qhw

qX

� �

X¼D

�
�

�
�. Therefore, in the 

present study, Nunff values are calculated at X ¼ D þ S. 
Furthermore, using Eqs. (28) and (29), the following relationships between the average Nusselt 

numbers at the wall–porous and nanofluid–porous interfaces are obtained: 

Qw ¼ eR� 1
k Nunfp þ R� 1

k K � 1
r Nus ð33Þ

Nunff ¼ eNunfp þ K � 1
r Nus ð34Þ

The streamlines are one of the best options to visualize the convective fluid flow structure inside 
the cavity, therefore; the nondimensional stream function Ψ is calculated as: 
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U ¼
qW

qX
;V ¼ �

qW

qY
ð35Þ

To calculate the Sherwood number values, it should be noted that at the vertical walls, the 
temperature gradient and the concentration gradients are linked as: 

q/

qX
¼ �

Nt
Nb

qhnf

qX
ð36Þ

Using Eq. (36), the local and average Sherwoord numbers can be expressed as Sh ¼ � Nt
Nb Nu and 

Sh ¼ � Nt
Nb Nu. 

5. Numerical method and validation 

To solve Eqs. (16)–(27) along with the corresponding boundary conditions given in Eqs. (28)–(30), 
they are transformed to a weak form and solved using the Galerkin finite element method [18, 43]. 
The Newton–Raphson method is utilized to fully couple the governing discretized equations [44]. 
The detailed solution procedure is given in the earlier literatures [45–49]. The iteration process is 
terminated when the following convergence condition for the dependent variables between two 
iterations is satisfied: 

P
jmþ1

i;j � jm
i;j

�
�
�

�
�
�

P
jmþ1

i;j

�
�
�

�
�
�
� 5� 10� 3 ð36Þ

where κ stands for any dependent variable, such as θnf, θs, θw, U, V, or ϕ and m indicate the iteration 
step. 

To obtain a grid-independent solution, a grid independency test is conducted considering five 
different sizes as shown in Table 1. The results obtained for average Nusselt numbers of the various 
phases and the average heat transfer through the wall are presented for each gird size. It should be 
noted that finer grids are generated near the boundaries, where large gradients of velocity and 
temperature are expected. Consequently, by considering both the accuracy and computational cost, 
the grid size of 100 � 100 is adopted for all the analysis. 

To ensure the validity of the mathematical formulation, the results are compared to two different 
test cases. The first test case is the natural convection heat transfer within a porous layer saturated 
with pure fluid and is sandwiched between two equal thickness walls considering LTNE condition 
[42]. The second case is based on the study of Sheremet and Pop [27], where the natural convection 
heat transfer in a cavity with thick vertical walls is analyzed. The cavity is filled with a porous material 
and is saturated with a nanofluid. 

Figures 2 and 3 show the isotherms, streamlines, and the average Nusselt numbers of the current 
study compared to the numerical results presented by Saeid [42]. In addition, Table 2 shows the 
amount of heat transfer through the walls, the average Nusselt number of the fluid and solid phases 
of the porous medium as well as the maximum stream function value for different thermal conduc-
tivity ratios in comparison with those presented by Saied [42]. For the second test case [27], the 

Table.1. Grid independence test for Ra ¼ 104, Da ¼ 10� 2, Pr ¼ 5, ε ¼ 0.6, Nr ¼ 10, Nb ¼ 10� 6, Nt ¼ 10� 6, Le ¼ 103, D ¼ 0.1, 
S ¼ 0.45, H ¼ 10, Kr ¼ 10, and Rk ¼ 10. 

Grid size Qw Nunfp Nunfp Nunff  

60 � 60  0.1583  2.3059  1.9962  1.5834 
80 � 80  0.1585  2.3086  1.9974  1.5851 
100 � 100  0.1586  2.3098  1.9980  1.5858 
120 � 120  0.1586  2.3103  1.9982  1.5862 
140 � 140  0.1586  2.3107  1.9984  1.5863   
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comparative results of the streamlines, isotherms, isoconcentrations, and the computed local Nusselt 
number at the wall–porous interface are shown in Figures 4 and 5. 

