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Abstract
The natural convective heat transfer of nanofluids was addressed inside a square enclosure filled by three different layers:

solid, porous medium and free fluid. The behavior of the porous layer has been simulated using local thermal non-

equilibrium model. The Buongiorno’s model was utilized to evaluate the distribution of nanoparticles inside the enclosure

that arose from the thermophoresis and Brownian motion. The governing equations were solved by the Galerkin finite

element method in a non-uniform grid. The governing parameters are Rayleigh number Ra = 103–106, porosity e = 0.3–0.9,

Darcy number Da = 10-5–10-2, interface parameter Kr = 0.1–10, H = 0.1–1000; ratio of wall thermal conductivity to that

of the nanofluid, Rk = 0.1–10, dimensionless length of the heater B = 0.2–0.8; dimensionless centre position height of the

heater Z = 0.3–0.7 and Lewis number Le = 10–100. A considerable concentration gradient of nanoparticles was found

inside the enclosure. In some studied cases, the non-dimensional volume fraction of nanoparticles is about 10% higher than

the average volume fraction of nanoparticles at the region near the cold wall. The variability of Darcy and the Rayleigh

numbers indicated significant effects on heat transfer rate and the concentration patterns of the nanoparticles and inward the

cavity. The increase in Le and Nr amplifies and decreases the heat transfer rates through fluid and solid phases, respectively.

In addition, it can be seen that the increment in heat transfer rates with Le increases as Nr increases.

Keywords Buongiorno’s model � Local thermal non-equilibrium � Porous medium layer � Free fluid layer �
Solid layer

List of symbols

Latin symbols
b Length of the heater (m)

B Dimensionless length of the heater

C Nanoparticle volume fraction

C0 Ambient nanoparticle volume fraction

d Wall thickness (m)

D Dimensionless wall thickness

Da Darcy number

DB Brownian diffusion coefficient

DT Thermophoresis diffusion coefficient

g Gravitational acceleration vector (m s-2)

hnfs Volumetric heat transfer coefficient between the

nanofluid and solid porous matrix (W m-3 K-1)

H Interface heat transfer coefficient parameter

k Thermal conductivity (W m-1 K-1)

K Permeability of the porous medium (m2)

Kr Nanofluid to solid porous matrix thermal

conductivity ratio parameter

L Square cavity size (m)

Le Lewis number

n Normal vector (m)

N Dimensionless normal vector

Nb Brownian motion parameter

& Mohammad Ghalambaz

m.ghalambaz@iaud.ac.ir

S. A. M. Mehryan

alal171366244@gmail.com

Mohsen Izadi

izadi.m@lu.ac.ir

1 Young Researchers and Elite Club, Yasooj Branch, Islamic

Azad University, Yasooj, Iran

2 Department of Mechanical Engineering, Dezful Branch,

Islamic Azad University, Dezful, Iran

3 Mechanical Engineering Department, Faculty of Engineering,

Lorestan University, Khorramabad, Iran

123

Journal of Thermal Analysis and Calorimetry (2019) 135:1047–1067
https://doi.org/10.1007/s10973-018-7380-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10973-018-7380-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10973-018-7380-y&amp;domain=pdf
https://doi.org/10.1007/s10973-018-7380-y


Nr Buoyancy ratio parameter

Nt Thermophoresis parameter

Nu Local Nusselt number

Nu Average Nusselt number

p Pressure (Pa)

P Dimensionless pressure

Pr Prandtl number

qi Total interfacial heat flux (W m-2)

Qw Dimensionless local heat transfer through the wall

Qw Dimensionless average heat transfer through the

wall

Ra Rayleigh number

Rk Wall to nanofluid thermal conductivity ratio

parameter

s Porous layer thickness (m)

S Dimensionless porous layer thickness

Sh Local Sherwood number

T Temperature (K)

u, v Velocity components along x, y directions,

respectively (m s-1)

U, V Dimensionless velocity components along x,

y directions, respectively

x, y Cartesian coordinates (m)

X, Y Dimensionless Cartesian coordinates

z Center position height of the heater (m)

Z Dimensionless center position height of the heater

Greek symbols
a Effective thermal diffusivity (m2 s-1)

b Thermal expansion coefficient of the fluid (K-1)

D Difference value

e Porosity of the porous medium

h Dimensionless temperature

l Dynamic viscosity (kg m-1 s-1)

m Kinematic viscosity (m2 s-1)

q Density (kg m-3)

(qc) Effective heat capacity (J K-1 m-3)

s Parameter defined by s = (qc)p/(qc)nf
/ Relative nanoparticle volume fraction

W Dimensionless stream function

Subscripts
0 Ambient property

c Cold

eff Effective

h Hot

max Maximum

nf Nanofluid

p Nanoparticle

s Solid porous matrix

w Wall

Introduction

Natural convection heat transfer arises from a change in the

density of a working fluid, where there is no need for any

external power or moving parts to induce a flow. Hence,

the natural convection mechanism is simple and safe. In

natural convection, the fluid motion is smooth and slow.

Thus, there are very low noise levels in heat transfer

devices manufactured based on such mechanism. There-

fore, this heat transfer procedure inside a cavity has been

the subject of many recent studies due to its important

advantages. However, the main disadvantage of the natural

convection is the complexity of the design and also its low

capacity of heat transfer. Therefore, further investigations

on the enhancement of the heat transfer via free convection

mechanism are still demanded. Studies and applications of

the natural convection can be seen in [1–4].

One method to improve the heat transfer rate is uti-

lization of extended surfaces. In recent years, some

researchers have applied very thermal conductive metals

such as aluminum and copper to develop a porous medium

structure, metal foam, with both high porosity and effective

surface area [5–9]. In general, two main approaches exist

for modeling heat transfer through porous media: the local

thermal equilibrium (LTE) and the local thermal non-

equilibrium (LTNE) approach [10]. For LTE approach, it is

assumed that the pore solid walls and the captured fluid are

at the same temperature, and hence, only one temperature

represents the temperature of both domains [11]. However,

when the thermal interplay between the pore walls and

connected fluid is low or when the thermal conductivity of

solid matrix is far higher than the thermal conductivity of

the fluid, the temperature of the solid matrix may signifi-

cantly differ from that of the fluid captured the pores. In

such cases, two different domains should be defined to

investigate thermal behavior of porous media. One domain

represents the temperature of the solid matrix, and the other

one denotes the temperature of the fluid captured the pores.

Hence, LTNE models are also propounded as two-equation

models [12, 13]. Considering natural convection heat

transfer in metal foams, the LTNE models are demanded

due to fact that the thermal conductivity of a metal foam is

much higher than that of typical working fluids. Moreover,

in natural convection flows, the fluid velocity is low and a

low thermal interplay between the fluid and solid matrix

can be also expected.

