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The objective of the present study is to analyze the development of the slip effects on the boundary layer
flow and heat transfer over a stretching surface in the presence of nanoparticle fractions. In the modeling
of nanofluid the dynamic effects including the Brownian motion and thermophoresis are taken into
account. In the case of constant wall temperature a similarity solution is presented. The solution depends
on a Prandtl number, slip factor, Brownian motion number, Lewis number, and thermophoresis number.
The dependency of the local Nusselt and local Sherwood numbers on these five parameters is numeri-
cally investigated. To the best of author’s knowledge, the effects of slip boundary condition in the
presence of dynamic effects of nano particles have not been investigated yet. The results of the present
paper show the flow velocity and the surface shear stress on the stretching sheet and also reduced
Nusselt number and reduced Sherwood number are strongly influenced by the slip parameter.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

Nanofluid is described as a fluid in which solid nanoparticles
with the length scales of 1e100 nm are suspended in conventional
heat transfer basic fluid. These nanoparticles enhance thermal
conductivity and the convective heat transfer coefficient of the base
fluid significantly. Conventional heat transfer fluids such as oil,
water and ethylene glycol mixture are poor heat transfer fluids,
because the thermal conductivity of these fluids affects the heat
transfer coefficient between the heat transfer medium and the heat
transfer surface. So many techniques have been taken to increase
the thermal conductivity of these fluids by suspending nano/micro
or large-sized particle materials in the liquid [1]. One of these
techniques is the addition of nanoparticles to the base liquid [2]. As
Choi et al. indicated for the first time, this method increased the
thermal conductivity of the fluid up to approximately two times [3].
Then, Khanafer et al. studied heat transfer performance of nano-
fluids inside an enclosure [4].

Today nanotechnology is considered as a significant factor
which affects the industrial revolution of the current century.
Therefore, many researchers have focused onmodeling the thermal
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conductivity and examined different viscosities of nanofluids over
the past decade. In 2009, Kakac and Pramuanjaroenkij presented
a comprehensive study of convective transport in nanofluids [1].

Flow of a viscous fluid past a stretching sheet is a classical
problem in fluid dynamics [5]. Flow of a boundary layer over
a stretching sheet, which occurs in several engineering processes,
has become greatly important in the past decades. It has many
practical applications especially in the field of metallurgy and
chemical engineering such as extrusion of polymer, cooling of
metallic plate, drawing of paper films, glass blowing, paper
production, etc. [6e8]. For instance, in the extrusion of a polymer in
a melt-spinning process, the polymer from the die is generally
drawn and simultaneously stretched into a sheet which is then
solidified through quenching or gradual cooling by direct contact
with water [9,10]. The heat transfer rate in the boundary layer over
stretching sheets is important, because in the mentioned applica-
tions the quality of the final product depends on the heat transfer
rate between the stretching surface and the fluid during the cooling
or heating process [11]. Therefore, the choice of a suitable cooling/
heating liquid is essential as it has a direct impact on the rate of
heat transfer.

For the first time Crane [5] studied the forced convection
boundary layer flow over a stretching sheet. Then, the heat and
mass transfer on a stretching sheet with suction or blowing on the
solid boundary was investigated by Gupta and Gupta [12]. After
these pioneering works, the flow field over a stretching surface has
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drawn considerable attention, and a good number of literature in
different fields includingmagnetic flows [13], different thermal and
flow boundary conditions [14], micropolar fluids [15], nanofluids
[16] and non Newtonian fluids [17,18] have been generated on this
problem [19e27]. Mukhopadhyay et al. considered the effects of
slip and heat transfer on the flow over an unsteady stretching
surface [28]. Wang [29] reported that the partial slip between the
fluid and the moving surface may occur in situations that the fluid
is particulate such as emulsions, suspensions, foams and polymer
solutions.

Kuznetsav and Nield conducted a study to evaluate the effect of
nanoparticles on natural convection boundary layer flow past
a vertical plate [30]. They prepared the simplest boundary condi-
tions in which both temperature and nanoparticle fractions were
constant along the wall. Bachok et al. examined the boundary layer
flow of nanofluids over a moving surface in a flowing fluid [31].

In a recent paper, Khan and Pop used the model of Kuznetsov
and Nield [30] to study the boundary layer flow of nanofluids past
a stretching sheet prescribed a constant surface temperature [32]
and convective boundary condition [33]. Before the work of Khan
and Pop [32],Wang [34] had previously used a partial slip boundary
condition to study the flow of a pure fluid over a stretching sheet.
Sahoo and Do [35] examined the effects of partial slip on the steady
flow of an incompressible, electrically conducting third grade fluid
due to a stretching sheet.

It is reported that the presence of nanoparticles causes the slip
velocity condition on the interface of fluid and solid boundary [36].
Bocquet and Barrat considered the effect of flow boundary condi-
tions fromnano tomicro scales near the interfaces [37]. They briefly
discussed the mechanisms of heat transfer, and the influence of
surface slip on interface.