As is seen in Figures 2–5 and Table 2, the obtained results of the current study are in good 
agreement with those reported by Saeid [42] and Sheremet and Pop [27] for both test cases. 

6. Results and discussion 

In this section, the obtained numerical results are presented in the form of isotherms and streamline 
contours and heat transfer characteristic graphs (Nusselt number). In addition, the effects of varying 
dimensionless parameters on the concentration contours (isoconcentrations) are reported. The 
analyses are performed for the following range of the associated dimensionless parameters; Rayleigh 
number (103 � Ra � 105), Darcy number (10� 5 �Da � 10� 1), Prandtl number (5 � Pr � 1000), 
porosity (0.3 �ε � 0.9), buoyancy ratio parameter (0 �Nr � 30), Brownian motion parameter 
(10� 6 �Nb � 10� 4), thermophoresis parameter (10� 6 �Nt � 10� 4), Lewis number (Le ¼ 103), wall 
thickness to height ratio (0.01 �D � 0.4), porous layer thickness to height ratio (0.2 � S � 0.8), 
interface heat transfer coefficient (0.1 �H � 1000), thermal conductivity ratio for the porous medium 
(1 �Kr � 100), and the wall to nanofluid thermal conductivity ratio (0.1 �Rk � 10). 

Figures 6–8 show the isotherms, streamlines, and isoconcentrations at different values of the 
considered dimensionless parameters. To study the problem in more detail, the values of average heat 
transfer through the wall, average Nusselt number of the nanofluid and solid phases of the porous 
layer as well as the Nusselt number of the nanofluid in the free layer, the absolute maximum stream 
function, and the maximum concentration of nanoparticles are presented here. An overview of the 
contour maps regardless of the studied parameter values reveals that there is a significant difference 
between the isotherms of the nanofluid and solid phase of the porous medium. Furthermore, a single 
clockwise convective rotating cell of the flow is formed inside the enclosure. In addition, according to 
the isoconcentrations, the nanoparticle concentration near the hot vertical wall–porous interface is 
low, while it is high near the cold vertical boundary. This is due to the fact that the thermophoresis 
forces are proportional to the temperature gradient, from hot to cold [35]. In fact, the thermophoresis 
forces cause the nanoparticles to migrate from the hot boundaries to the cold ones. The weakest and 
strongest concentrations of the nanoparticles occur at the top left corner and the bottom right corner 
of the enclosure, respectively. Furthermore, the isoconcentration contours display a thin concen-
tration boundary layer with high concentration gradient of nanoparticles along the hot and cold ver-
tical boundaries, whereas the concentration of nanoparticles is almost uniform in the core region of 
the enclosure. To clarify the cause of such a thin boundary layer formation, it should be referred to 
the definition of Lewis number. The Lewis number represents the ratio of thermal diffusivity to 

Figure 2. A comparison between the present study result (solid green line) and the results reported by Saeid [42] (dashed red 
line) for Ra ¼ 103, D ¼ 0.1, Kr ¼ 10, Rk ¼ 1, H ¼ 1, and Δθ ¼ 0.05.  
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nanoparticle diffusion coefficient in nanofluids. The Brownian coefficient for diffusion of 
nanoparticles in comparison to the thermal diffusivity is very low, which leads to a large Lewis 
number. On the other hand, in terms of boundary layer theory, two different boundary layers are 
formed near the walls corresponding to the thermal diffusivity and the nanoparticle diffusion. 
Accordingly, the Lewis number can be considered as the ratio of thermal boundary layer thickness 
to the thickness of concentration boundary layer. The thickness of thermal boundary layer is nearly 
constant, which is mainly affected by the hydrodynamic boundary layer and the buoyancy forces. 
Hence, as a result of large values of the Lewis number, the concentration boundary layer of nanofluid 
is very thin. 