There are numerous researches in the literature,

addressing the natural convection heat transfer in porous

enclosures using LTE and LTNE models [14–16]. The

books by Nield and Bejan [10] as well as Vafai [17] pro-

vide a thorough review of these pieces of research. There

are only few studies that have considered the conjugate
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conduction-natural convection heat transfer through porous

media using LTNE model [18]. Indeed, by considering

conjugate heat transfer using LTNE, there are difficulties in

modeling and satisfying the temperature continuity and

energy balance at the interface of different three layers

located inside the cavity [19, 20].

Another way to enhance the heat transfer is using

enhanced thermal conductivity of the working fluid.

Experiments show that scattering a small volume fraction

of nanoparticles in a conventional fluid can enhance the

overall thermal conductivity of the resulted mixture

[21–28]. A synthesized stable mixture of nanoparticles and

a conventional thermal fluid is known as a nanofluid. The

nanofluids also seem promising for enhancing convection

heat transfer across a wide range of industrial applications

[29].

According to one perspective, there are two models for

the study of heat transfer of nanofluids. One is the homo-

geneous mixture model, known as the static model, for

which a uniform mixture of nanoparticles and the base fluid

is assumed. In the homogeneous mixture, model no relative

movement between the nanoparticles and base fluid is

allowed [30–33]. The other more advanced model, which

can represent the behavior of the nanoparticles, is the

mixture model, proposed by Buongiorno. Buongiorno’s

model considers a relative movement between the

nanoparticles and the base fluid [34–37]. Buongiorno has

concluded that the thermophoresis and Brownian forces,

action on the nanoparticles in a nanofluid, are the important

nanoscale mechanisms for nanofluids and can result in a

significant concentration gradient of nanoparticles. The

thermophoresis force usually carries the nanoparticles

along a direction across from the temperature gradient.

Conversely, the Brownian motion force typically homog-

enizes the nanoparticles inside the base fluid. Hence, a

nanofluid which experiences a temperature gradient would

experience a concentration gradient [38–42]. As a result,

the concentration gradient of the heavy nanoparticles can

affect the buoyancy forces and other aspects of flow and

heat transfer in the nanofluids [43, 44].

Considering the homogeneous model of nanofluids,

Alsabery et al. [45] have performed the conjugate con-

duction-natural convection heat transfer inside a trape-

zoidal enclosure. Alsabery et al. [45] reported that the

average Nusselt number significantly increased with

increasing nanoparticle volume fractions. This arises from

higher thermal conductivity of the nanoparticles compared

to base fluid. Alsabery et al. [46] have also studied the

transient natural convection of nanofluids inside a trape-

zoidal cavity. Sheikholeslami and Ganji [47] also Sheik-

holeslami and Chamkha [48] have addressed the natural

convection heat transfer of nanofluids in a collector

enclosure with sine shape walls subjected to a magnetic

field on. Bondareva et al. [49] have investigated the con-

jugate heat transfer of nanofluids inside a porous cavity.

Considering the Buongiorno’s model, Sheikholeslami and

Chamkha [50] as well as Reddy and Chamkha [51] and

Reddy et al. [52] have analyzed the force convective heat

transfer of nanofluids over confined. There are also very

recent studies that have analyzed the natural convection

heat transfer of nanofluids inside a cavity using the

Buongiorno’s mathematic model such as [42, 53, 54]. As a

summary, the convection heat transfer of nanofluids

through porous media has been studied in recent researches

of Kasaeian et al. [55] and Sheikholeslami [56, 57].

Systems that consist of multilayer media, a layer of solid

shell wall, a layer of saturated porous medium and a free

fluid layer are very common in industrial applications. For

instance, an enclosure metal tank partially filled with grains

is a common example of such a system, where the metal

sheet of the tank shell is the solid layer, the grains are the

porous medium layer, and the free space over the grains is

the free layer. Although there are a wide range of industrial

applications for such systems, there are only few studies,

which have addressed the convective heat transfer in

multilayer systems.

Considering a cavity partially saturated by a porous

medium, the mixed convection of nanofluids in a partly

layered porous enclosure with an internally revolving

cylinder by Chamkha et al. [58] using the homogeneous

model of nanofluids and assuming LTE model. Chamkha

and Ismael [59] have addressed the natural convection heat

transfer of nanofluids in a cavity partly saturated with a

layer of porous medium filled by a nanofluid. The nanofluid

was modeled as a homogeneous mixture, where the porous

matrix and the nanofluid were considered to be in local

thermal equilibrium. Hence, there are no concentration

gradients of nanoparticles. In addition, no temperature

difference between the fluid and the solid matrix is

allowed. The natural convection of nanofluids inside a

tilted trapezoid enclosure partly filled with a layer of por-

ous medium has been examined by Alsabery et al. [60].

Further, in a very recent study [59], Ismael and Chamkha

[61] have addressed the nanofluids’ convection heat

transfer in a square cavity. The top and bottom walls of the

cavity were well insulated, and the right vertical side wall

was at the isothermal temperature of Th, while the left wall

was at the isothermal cold temperature of Tc. There was a

layer of solid over the hot wall, and then there was a layer

of a porous medium over the solid layer, and finally there

was a layer of free fluid between the cold wall and the

porous layer. As with [59, 60], Ismael and Chamkha [61]

also have utilized the homogeneous model of nanofluids

using local thermal equilibrium (LTE) model.

Following the study of Ismael and Chamkha [61], in the

present study, a non-homogeneous model of nanofluids,
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Buongiorno’s model, is adopted to capture the concentra-

tion gradients of nanoparticles. In addition, LTNE model is

adopted to model the conjugate heat transfer inside the

porous layer. The main physical contributions of the pre-

sent study are (a) considering a concentration gradient for

nanoparticles and (b) considering the temperature dis-

crepancy between two elements of the porous medium

layer. The aim of the study is to analyze the conjugate heat

transfer of nanofluids inside a cavity filled by multilayers

using LTNE and Buongiorno’s model.

Definition of the problem and mathematical
formulation

Figure 1 demonstrates a schema of the physical model for

conjugate natural convection heat transfer in a multilayer

cavity. The studied square domain with the length of L was

divided into three parts of solid, porous medium and

nanofluid, where the width of the solid and the porous

medium are denoted by s and d, respectively. Here, s and

d were adopted as 0.1L and 0.45L, respectively. As pic-

tured in Fig. 1, a flash heater with hot temperature Th and

length b was embedded on the left wall with the center

position height of z. The other parts of the left wall along

with the entire top and bottom walls were well insulated.

The entire right wall was held at the isothermal cold

temperature Tc.