To the best of authors’ knowledge there is not any investigation
to address the effect of slip boundary condition on the heat transfer
characteristics of nanofluid flow over stretching sheet. The present
study aims to examine the effect of slip boundary condition in the
presence of nanoparticles on the heat transfer characteristics of
stretching sheet.
2. Governing equations

Consider a two-dimensional viscous flow of a nanofluid over
a stretching surface, inwhich the flow is incompressible and steady
state. The velocity of surface is linear and it can be represented as
Uw(x)¼ cx. Here, c is a constant and x is the coordinate measured
along the stretching surface. The coordinate system and scheme of
the problem is shown in Fig. 1.

The nanofluid flows at y¼ 0, where y is the coordinatemeasured
normal to the stretching surface.
Fig. 1. Boundary layer configuration.
It is assumed that the wall temperature of Tw and the fraction of
nanoparticles 4w are constant at the stretching surface. When y
attends to infinity, the ambient values of temperature and nano-
particle fraction attained to constant value of TN and 4N respec-
tively. 4 and T denote fraction of nanoparticles and temperature of
flow respectively. In the laminar sublayer near the wall, Brownian
diffusion and thermophoresis are important for nanoparticles of
any material and size [38]. For nanofluids, in Cartesian coordinates
system of x and y the governing steady conservation of momentum,
thermal energy and nanoparticles equations including the dynamic
effects of nanoparticles can be written as follows [20,39]
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The boundary conditions for the velocity components with
partial slip condition at the wall (i.e. y¼ 0) for nanoparticle fraction
and temperature are defined as

v ¼ 0; u ¼ UwðxÞ �Us; T ¼ Tw; 4 ¼ 4w; at y ¼ 0 (6)

where considering Navier’s condition the velocity slip is assumed to
be proportional to the local shear stress [34]. The boundary
conditions at the far filed (i.e. y/ 0) are defined as

v ¼ u ¼ 0; T ¼ TN; 4 ¼ 4N; as y/N (7)

Here, u and v are the velocity components along the axis x and y,
respectively. p is the fluid pressure, a is the thermal diffusivity, y is
the kinematic viscosity, rf is the density of the base fluid, rp is the
density of the particles, US is the velocity slip at the wall, DB is the
Brownian diffusion coefficient and DT is the thermophoresis
diffusion coefficient. s¼ (rc)p/(rc)f is the ratio between the effective
heat capacity of the nanoparticle material and heat capacity of the
fluid with r being the density, 4 is rescaled nanoparticle volume
fraction.

To attain similarity solution of equations (1)e(5), the stream
function and dimensionless variables can be posited in the
following form

j ¼ ðcyÞ1=2xf ðhÞ; h ¼
�c
y

	1=2
y (8-a)

qðhÞ ¼ T � TN
Tw � TN

; bðhÞ ¼ 4� 4N

4w � 4N
(8-b)

with these definitions, the velocities are expressed as f0(h)¼ u/uw(x)

and the stream function j is defined with u¼ vj/vy, v¼�vj/vx, so
that (1) is satisfied identically. The pressure outside the boundary



Table 1
Comparison of results for the shear stress at surface �f00(0) and f(N) with the
slip factor l.

l �f00(0) f(N)

Current
result

Sahoo and
Do [35]

Wang
[29]

Current
result

Sahoo and
Do [35]

Wang
[29]

Wang
[34]

0.0 1.0 1.001154 1.0 1.0 1.001483 1.0 1.0
0.1 0.872082 0.871447 e 0.955401 0.955952 e e

0.2 0.776377 0.774933 e 0.919088 0.919010 e e

0.3 0.701548 0.699738 0.701 0.888557 0.888004 0.887 e

0.5 0.591195 0.589195 e 0.839284 0.838008 e 0.8393
1.0 0.430160 0.428450 0.430 0.754866 0.752226 0.748 0.7549
2.0 0.283980 0.282893 0.284 0.657249 0.652253 0.652
3.0 0.214055 0.213314 e 0.598077 0.590892 e 0.5982
5.0 0.144841 0.144430 0.145 0.524839 0.513769 0.514 e

10 0.081243 0.081091 e 0.431976 0.413655 e 0.4331
20 0.043790 0.043748 0.0438 0.349358 0.322559 0.332 e
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layer (i.e. inviscid part of flow) is constant. Hence, the flow occurs
only due to the stretching of the sheet; therefore, the pressure
gradient can be neglected. By applying the similarity transforms on
the remaining governing equations [i.e. (2)e(5)], the similarity
equations are obtained as follows (see Appendix)

f 000 þ ff 00 � f 02 ¼ 0; (9)

1
pr
q00 þ f q0 þ Nbb0q0 þ Ntq02 ¼ 0; (10)

b00 þ Nt
Nb

q00 þ Lefb0 ¼ 0; (11)