As is observed in Figure 6a and b, by increasing the wall thickness, the average Nusselt numbers 
decrease and the isotherms slightly tend to be vertical, which indicates conduction dominant heat 
transfer in the enclosure. In addition, the strength of the single-cell circulation as well as the convec-
tion mode of heat transfer becomes weaker as indicated by the lower values of absolute maximum 
stream function. It is worth mentioning that the influence of thermophoresis phenomenon increases 
in the conduction dominant regime [50], thus, the concentration gradient of nanoparticles enhances 
with the increase in wall thicknesses in the vicinity of the boundaries. 

The effect of porous layer thickness on the convective heat and mass transfer inside the enclosure 
is illustrated in Figure 6a and c. It can be observed that the strength of the rotational flow of nanofluid 
significantly increases as the porous layer thickness decreases. This behavior is due to the weakening 
of the hydrodynamic resistance of the porous region. The significant increase in the value of absolute 
stream function and the density of streamlines confirms the aforementioned behavior. It can also be 
noted that for the thick porous layer, the rotational cell is vertically elongated, whereas a circular cell 
is obtained for the thin porous layer case. The average Nusselt numbers increase with the decrease in 

Figure 3. Variation of Nuf and Nus of the present work and Saeid [42] with H for different values of D.  

Table 2. Comparison of the present results with those by Saeid [42].  
Ra ¼ 103;D ¼ 0:1; Kr ¼ 1;H ¼ 1 

Rk Nuf Nus Qw Wj jmax  

Present results  0.1  0.343  0.112  4.557  3.635  
1  2.904  0.429  3.333  8.156  

10  9.840  1.013  1.085  16.029 
Saeid [42]  0.1  0.326  0.110  4.357  3.536  

1  2.814  0.418  3.232  7.898  
10  9.887  1.010  1.090  16.219   
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porous layer thickness. This is due to the increase in horizontal temperature gradient in the porous 
region. In accordance with Figure 6c, the shapes of the isotherms of the nanofluid and solid matrix in 
the porous region are almost identical. The similarity can be justified referring to the enhancement of 
thermal communication between the two phases, which is caused by intensification of the nanofluid 
flow velocity. Hence, implementing thermal equilibrium model seems appropriate under such 
circumstances. 

Increasing each of the Darcy or Rayleigh numbers (Figures 6a, 7a and b) favors the nanofluid to 
flow more through the porous layer, so the intensity of convection and, consequently, average Nusselt 
number increases. In fact, the Darcy number indicates the permeability of the porous layer. Therefore, 
by increasing the Darcy number, more nanofluid is allowed to infiltrate the porous layer and as a 
result, the strengthe of the flow circulation significantly increases. In addition, the tendency of the 
isotherms of Figure 7a and b to the horizontal positon in comparsion with Figure 6a indicates the 
domination of convection mode in the enclosure especially within the free nanofluid layer. 

Increase in the interface heat transfer coefficient between the nanofluid and solid porous matrix 
(H) (Figure 7a and c) leads to the decrease in the average Nusselt number of the nanofluid and 
the increase in the average Nusselt number of the solid matrix. In essence, the increase in the interface 

Figure 5. Variation of local Nusselt number at wall–porous interface (x ¼ D) of the present work and Sheremet and Pop [27] for 
different values of Nt.  