The following physical points have been taken into

consideration in modeling the conjugate heat transfer in the

cavity. The condition of no-slip boundary remained true on

the solid surfaces. The porous medium included a solid

matrix, and the pores were filled with an incompressible

nanofluid such that all the pores of the porous region were

occupied by the nanofluid. The solid matrix was assumed

as isotropic and homogenous. In addition, the nanofluid

was assumed Newtonian and its flow in the pores was

laminar. Due to very low size of nanoparticles, the

nanoparticles and the base fluid were assumed to be at the

same temperature. However, there was a temperature dif-

ference between the porous matrix and the nanofluid inside

the pores, and hence, the local thermal non-equilibrium

model was used to consider heat transport through the

porous medium. In the cases such as the metal foams, in

which the thermal conductivity of the porous matrix is

much higher than the thermal conductivity of the fluid

inside the pores, the temperature of the porous matrix can

significantly differ from the temperature of the fluid inside

the pores due to the heat transfer through the porous

matrix. This temperature difference can be boosted in a

situation in which the convective heat transfer coefficient

between the fluid and porous matrix structures is low. Such

a low convective heat transfer coefficient can be seen in

natural convective heat transfer where the fluid velocities

are low. Hence, in such cases the LTNE model is more

accurate and has been adopted in the present study.

Moreover, it was assumed that the solid nanoparticles were

always stable and suspended in the base fluid, meaning that

there was no sedimentation and accumulation of the

nanoparticles. Apart from density, all the thermophysical

characteristics of the nanofluid were regarded as constant.

The impact of the buoyancy volume force was considered

using Boussinesq approximation model. The gravity

acceleration vector acted in the direction of the negative y,

as revealed in Fig. 1. In this study, the non-homogenous

dispersion of solid nanoparticles in the fluid was modeled

using Buongiorno’s model [34]. Buongiorno [34], using the

scale analysis, has discussed several nanoscale forces

which can affect the movement of nanoparticles in a

nanofluid. Among these forces, the thermophoresis and

Brownian motion forces found to be important. The ther-

mophoresis force tends to move the nanoparticles from hot

to the cold due to the difference in momentum of mole-

cules in the hot and cold sides of a nanoparticle. In contrast,

the Brownian motion tends to uniform the nanoparticles in

the nanofluid. Since Buongiorno’s model [34] includes the

migration effect of nanofluids, this model has been adopted

in the present study to simulate the concentration gradients

of nanoparticles as well as flow and heat transfer in the

cavity.

Considering the assumptions mentioned above, the set

of governing equation for the nanofluid flow and heat

transfer in the free layer were written as follows

[10, 34, 62]:

∂T/∂y = 0, ∂C/∂y = 0

D
B

∂C
/∂
x 

+
 (
D

T
/T

c)
 ∂
T

/∂
x 

=
 0

∂T/∂y = 0, ∂C/∂y = 0

Permeable interface
L

L

g

s

y

d

z

b

Th

Tc

x

NanofluidSolid

Po
ro

us
 m

ed
iu

m

∂T
/∂
x 

=
 0

∂T
/∂
x 

=
 0

Fig. 1 Schematic view of the present problem
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where the nomenclature section provides variables’ defi-

nitions. The governing equations of the flow of nanofluid

and heat transfer inside the porous medium layer are

developed as follows:
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Finally, the following equation can be stated for the solid

impermeable wall:

o2Tw

ox2
þ o2Tw

oy2
¼ 0 ð12Þ

The corresponding boundary conditions for free nano-

fluid—porous interface, i.e. x = s ? d, can be written as

follows [63, 64]:

ufree nanofluid ¼ uporous; vfree nanofluid ¼ vporous

lnf
ou

on

				
free nanofluid

¼ lnf;eff
ou

on

				
porous

; lnf
ov

on

				
free nanofluid

¼ lnf;eff
ov

on

				
porous

Tnf jfree nanofluid¼ Tnf jporous¼ Tsjporous

knf
oTnf

on

				
free nanofluid

¼ knf;eff
oTnf

on

				
porous

þks;eff
oTs

on

				
porous

¼ qi

Cfree nanofluid ¼ Cporous;
oC

on

				
free nanofluid

¼ oC

on

				
porous

ð13Þ

where knf;eff ¼ eknf ; ks;eff ¼ 1� eð Þks; lnf;eff ¼ lnf
e :

The third line of the above boundary conditions,

Eq. (13), indicates that the temperature of the nanofluid

inside the pores, porous matrix and the nanofluid in the

clear flow are equal. This assumption can be true due to the

fact that the interaction between the fluid and the porous

matrix is very high in the interface of the porous medium

and clear fluid region. The fourth line indicates that the

amount of heat which reaches the clear fluid layer is equal

to the amount of heat that carries on through the porous

matrix medium layer and the amount of heat that reached

the interface due to the fluid inside the pores.

In addition, the boundary conditions associated with the

wall-porous interface, i.e. x = s, is given by [18, 64]:

Twjwall¼ Tnf jporous¼ Tsjporous

kw
oTw

on

				
wall

¼ knf;eff
oTnf

on

				
porous

þks;eff
oTs

on

				
porous

¼ qi

DB

oC

on

				
porous

þDT

Tc

oTnf

on

				
porous

¼ 0

ð14Þ

The first line of the above boundary conditions, Eq. (14),

indicates that the temperature of the nanofluid inside the

pores, porous matrix and the solid wall are equal. This
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assumption can be true due to the fact that both three layers

have merged at the wall interface. Indeed, the fluid velocity

at the wall surface is considered as zero, and the porous

matrix is also unified with the wall. Hence, assuming a

uniform equal temperature for the solid wall, porous matrix

and the quiescent nanofluid in the pores next to the wall is a

rational assumption. The second line demonstrates the

energy balance at the interface surface of the solid wall and

porous region. This equation indicates that the amount of

heat which reaches the interface through the solid wall is

equal to the amount of heat that reaches the porous matrix

and the fluid in the pores.

Eventually, the boundary conditions applied to the

external walls of the cavity are.

Tw 0; yð Þ ¼ Th z� b=2� y� zþ b=2

oTw 0; yð Þ
ox

¼ 0 y� zþ b=2 and y� z� b=2

8<
:
u L; yð Þ ¼ v L; yð Þ ¼ 0; Tnf L; yð Þ ¼ Tc;

DB

oC L; yð Þ
ox

þ DT

Tc

oTnf L; yð Þ
ox

¼ 0

u X; 0ð Þ ¼ v X; 0ð Þ ¼ 0;
oTw x; 0ð Þ

oy
¼ oTnf x; 0ð Þ

oy

¼ oTs x; 0ð Þ
oy

¼ 0;
oC x; 0ð Þ

oy
¼ 0

u x; Lð Þ ¼ v x; Lð Þ ¼ 0;
oTw x; Lð Þ

oy
¼ oTnf x; Lð Þ

oy

¼ oTs x; Lð Þ
oy

¼ 0;
oC x; Lð Þ

oy
¼ 0

ð15Þ

According to [41, 65], the boundary condition of

DB
oC L;yð Þ

ox
þ DT

Tc

oTnf L;yð Þ
ox

represents the zero flux of nanopar-

ticles on the wall surfaces. A homogeneous uniform con-

centration of nanoparticles (C0) is assumed in the cavity.