Figure 4. A comparison between the results of present study (solid green line) and the result reported by Sheremet and Pop [27] 
(dashed red line) in the case of Ra ¼ 100, Le ¼ 1, K ¼ 0.1, D ¼ 0.1, Nr ¼ Nb ¼ Nt ¼ 0.1.  
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heat transfer coefficient increases the thermal communications between the two phases of the porous 
medium. The temperature of the nanofluid rises while the solid porous matrix temperature reduces. 
Therefore, the temperature difference between the nanofluid and the hot wall drops, hence the aver-
age Nusselt number of the nanofluid decreases. Subsequently in reverse, the temperature difference 
between the solid porous matrix and the hot wall increases. This leads to the enhancement of the solid 

Figure 6. Isotherms (left) (solid line for θnf, dashed line for θs), streamlines (middle), and isoconcentrations (right) for Ra ¼ 104, 
Da ¼ 10� 3, Pr ¼ 5, Nr ¼ 10, Nb ¼ 10� 6, Nt ¼ 10� 6, Le ¼ 103, H ¼ 1, Kr ¼ 10, Rk ¼ 1, ε ¼ 0.6: a) D ¼ 0.1, S ¼ 0.45, b) D ¼ 0.3, 
S ¼ 0.45, c) D ¼ 0.1, S ¼ 0.2.  
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porous matrix average Nusselt number. Moreover, the value of the average heat transfer through the 
wall remains approximately constant by increasing the interface heat transfer coefficient. Variation of 
the interface heat transfer coefficient does not have significant effect on the flow pattern and the 
strength of the circulation cell inside the enclosure. It can be predicted from Figure 7c that at higher 
values of the interface heat transfer coefficient, the shapes of the isotherms of two different phases of 

Figure 7. Isotherms (left) (solid line for θnf, dashed line for θs), streamlines (middle), and isoconcentrations (right) for Pr ¼ 5, 
Nr ¼ 10, Nb ¼ 10� 6, Nt ¼ 10� 6, Le ¼ 103, D ¼ 0.1, S ¼ 0.45, Kr ¼ 10, Rk ¼ 1, ε ¼ 0.6: a) Ra ¼ 104, Da ¼ 10� 2, H ¼ 1, b) Ra ¼ 105, 
Da ¼ 10� 3, H ¼ 1, c) Ra ¼ 104, Da ¼ 10� 2, H ¼ 100.  
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the porous medium become similar and the values of the average Nusselt number of the two phases 
become equal due to the large thermal interaction between the nanofluid and solid phases of the 
porous medium. Therefore, the thermal equilibrium condition is satisfied at higher values of the 
interface heat transfer coefficient. 

Figure 8 presents the isotherms and streamlines to show the effect of buoyancy ratio parameter 
(Nr) on the thermal and flow filed inside the enclosure. The buoyancy ratio denotes the ratio of 
buoyancy force due to the mass transfer of nanoparticles to the buoyancy force due to heat transfer. 
The buoyancy force of mass transfer phenomenon is caused by the concentration difference of nano-
particles. In fact, the thermophoresis force tends to move the nanoparticles from the hot (vertical 
wall–porous interface) to the cold regions (the vertical boundary). Thus, this migration creates two 
different regions with high (heavy region) and low (light region) volume fractions of nanoparticles. 
The increase in buoyancy ratio parameter, Nr, raises the influence of the induced buoyancy force due 
to the concentration gradient of nanoparticles. As the nanofluid moves more freely in the free layer, 
the effect of buoyancy force due to the concentration gradient becomes more significant in the free 
layer, hence the center of the circulating cell shifts toward the free layer when Nr ¼ 20. 