As the walls are impermeable to the base fluid and

nanoparticles, the following constraint should be hold true

in all times, with the steady state solution:

1
L2

R1
0

R1
0

C dxdy ¼ C0. In order to non-dimensionalize the

governing Eqs. (1)–(12) and the corresponding boundary

conditions (13)–(15), the following dimensionless param-

eters are utilized:

X ¼ x

L
; Y ¼ y

L
; D ¼ d

L
; S ¼ s

L
; B ¼ b

L
;

Z ¼ z

L
; U ¼ uL

anf
; V ¼ vL

anf
;

P ¼ pL2
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2
nf

; Pr ¼ mnf
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; / ¼ C
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;

Ra ¼
1� C0ð Þqf;0gbDTL3
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;
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C0
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;Nt ¼ sDTDT

anf Tc
;
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2
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;Rk ¼
kw

knf
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where DT ¼ Th � Tc. Based on the non-dimensional vari-

ables of Eq. (16), the dimensionless forms of Eqs. (1)–(12)

are obtained as follows:
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þ o2/
oY2

� �

þ Nt

Le � Nb
o2hnf
oX2

þ o2hnf
oY2

� �
ð21Þ

Porous medium layer:

oU

oX
þ oV

oY
¼ 0 ð22Þ

1

e2
U
oU

oX
þ V

oU

oY

� �
¼ � oP

oX
þ Pr

e
o2U

oX2
þ o2U

oY2

� �
� Pr

Da
U

ð23Þ
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1

e2
U
oV

oX
þ V

oV

oY

� �
¼ � oP

oY
þ Pr

e
o2V

oX2
þ o2V

oY2

� �
� Pr

Da
V

� Ra � Pr � Nr /� 1ð Þ þ Ra � Pr
� hnf

ð24Þ

U
ohnf
oX

þ V
ohnf
oY

¼ e
o2hnf
oX2

þ o2hnf
oY2

� �
þ Nb � e o/

oX

ohnf
oX

þ o/
oY

ohnf
oY

� �

þ Nt � e ohnf
oX

� �2

þ ohnf
oY

� �2
" #

þ H hs � hnfð Þ

ð25Þ

0 ¼ o2hs
oX2

þ o2hs
oY2

þ H � Kr hnf � hsð Þ ð26Þ

U
o/
oX

þ V
o/
oY

¼ e
Le

o2/
oX2

þ o2/
oY2

� �

þ Nt � e
Le � Nb

o2hnf
oX2

þ o2hnf
oY2

� �
ð27Þ

Solid wall layer:

o2hw
oX2

þ o2hw
oY2

¼ 0 ð28Þ

In addition, the boundary conditions in dimensionless state

are obtained as follows:

Free nanofluid-porous interface boundary conditions:

Ufree nanofluid ¼ Uporous; Vfree nanofluid ¼ Vporous

oU

oN

				
free nanofluid

¼ 1

e
oU

oN

				
porous

;
oV

oN

				
free nanofluid

¼ 1

e
oV

oN

				
porous

hnf jfree nanofluid¼ hnf jporous¼ hsjporous
ohnf
oN

				
free nanofluid

¼ e
ohnf
oN

				
porous

þK�1
r

ohs
oN

				
porous

¼ Qi

/free nanofluid ¼ /porous;
o/
oN

				
free nanofluid

¼ o/
oN

				
porous

ð29Þ

where Qi ¼ qiL=knfDT .
The wall-porous interface boundary condition is:

hwjwall¼ hnf jporous¼ hsjporous

Rk

ohw
oN

				
wall

¼ e
ohnf
oN

				
porous

þK�1
r

ohs
oN

				
porous

¼ qiL

knfDT
¼ Qi

Nb
o/
oN

				
porous

þNt
ohnf
oN

				
porous

¼ 0

ð30Þ

Other boundary conditions on the vertical and horizontal

walls include:

hw 0; Yð Þ¼ 1 Z � B=2� Y � Z þ B=2

ohw 0; Yð Þ
oX

¼ 0 Y � Z þ B=2 or Y� Z � B=2

8<
:
U 1; Yð Þ ¼ V 1; Yð Þ ¼ 0; hnf 1; Yð Þ¼ 0;

Nb
o/ 1; Yð Þ

oX
þ Nt

ohnf 1; Yð Þ
oX

¼ 0

U X; 0ð Þ ¼ V X; 0ð Þ ¼ 0;
ohw X; 0ð Þ

oY
¼ ohnf X; 0ð Þ

oY

¼ ohs X; 0ð Þ
oY

¼ 0;
o/ X; 0ð Þ

oY
¼ 0

U X; 1ð Þ ¼ V X; 1ð Þ ¼ 0;
ohw X; 1ð Þ

oY
¼ ohnf X; 1ð Þ

oY

¼ ohs X; 1ð Þ
oY

¼ 0;
o/ X; 1ð Þ

oY
¼ 0

ð31Þ

The non-dimensional constraints of
R1
0

R1
0

/dXdY ¼ 1 for the

overall volume fraction of nanoparticles should also hold

true in the steady state solution. In this report, the physical

quantities of interest are the heat transfer through the wall,

Nusselt number of the nanofluid and solid phases in the

interface boundary of the wall as well as the porous med-

ium, and finally Nusselt number of the free nanofluid,

which are, respectively, listed below:

Qw ¼ q00L

kwDT
¼

�kw
oTw
ox

� �
x¼0;d

L

kwDT
¼ � ohw

oX

� �
X¼0;D

Nunf jporous¼
hL

knf
¼ q00L

knfDT
¼

�knf
oTnf
ox

� �
x¼d;dþs

L

knfDT

¼ � ohnf
oX

� �
X¼D;DþS

Nus ¼
q00L

ksDT
¼

�ks
oTs
ox

� �
x¼d;dþs

L

ksDT
¼ � ohs

oX

� �
X¼D;DþS

Nunf jfree nanofluid¼
hL

knf
¼ q00L

knfDT
¼

�knf
oTnf
ox

� �
x¼dþs;L

L

knfDT

¼ � ohnf
oX

� �
X¼DþS;1

ð32Þ

Qw ¼
Z1

0

Qw dy; Nu ¼
Z1

0

Nu dy ð33Þ

Eventually, using Eqs. (29) and (30):