Figures 9 and 10 show the effect of Rayleigh number (Ra) on the average Nusselt number of the 
nanofluid (Nunfp) and solid porous matrix (Nus) for different values of the Brownian motion (Nb) 
and thermophoresis (Nt) parameters. The results show that both of the average Nusselt numbers 
(Nunfp and Nus) are an increasing function of Rayleigh number. As the Rayleigh number increases, 
the buoyancy force becomes stronger and the convection heat transfer dominates the heat transfer 
through conduction, which results in higher Nusselt numbers. Figure 9 shows that the increase in 
Nb leads to a slight increase in the average Nusselt number of the nanofluid, while the value of 
average Nusselt number for the solid matrix remains approximately constant at the considered range 
of Nb. In addition, contrary to the Brownian motion effect, increasing the thermophoresis parameter 
leads to a reduction in the magnitude of the nanofluid average Nusselt number (Figure 10). As 
mentioned earlier, the thermophoresis force is in direct relation to the temperature gradient from 
hot to cold. Therefore, as Nt increases, the diminution rate of nanoparticles concentration near the 
hot wall–porous interface intensifies, which cause a reduction of heat transfer rate. Furthermore, 
as is seen in Figure 10b, the variation of the average Nusselt number of the solid matrix with Nt is 
negligible. In general, the average Nusselt numbers change insignificantly with the variation of 
Brownian motion and thermophoresis parameters. A reason to justify such behavior could be that 
the coefficients of Nb and Nt in the dimensionless equations are very small. Hence, these parameters 
have little impact on the heat transfer rate. 

Figure 8. Isotherms for the nanofluid θnf (left), isotherms for the porous matrix θs (middle), and streamlines (right) for Ra ¼ 104, 
Da ¼ 10� 2, Pr ¼ 5, Nb ¼ 10� 6, Nt ¼ 10� 6, Le ¼ 103, D ¼ 0.1, S ¼ 0.45, H ¼ 10, Kr ¼ 10, Rk ¼ 10, ε ¼ 0.6, Nr ¼ 0 (solid red line), and 
Nr ¼ 20 (dashed blue line).  
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Figure 11 illustrates the effects of Darcy number (Da) and porous layer thickness (S) on the average 
Nusselt numbers in the nanofluid and solid matrix of the porous layer. It can be observed that the 
enhancement of heat transfer rate starts at Da ¼ 10� 4, increases with a gentle slope until Da ¼ 10� 3, 
and then this rising trend continues with a steep slope until Da ¼ 10� 2 and after this value, the effect 
of Darcy number on increasing the heat transfer rate gradually diminishes. It should be noted that the 
Darcy number represents the permeability of the porous medium. As the Darcy number increases, 
more fluid flows through the porous region, hence the convection heat transfer becomes stronger. 
It can be concluded that rising trend of average Nusselt number as a function of Darcy number is 
due to the increase in the permeability of the porous medium and enhancement of the convection 
heat transfer in the porous layer. Increase in the average Nusselt number of the nanofluid phase 
has higher rate than the solid phase, and the difference between them becomes more significant at 
higher values of the Darcy number. In addition, Figure 11 illustrates that by increasing the porous 
layer thickness, the magnitude of the average Nusselt number of the both phases of the porous layer 

Figure 10. Variation of average Nusselt number for the nanofluid and the porous matrix with Ra number for different values of 
the thermophoresis parameter Nt.  

Figure 9. Variation of average Nusselt number for the nanofluid and the porous matrix with Ra number for different values of the 
Brownian motion parameter Nb.  
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decreases. This is because of the hydrodynamic resistance imposed by the porous layer, which is 
reinforced by increasing the porous layer thickness. 

Similarly, to investigate the effect of porosity (ε) on the heat transfer rate, the variations of the 
average Nusselt numbers versus Darcy number are presented in Figure 12 at different porosities. 
Again, the results indicate that the average Nusselt numbers are increasing functions of the Darcy 
number at any considered value of the porosity. Moreover, as is seen in Figure 12, the average Nusselt 
numbers of both the nanofluid and solid matrix decrease with the increment in the porous medium 
porosity. In addition, the figure depicts that the heat transfer rate by nanofluid within the porous layer 
becomes smaller as the porosity increases. Furthermore, the average Nusselt number of the solid 
matrix decreases due to the direct interaction with the nanofluid. 

It is worth pointing out that the effect of Prandtl number (Pr) within the wide range 5 � Pr � 1000 
on the average Nusselt number for the nanofluid and solid porous matrix was studied. The variation 
of average Nusselt numbers with Pr showed almost a single curve for each phase of the porous 
medium, which indicates an insignificant effect of the Prandtl number on the heat transfer. Therefore, 
the effect of Prandtl number on the heat transfer has not been presented here for brevity. 