Qw ¼ eR�1
k Nunf

		
porous

þR�1
k K�1

r Nus at X ¼ D ð34Þ

Nunf
		
free nanofluid

¼ eNunf
		
porous

þK�1
r Nus at X ¼ Dþ S

ð35Þ

Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid… 1053

123



It is notable that the values of Sherwood number are not

included in this investigation since according to the

boundary conditions given in Eqs. (30) and (31),

Sh ¼ Nt
Nb
Nu. In addition, considering the steady state solu-

tion and based on the energy conservation, it can be

deduced that � ohw
oX

� �
X¼0

		 		 ¼ � ohw
oX

� �
X¼D

		 		 and

� ohnf
oX

� �
X¼DþS

			 			 ¼ � ohnf
oX

� �
X¼1

		 		. Thus, the results would

only be reported for the Nusselt numbers at the interface of

the free fluid and the porous layer at X = D ? S. The other

values of important heat transfer characteristics can be

evaluated using the above relations.

Numerical approach, grid independence test
and validation

The governing equations, Eqs. (17) and (18), are nonlinear

and coupled to each other; hence, it is essential to apply a

numerical approach to solve them, which are associated

with the boundary conditions expressed as (29)–(31). Here,

the Galerkin finite element method was utilized to solve the

equations with the corresponding boundary conditions.

This method has been explained in details in [66–68]. The

quadrilateral structural elements were employed to dis-

cretize the computational domain such that the compres-

sion of the elements near the solid walls and internal

interface was more than that of other regions. However,

before starting calculations in order to obtain the results,

the grid independence test was conducted to evaluate the

solution sensitivity to the grid and ensure the accuracy of

the results. The grid check was performed for the following

set of non-dimensional parameters: Z = 0.5, B = e = 0.6,

Ra = 106, Da = 10-2, Nr = Nb = Nt = Kr = 0.1, Le = H =

Rk = 10 and Pr = 6.2. As displayed in Table 1, the test was

performed for five grids with different grid elements

numbers. Evaluation of the variations of three quantities of

Nunf
		
free nanofluid

, Nunf
		
porous

and wj jmax showed that error

was less than 0.3% when the grid size was 90 9 90. Hence,

according to the solution accuracy and the time required for

convergence, the grid size 90 9 90 has been utilized to

perform the calculations.

The results of the present numerical solution were

compared with the findings presented in the literature

[12, 13, 18]. Considering a regular fluid (Nt = 0) and set-

ting D = 0, S = B = 1 and Z = 0.5 (the entire of the hot

wall was at the hot temperature hw = 1, and the cavity was

filled with a porous medium layer), the present study

reduces to the study of Baytas and Pop [12]. Hence, the

first validation consists of the comparison between average

Nusselt number versus H for the results reported by Baytas

and Pop [12] and those obtained here. The results of this

comparison are illustrated in Fig. 2 when Ra 9 Da = 103

and Da = 10-4.

Considering a triangular cavity saturated with a porous

medium filled with a nanofluid (without a free fluid or solid

layer), the results of our research can be compared with the

results of Sheremet and Pop [13]. Hence, in another vali-

dation, Fig. 3 evaluates the results obtained for local

Nusselt number with the data reported by Sheremet and

Pop [13] when Nr = Nb = Nt = 0.1 and Le = 1.0.

Considering the conjugate heat transfer of a regular fluid

in a cavity, the results of the present study can be compared

with the results of Saeid [18]. In the study of Saeid, the

bottom and top walls of the cavity were insulated, while the

right and left walls were isothermal with temperature dif-

ference. Each of the cold and hot walls was covered with a

Table 1 Grid independency test

when Z = 0.5, B = e = 0.6,

Ra = 106, Da = 10-2,

Nr = Nb = Nt = Kr = 0.1,

Le = H = Rk = 10 and Pr = 6.2

Grid Nunf
		
free nanofluid

Error/% Nunf
		
porous

Error/% wj jmax Error/%

30 9 30 9.8489 5.2138 25.553

50 9 50 9.7345 1.162 5.1124 1.945 24.590 3.769

70 9 70 9.6347 1.025 5.0557 1.109 24.268 1.309

90 9 90 9.6418 0.0737 5.0545 0.024 24.206 0.255

110 9 110 9.6475 0.0591 5.0550 9.89E-03 24.179 0.112
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Fig. 2 Measurement of the obtained values of average Nusselt

number versus H from the present study with the study conducted

by Baytas and Pop [12]
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solid layer with a thickness S. A layer of porous medium

imbued with a regular base fluid was sandwiched between

the two solid layers. Neglecting the nanoparticles effects,

(Nt = 0), and setting B = 1, Z = 0.5, the present study can

be reduced to [18]. By setting Ra 9 Da = 103, D = 0.1,

Kr = H = 1 and Da = 10-5, Table 2 revels the values of

four parameters Nuf , Nus, Qw and wj jmax for the various

values of Rk within the range 0.1–10 in comparison with

the results provided by Saeid [18]. In addition, as shown in

Fig. 4, the patterns of the isotherms and streamlines con-

cluded from the present modeling have been compared

with the work conducted by Saeid [18]. As seen, there is an

excellent agreement between the results provided by the

present modeling and those represented by the published

literature [12, 13, 18].

Results and discussion

Here, the findings of the present numerical investigation

have been illustrated in the forms of streamlines, isotherms

and isoconcentrations along with the mean Nusselt number

of nanofluid at the right wall Nunf
		
free nanofluid

, the average

Nusselt number of nanofluid in the porous layer Nunf
		
porous

and solid phases of the porous medium Nus at the solid

wall-porous interface boundary. Calculations have been

performed for various values of Ra = 103–106;

B = 0.2–0.8; Z = 0.3–0.7; Le = 10–100; Kr = 0.1–10; Rk-

= 0.1–10, H = 0.1–1000, e = 0.3–0.9 and Da = 10-5–

10-2 and constant values of Nt = Nb = Nr = 0.1 and

Pr = 6.2.

Effects of Rayleigh number

In order to investigate the impact of the buoyancy force on

the flow, concentration fields, and temperature, the

streamlines, isoconcentrations patterns and isotherms are

demonstrated in Fig. 5 for various values of Ra, while the

other parameters have been kept constant at B = 0.4;

Z = 0.7; H = Rk = Le = 10; Kr = 1; e = 0.6, Nr = Nb =

Nt = 0.1 and Da = 10-2. When Ra is low (Ra = 103 and

104), the conduction mode is predominant, and a weak

recirculating flow can be found in the cavity. As shown, an

increase in Rayleigh number, representing the buoyancy

force, increases the power of the flow circulation. Further,

the distance between the streamlines in the porous region is

increased. This increase indicates the reduction in the fluid

velocity. As the Rayleigh number rises, the existence of the

porous layer induces a more significant effect on the

streamlines. Within the entire range of the studied Rayleigh

numbers, comparatively symmetric patterns of streamlines

density next to the vertical walls in the free fluid layer and

the porous layer can be observed. However, the distance of

the streamlines next to the solid porous interface, i.e.