Figure 13 depicts the effect of wall to nanofluid thermal conductivity ratio (Rk) on the average 
Nusselt numbers of the nanofluid and solid porous matrix for different values of the wall thickness. 
The results reveal that the average Nusselt numbers increase with the increase in wall to nanofluid 
thermal conductivity ratio parameter. Increasing Rk indicates the enhancement of wall conductivity, 
which causes more heat to reach the porous layer through the solid wall. The temperature difference 
between the two vertical faces of the porous layer increases, and consequently, the average Nusselt 
number for the nanofluid and solid matrix enhances. In addition, increasing the wall thickness leads 
to lower values of Nusselt numbers. The influence of wall thickness on the average Nusselt numbers is 
gradually weakened as Rk increases such that at high values of Rk (i.e., Rk ¼ 10; highly conductive 
walls), the wall thickness does not have any significant effect on the average Nusselt numbers. This 
is due to the fact that at high conductivity ratio, the gained thermal energy by conduction through 
the wall overcomes the thermal resistance effect of the wall thickness. It is worth mentioning that 
for larger thickness of the wall, Nusselt number is more sensitive to the Rk values, as shown in 
Figure 13. In other words, at lower values of the wall thickness (i.e., D ¼ 0.01), the wall to nanofluid 
thermal conductivity ratio has negligible effect on the magnitude of average Nusselt numbers 
particularly when Rk ≥ 1. 

Figure 11. Variation of average Nusselt number for the nanofluid and the porous matrix with Da number for different values of 
the porous layer thickness S.  
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Figure 14 shows the effect of thermal conductivity ratio of the porous medium (Kr) on the average 
Nusselt number of the nanofluid and solid phases of the porous matrix. The increase in thermal 
conductivity ratio of the porous medium increases the average Nusselt number in both phases of 
the porous layer. This behavior corresponds to the fact that the increase in Kr indicates the thermal 
conductivity enhancement of the nanofluid compared to that of the solid porous matrix. Therefore, it 
is clear that in such a case, more heat is transferred through the nanofluid natural convection, as 
shown in Figure 14a. On the other hand, studying Eqs. (24) and (25) reveals that the variation of 
Kr can reduce or enhance the effect of interface heat transfer coefficient (H) in the heat transfer of 
the solid matrix phase. Hence, as the magnitude of Kr increases, the effect of thermal interaction 
between the nanofluid and solid matrix (i.e., H) intensifies. Note that the average Nusselt number 
in the solid matrix phase is an increasing function of H (Figures 7a and c and 15b). Therefore, the 
increase in Kr enhances the average Nusselt number in the solid porous matrix, as shown in 
Figure 14b. 

Figure 13. Variation of average Nusselt number for the nanofluid and the porous matrix with Rk for different values of the wall 
thickness D.  

Figure 12. Variation of average Nusselt number for the nanofluid and the porous matrix with Da number for different values of 
porosity ε.  
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Figure 15 shows the variation of average Nusselt numbers for the nanofluid and solid matrix as a 
function of buoyancy ratio parameter (Nr) at different values of H. It is observed that the increment 
of interface heat transfer coefficient reduces the average Nusselt number of the nanofluid. As 
previously mentioned, this is because of the thermal interaction augmentation between the nanofluid 
and solid porous matrix, which leads to a rise in the temperature of nanofluid. The rise of the nano-
fluid temperature near the hot wall reduces the temperature gradient and consequently reduces the 
average Nusselt number of the nanofluid. Due to transfer of the thermal energy from solid matrix 
to the nanofluid, the temperature of the solid porous matrix drops, hence the temperature difference 
between the solid matrix and hot wall increases. As a result, the average Nusselt number of the solid 
porous matrix increases, as is seen in Figure 15b. In addition, it can be deduced from the figures that 
the increase in buoyancy ratio parameter deteriorates the heat transfer rate through the porous layer. 
The reduction in average Nusselt number of the nanofluid (Figure 15a) is more significant in 
comparison to the solid porous matrix (Figure 15b). The increase in buoyancy ratio parameter 
intensifies the buoyancy force influence due to the mass transfer of nanoparticles. These effects are 
more pronounced near the vertical boundary where a thin boundary layer of nanoparticles is formed. 