X = D, is higher than that of the cold wall at X = 1. In other

words, the boundary layer in the free flow region is the

main difference in the streamlines of the regions of the

porous layer and free flow is in the core zones of the cavity,

where the buoyancy forces become weak.

It is also clear that with elevation of Rayleigh number,

the streamlines next to the vertical walls get closer, indi-

cating that the convection flow is strengthened. At

Ra = 106, the fluid velocity in the middle of the porous

region is very low in comparison with the free flow region.

This is because of the fact that the pressure drop in a porous

medium which is due to the viscous resistance caused via

Darcy term grows by the increase in the velocity. As

mentioned, in the core region of the cavity, the buoyancy

forces are weak and the difference between the streamlines
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Fig. 3 Comparison of local Nusselt number between the current study

and work carried out by Sheremet and Pop [13]

Table 2 Comparison of the results of the present numerical solution

and those performed by Saeid [18] at Ra 9 Da = 103, Da = 10-5,

D = 0.1 and Kr = H = 1

Rk Nuf Nus Qw
wj jmax Dh

Present results

0.1 0.343 0.113 4.557 3.611 0.03

1 2.903 0.429 3.332 8.006 0.05

10 9.727 1.016 1.074 15.821 0.05

Saeid

0.1 0.326 0.110 4.357 3.536 0.03

1 2.814 0.418 3.232 7.898 0.05

10 9.887 1.010 1.090 16.219 0.05
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of the porous layer and the free flow region is more

obvious. Another result of increasing the pressure drop in

the porous region is the shift of the core of the recirculation

cell in the cavity toward the cold wall as shown in Fig. 5.

When Ra = 103, the conduction mode is predominant, the

isotherms of the solid phase (dash lines) and the nanofluid

are very similar in the porous region, with the difference

between those becoming more evident as Ra increases. As

Ra grows, lines of isotherms of the nanofluid in the core

zone of the cavity tend to possess a stratified pattern. This

trend suggests that the dominance of the convection grows

by increasing Ra, confirming the formation of horizontal

jets at the top and bottom walls of the cavity.

In the temperature contours, the dashed lines reveal the

temperature of the solid matrix (hs). The continuous lines

in the solid region indicate the temperature of the solid wall

(hw) in the solid layer, while they show the temperature of

the nanofluid (hnf) in the porous layer and the free fluid

layer. When Rayleigh number is small, i.e. Ra = 103, the

patterns of the temperature in the solid matrix of the porous

medium and the nanofluid are very close. In this case, the

conduction mechanism is the dominant mechanism of the

heat transfer, while the fluid motion is very smooth. In this

studied case, Kr is adopted as unity (Kr = 1.0), revealing

that the thermal conductivity of the porous matrix is the

same as that of the nanofluid. Thus, neglecting the con-

vection effects, the diffusion of the heat absorbed from the

hot wall in the solid porous matrix and the nanofluid would

be almost the same. In addition, as the fluid motion is low

and there is an interactive mechanism between the solid

porous matrix and the nanofluid (H = 10), the temperatures

of the solid porous matrix and the nanofluid are close to

each other and follow the same pattern. Nevertheless, as

the Rayleigh number rises, the convection mechanism

grows stronger and the velocity of the nanofluid also

increases. Hence, the weak interface convection heat

transfer mechanism (H) between the solid matrix phase and

the nanofluid could not significantly affect the temperature

patterns of the nanofluid inside the porous layer region, and

hence, the temperature patterns of the nanofluid in the

porous layer are almost the same as those in the free flow

region.

Attention to the contours of the concentration of

nanoparticles in the cavity shows that the patterns of this

concentration almost follow the pattern of the streamlines.

However, there are some deviations due to the Brownian

and thermophoresis effects (diffusive terms). It can be seen

that the nanoparticles concentration in the vicinity of the

hot interface of the solid wall-porous layer is low compared

to the cold vertical wall of the cavity. This effect is the

(a) (b) 

Fig. 4 Comparison of

streamlines and isotherms

related to a the current study

and b those provided by Saeid

[18] at Rk = 10,

Ra 9 Da = 103, Da = 10-5 and

Kr = H = 1
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result of the thermophoresis force. The thermophoresis

force typically carries nanoparticles along the direction

opposite to the temperature gradient (from hot regions to

cold regions). Next to the hot wall, the temperature gra-

dient is toward the hot wall (as the X increases, the tem-

perature decreases), and hence, the nanoparticles tend to

move away from the hot wall. Hence, as can be seen, the

nanoparticles’ concentration is low on the hot wall. In

contrast, the concentration of the nanoparticles at the cold

wall is high. The core zones of the cavity have nearly a

uniform nanoparticles’ concentration. In this region, the

temperature gradients are smooth, and hence, the Brownian

motion has effectively uniformed the nanoparticles in the

cavity.

Effects of Kr

To display the effects of Kr on the flow, temperature and

nanoparticles’ concentration fields, the isotherms, stream-

lines and isoconcentrations patterns are represented in

Fig. 6 when Ra = 106; B = 0.5; Z = 0.6; Le = H=Rk = 10;

e = 0.6 and Da = 10-2. As shown, the increase in Kr
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decreases the solidity of the recirculation cell, formed

inside the cavity. Kr indicates the ratio of the thermal

conductivity of the nanofluid to the thermal conductivity of

the solid porous matrix. A very low value of Kr represents

the great thermal conductivity of the solid porous matrix

compared to the nanofluid. This is the case which occurs

for metal foams. In this case, the heat conductivity in the

phase of the solid porous matrix is very powerful. Hence,

the porous medium would channel the heat inside the solid

matrix and distribute it in the nanofluid due to the interface

convection heat transfer mechanism (H). Thus, the heat

transfer can be enhanced and the circulation flows are also

strong for the low values of Kr. Further, the temperature

contours demonstrate that the temperature patterns of the

solid matrix phase (hs) are almost parallel to the vertical

hot wall when Kr = 0.1, which indicates the strong con-

duction mechanism. The deviation of the temperature

curves (from the vertical direction) is due to the interaction

between the nanofluid inside the porous medium and the

solid porous matrix. As Kr increases, the temperatures in

the porous and pure nanofluid region tend to converge.

Moreover, a more uniform dispersion of nanoparticles

inside the porous layer can be observed when Kr is high.

Indeed, for high values of Kr, the temperature gradients

inside the nanofluid decrease, and as a result, the ther-

mophoresis force also declines. Thus, in the cavity, one can

expect a more uniform nanoparticle distribution.

Effects of the length B and the position
of the heating element Z

The effects of the length and the position of the heating

element are discussed in this section for Ra = 105,

Le = H = Kr = Rk = 10, e = 0.6 and Da = 10-2. Figure 7

displays the effects of the length of the heating element,

while its position has been fixed at Z = 0.5. As can be seen,

the streamlines, isotherms and isoconcentrations fields

have kept their general patterns constant with increasing

the length of heating element from 0.2 to 0.8 with the step

0.2. Although the change in the length of the element

reveals a smooth effect on the strength and shape of the

recirculation cells, the patterns of the isotherms and iso-

concentration contours are almost independent of the ele-

ment length. This is due to the fact that the solid wall acts

as a redistributor for the heat absorbed from element and

quickly diffuses the absorbed heat inside itself.

Figure 8 depicts the effects of the position of the heating

element on the streamlines, isotherms and isoconcentration

patterns, while the other parameters have been kept con-

stant at Ra = 105, B = 0.5, Le = H=Rk = 10, Kr = 1,

e = 0.6, Nt = Nb = Nr = 0.1, Da = 10-3. The shape and

strength of the formed circulation cell within the cavity

decline by the increase in Z. However, this elevation is not

very obvious, and thus the changes in the isotherms and

isoconcentration contours are not very significant. It can be

observed that the isotherms in the solid layer follow the

location of the element. However, the isotherms and iso-

concentrations in both of the solid porous matrix and

nanofluid phases are almost fixed as the position of the

element changes.

Effects of Darcy number

The effects of Darcy number on the streamlines, isotherms

and isoconcentration patterns are illustrated in Fig. 9 for

the fixed values of B = 0.5; Z = 0.25; Nr = Nb = Nt = 0.1,

H = Le = Kr = Rk = 10, e = 0.6, Ra = 106. According to

the figure, the variation of Darcy number, Da, obviously

affects the governing patterns of the nanofluid flow. This

result arises from extreme variation of the pressure drop

caused by the Darcy term in the porous region. Since the

density of the streamlines depicts the velocity amplitude of

the nanofluid, it can be concluded that when Da = 10-5,

the solid matrix impedes the fluid motion and diminishes

the velocity of the nanofluid substantially in the porous

zone. In addition, as the decrease in the pressure drop or

hydrodynamic resistance is the result of the rise of the

Darcy term, the increase of Da causes augmentation of the

size and strength of the recirculation cells formed in the

whole of the cavity region. As Darcy number grows, the

advection regime becomes stronger within the porous

region. The increased difference between thermal fields,

i.e. hs and hnf, corresponding to the different values of Da

illustrates this fact. It can be seen that the thermal mixing

of nanofluid is enhanced in the porous region when Darcy

number rises. In addition, it is clear that the distribution of

nanoparticles within the cavity entirely depends on the

velocity field varying with Darcy number. When

Da = 10-5, the comparison of isoconcentration lines in the

saturated porous and single nanofluid regions clearly

demonstrates the effect of the nanofluid velocity on the

dispersion of the nanoparticles. As depicted, the nanopar-

ticles’ mixing develops by promoting the fluid strength due

to the increase in Da.

Figure 10a indicates that the mean Nusselt numbers for

both the fluid and solid phases grow as Ra and Kr increase.

Indeed, when Ra increases, the strength of the fluid flow is

boosted due to the increase in the buoyancy force. Hence,

the heat transfer resulting from the convection mode

becomes predominant with respect to the conduction mode.

Thus, the increase in the average Nusselt number for the

nanofluid phase is more than that of the solid porous phase,

and the difference between them is intensified as Ra

increases. Moreover, as was previously discussed, the

increase in Kr enhances the heat transfer and flow circu-

lations in the porous layer, which results in augmentation
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of the mean Nusselt number for two phases of nanofluid

and porous medium in the porous region. Since the

Nunf
		
free nanofluid

value is a function of Kr, it is necessary to

determine the value of Nunf
		
free nanofluid

separately. From

Fig. 10b, it can be found that the Nusselt number in the

right cold boundary has an ascending trend with the

increase in Kr. According to Eq. (35), this result is not

unexpected. Nonetheless, to justify this trend physically, it

should be noted that the increase in Kr indeed represents

the increase in the thermal conductivity of the nanofluid

compared to that of the solid matrix phase. In the free fluid

region, where there is no interface convection heat transfer

between the porous matrix and the nanofluid, the growth of

the thermal conductivity of the nanofluid would result in

overall enhancement of the heat transfer. However, it

would reduce the temperature gradient and the average

Nusselt number, as the better the thermal diffusion, the

more uniform temperature distribution will be. In addition,

it is observed that for Kr[ 4 and for all of the studied

Rayleigh numbers, the variations of the average Nusselt

number for the fluid phase in the wall-porous interface Nunf

and Nunf
		
free nanofluid

are negligible. However, when Ra is

high (Ra = 105 and 106), the average Nusselt Number for

the solid phase has a continuously increasing trend with

increasing Kr, which is the result of the interface
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convection heat transfer mechanism between the solid

porous matrix and the nanofluid inside the pores (H = 10).

The influence of the porosity e and the length of the

heating element B on the mean Nusselt number of nano-

fluid and the porous medium is demonstrated in Fig. 11,
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while the other parameters have been kept constant such

that Ra = 105, Da = 10-2, Nr = Nb = Nt = 0.1, Kr-

= H = Le = Rk = 10, Z = 0.5. This figure demonstrates

that the increase in e can strongly decrease both Nunf and

Nus, while the increase in B augments these two Nusselt

numbers. The increase in these Nusselt numbers by

increasing B is due to the augmentation of the strength of

the fluid flow. Indeed, when the strength of the fluid flow

rises, the natural convection can transfer more heat.

Figure 12 demonstrates the effect of the position of the

heating element and Darcy number on the average Nusselt

number of nanofluid and solid phases at the porous region

boundary, i.e. X = S ? D. As seen, the augmentation of Da

increases the average Nusselt numbers for both phases.

This observed trend is due to the increase in the nanofluid

velocity arising from elevation of the permeability of the

porous region or reduction in the hydraulic fluid resistance

coming from the Darcy term. In addition, it can be

observed that the increase in the mean Nusselt number of

the nanofluid phase is far larger than that of the porous

matrix phase, and the difference between these two Nusselt

numbers becomes larger as Da increases. In addition, as

shown in Fig. 12, when Da value is low (Da = 10-5 and

10-4), the effect of the position of the heating element on

the average Nusselt number for the nanofluid phase can be

ignored. For all values of Da, the average Nusselt number

for the solid phase negligibly varies with the variation in

the element heating location. When Da value is high
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(Da = 10-3 and 10-2), the average Nusselt number for the

fluid phase increases by the increment in Z from 0.3 to 0.4.