Figure 14. Variation of average Nusselt number for the nanofluid and the porous matrix with Ra number for different values of Kr.  

Figure 15. Variation of average Nusselt number for the nanofluid and the porous matrix with Nr for different values of H.  
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Therefore, the increase in buoyancy ratio parameter raises the vertical velocity of the nanofluid next 
to the vertical boundary, leading to a decrease in the average Nusselt number due to the temperature 
gradient reduction. These temperature variations of the nanofluid due to the indirect effect of the 
buoyancy ratio parameter variations affect the temperature gradient of the solid porous matrix. 
Hence, the average Nusselt number for the solid porous matrix smoothly drops by increasing the 
buoyancy ratio parameter, as shown in Figure 15b. However, it is worth mentioning that at lower 
values of H (i.e., H ¼ 1, 0.1), the average Nusselt number for the solid matrix has an upward trend 
with increasing the buoyancy ratio parameter. This is because of the smaller thermal interaction 
between the two phases of porous medium at lower values of H, and consequently the reduction 
of indirect effect of the nanofluid due to the buoyancy force on the solid porous matrix. 

7. Conclusion 

The natural convective flow, heat and mass transfer of nanofluids in a cavity consisting of multilayers 
is studied using the Buongiorno’s model and considering LTNE effects. In the cavity, there was a layer 
of solid wall over the hot wall, then a layer of porous medium was extended over the solid wall, and 
finally there was a layer of free fluid between the porous layer and the cold wall. The cavity was filled 
with nanofluid where drift flux of nanoparticles was allowed due to the thermophoresis and Brownian 
motion effects. The porous layer was modeled using the Darcy–Brinkman porous medium. A two- 
temperature model was used to take into account the temperature differences between the nanofluid 
and solid matrix phases using the LTNE model. Appropriate interface boundary conditions for the 
continuity of the temperatures and balance of energy at the porous layer interfaces are used. The 
nondimensional parameters are introduced to scale the model into a nondimensional form. The finite 
element method associated with a nonuniform grid structure was utilized to solve the governing 
differential equations. The results are reported for different parameters. The main findings of the 
present study can be summarized as follows: 
1. Due to the thermophoresis effect, the nanoparticle concentration near the hot vertical interface of 

the wall–porous is low, while it is high near the cold vertical boundary. 
2. When the convection interface heat transfer parameter (H) in the porous medium is low, i.e., 

H ≈ 10, there is a significant difference between the temperature patterns of the nanofluid and 
the porous matrix in the porous layer. For the studied set of nondimensional parameters, the 
average Nusselt number of the nanofluid phase, Nunfp, in the porous medium layer is a decreasing 
function of H. In contrast, the average Nusselt number in the porous matrix phase, Nus, is an 
increasing function of H. 

3. The increase in thickness of the porous layer (S) decreases the average Nusselt number for both 
phases of the nanofluid (Nunfp) and porous matrix (Nus) in the porous layer. However, the increase 
in wall thickness (D) decreases both of the Nusselt numbers of the porous layer, i.e., Nunfp and Nus. 
The variation of the thermophoresis (Nt) and Brownian motion (Nb) parameters indicates a very 
slight effect on the average heat transfer. 

4. The average Nusselt number in both phases of the porous medium, i.e., Nunfp and Nus, is in 
increasing function of Ra and Da in all of the studied cases. The raise of the thermal conductivity 
ratios, i.e., Kr and Rk, also boosts both of the average Nusselt numbers in the porous layer. 
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