Then, the mean Nusselt number stays almost constant when

Z reaches 0.5. After this, a decreasing trend can be

observed for this number with the growth of Z. In general,

it can be deduced that the minimum value of Nunf occurs
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when the heating element is located at its maximum

position. In addition, it can be said that the maximum value

of Nunf occurs at Z = 0.4 or 0.5.

Figure 13a, b displays the effect of Rk on the average

Nusselt number for the fluid and the solid phases in the

interface boundary of wall-porous region for different

values of the interphase heat transfer coefficient H. As

shown, the average Nusselt numbers rise by increasing Rk.

Indeed, the augmentation of Rk means that more heat is

transferred to the porous region through the solid wall. In

addition, the graphs drawn in Fig. 13a, b depict that the

Nusselt number of the fluid phase decreases with increase

in H, while the increase in H extremely enhances the

Nusselt number of the solid phase. A closer look at the

results indicates that the average Nusselt number for the

fluid phase remains almost constant with the variations in

H when it is in the order of O(0.1) or O(100). In addition,

the rise of the mean Nusselt number of the solid phase with

the increase of Rk is more evident at the high values of H.

According to the definition of Qw, an opposite behavior can

be observed for the variations of Qw with increasing Rk

such that Qw diminish as Rk increases.

The variations in the Nusselt number for the fluid and

solid phases at the interface of the wall-porous region as a

function of the buoyancy ratio parameter, Nr, are demon-

strated in Fig. 14 for the different values of Lewis number

Le, while the other parameters have been kept constant.

The growth of Nr reduces the mean Nusselt number for

both phases. This result can be attributed to the fact that

increasing Nr induces a buoyancy force which in some
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regions acts against the buoyancy force. Hence, elevation

of Nr decreases the strength of the fluid flow, and in

response to this reduction, the heat transfer rates declines.

In addition, it can be deduced from Fig. 14 that the

increment of Lewis number Le enhances the average

Nusselt number of both phases. Indeed, the increase in the

Lewis number means diminished thickness of the

nanoparticles concentration boundary layers over the ver-

tical walls. Consequently, with the reduction in the thick-

ness of the concentration boundary layers, the

nanoparticles can transfer the energy more effectively from

high- to low-energy regions through their migration.

Sheremet et al. [44] have also reported a decreasing trend

of the average Nusselt number of nanofluids as a function

of Nr for a cavity entirely filled with a LTE porous med-

ium. They have also reported a growing trend for the mean

Nusselt number of nanofluids as a function of Lewis

number. Accordingly, the patterns of this research findings

are in line with the results of [44].

Conclusions

In this research, the flow, heat and mass transfer of

nanofluids were addressed in a multilayer cavity. The

cavity was filled with a layer of solid wall, a layer of

porous medium and a layer of free fluid. The layer of the

porous medium was saturated by a nanofluid. The local

thermal non-equilibrium model was employed for model-

ing thermal behavior of the porous medium layer. A drift

flux of nanoparticles was considered because of the ther-

mophoresis and Brownian motion effects via the Buon-

giorno’s model. The results for the streamlines, the

temperature patterns and the concentration of nanoparticles

were plotted and discussed. In addition, the Nusselt num-

bers for the solid porous matrix, the nanofluid inside the

porous layer and the nanofluid in the free layer as the

important heat transfer properties were also introduced.

The impact of the different non-dimensional parameters on

the heat transfer properties was discussed further. The main

outcomes of this research can be summarized as follows:

1. The non-dimensional nanoparticles’ concentration next

to the cold wall was about 1.1 which is 10% higher

than the average concentration of nanoparticles in the

cavity. The non-dimensional concentration of nanopar-

ticles next to the hot wall was low and about 0.92

which is 8% lower than the non-dimensional mean
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concentration of nanoparticles. When Rayleigh num-

ber was small, i.e. Ra = 103, the concentration gradi-

ents were distributed in the cavity. However, as the

convection mechanisms became stronger, the distribu-

tion of nanoparticles in the core zones of the cavity

became uniform, and hence, the concentration gradi-

ents were negligible in the core regions of the cavity;

however, strong concentration gradients can be seen in

the vicinity of the walls.

2. The thermal conductivity ratio of nanofluid/porous

matrix, Kr, induced a significant effect on the stream-

lines and concentration patterns inside the porous

layer. The very low values of Kr, i.e. Kr = 0.1, resulted

in a strong circulation cell in the free fluid layer. In

addition, in this case, a considerable concentration

gradient of nanoparticles could be observed in the

center of the cavity inside the porous layer. The

increase in Kr would smoothly reduce the average

Nusselt number for the free nanofluid. It should be

noticed that the increase in Kr may represent the

decrease in the thermal conductivity of the solid

porous matrix. In this case, the heat transfer by the

solid porous matrix decreased, resulting in the dimin-

ished overall heat transfer.

3. Due to the presence of a high thermally conductive

solid layer (Rk = 10), the length and position of the

element did not show obvious effects on the temper-

ature and concentration patterns inside the cavity. The

maximum values of the average Nusselt number could

be found about Z = 0.4 for both phases of the nanofluid

and solid matrix. This means that mounting element

slightly below the center of the cavity results in greater

heat transfer. The increase in the size of the element

would also slightly increase the average Nusselt

number for the free nanofluid (Nufree nanofluid).

4. Darcy number is very important parameter which plays

a significant role in the shape of the streamlines,

temperature and concentration patterns. For very low

values of Darcy number, i.e. Da = 10-5, the velocity in

the porous layer significantly decreases. The circula-

tion cells are mainly formed in the free nanofluid layer.

The temperature contours in the porous layer would

almost show a linear distribution, which confirms the

diffusive dominant region of flow. In this case, the

concentration gradients of nanoparticles even in the

core region of the cavity inside the porous layer could

be detected. The increase in Darcy number allowed the

fluid to move more freely in the porous layer, and

hence, the high values of Darcy number induced a

convective heat transfer dominant regime in the porous

layer. The increase in Darcy number significantly

enhanced the mean Nusselt number for the free

nanofluid.

5. The elevation of buoyancy ratio, Nr, resulted in the

decrease in mean Nusselt number of the solid porous

matrix and the nanofluid inside the porous layer. In

contrast, the rise of Lewis number elevated the mean

Nusselt number for the both phases at the interface.
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