Here, by using the boundary layer approximations and intro-
ducing the Navier’s condition the velocity on the surface can be
written as

u� UWðxÞ ¼ Nry
vu
vy

¼ US (12)

where r is the density and N is a slip constant. By applying the
similarity transforms, equation (12) reduces to

f 0ð0Þ � 1 ¼ lf 00ð0Þ; (13)

where l¼Nr(cy)1/2 is the dimensionless slip factor. Equations
(9)e(11) can be solved numerically subject to the following
boundary conditions

At h ¼ 0 : f ¼ 0; f 0 ¼ 1þ lf 00; q ¼ 1; b ¼ 1 (14)

At h/N : f 0 ¼ 0; q ¼ 0; b ¼ 0 (15)

where primes denote differentiation with respect to h. The
parameters of Pr, Le, Nb and Nt are defined by

Pr¼ y

a
; Le¼ y

DB
; Nb¼ ðrcÞPDBð4w�4NÞ

ðrcÞfy
; Nt¼ ðrcÞPDTðTw�TNÞ

ðrcÞfyTN
(16)

Here, Pr, Le, Nb and Nt denote the Prandtl number, the Lewis
number, the Brownian motion parameter and the thermopho-
resis parameter, respectively. In the continuum modeling of
fluidic transport, no slip boundary condition is sometimes
assumed, that is the fluid velocity component is assumed to be
zero relative to the solid boundary [40]. For nanofluids, however,
this assumption no longer holds [40], and a certain degree of
tangential slip must be allowed [36]. Indeed, nanofluidic flow
usually exhibits partial slip against the solid surface, which can
be characterized by the so-called slip length (around 3.4e68 mm
for different liquids) [40].

Most nanofluids examined to date have large values for the
Lewis number Le> 1 [39]. For water nanofluids at room tempera-
ture with nanoparticles of 1e100 nm diameters, the Brownian
diffusion coefficient DB ranges from 4�10�4 to 4�10�12 m2/s [38].
Furthermore, the ratio of Brownian diffusivity coefficient to ther-
mophoresis coefficient for particles with diameters of 1e100 nm
can be varied in the ranges of 2e0.02 for alumina, and from 2 to 20
for copper nanoparticles [38]. Khan and Pop [32] and Rana and
Bhargava [41] as well as Makinde and Aziz [33] practically studied
Nb and Nt in the range of 0.1e0.5 and Le in the range of 1e25 for the
nanofluid boundary layer over the stretching sheets. Hence, the
variation of non-dimensional parameters of nanofluids in the
present study is considered to vary in the mentioned range.
In a case in which Nb and Nt are equal to zero, the present study
reduces to the classical problem of flow and heat transfer due to
a stretching surface in a viscous fluid. In this case, the boundary
value problem for b becomes ill-posed without physical
significance.

The quantities of local Nusselt number (Nu) and Sherwood
number (Sh) as important parameters in heat transfer are given by

Nu ¼ xqw
kðTw � TNÞ; Sh ¼ xqm

DBð4w � 4NÞ (17)

where qw and qm are the wall heat and mass fluxes, respectively.
Using similarity transforms in (8-a) and (8-b), one can obtain

Re�1=2
x Nu ¼ �q0ð0Þ; Re�1=2

x Sh ¼ �b0ð0Þ (18)

where Rex¼ uw(x)x/y is the local Reynolds number based on the
stretching velocity uw(x). Kuznetsov and Nield [20] referred
Re�1=2

x Nu as the reduced Nusselt number, and the value of Re�1=2
x Sh

as reduced Sherwood number. Furthermore, Khan and Pop used
these parameters in their papers [32]. It is worth mentioning that
Andersson [42] and Wang [29] obtained an exact solution for (9)
subject to the boundary conditions (14) and (15).

3. Results and discussion

The set of ordinary differential equations of (9)e(11) are solved
numerically for various range of slip boundary condition and for
different values of the Prandtl number, the Lewis number, the
Brownian motion parameter and the thermophoresis parameter.

Highly non-linear momentum boundary layer equation and
thermal boundary layer equation are converted into similarity
equations and then solved numerically by employing fifth order
RungeeKuttaeFehlberg scheme with shooting method [43]. The
most crucial factor of this numerical solution is to choose the
appropriate finite value of hN. Thus, the asymptotic boundary
conditions given by (15) were replaced by a comparatively large
value hmax¼ 15 for the similarity variable (hmax). The choice of
hmax¼ 15 ensured that all numerical solutions approached to the
asymptotic values correctly. It is worth mentioning to consider that
the selection of a large value for hmax is an important point that is
often overlooked in publications on the boundary layer flows.

As a test of the accuracy of the solution, the values of f00(0) and
f(N) are compared with analytical values reported byWang [29,34]
and Sahoo and Do [35] in Table 1. This table shows the numerical
solution obtained by the present algorithm and the exact analytical
solution reported by Wang [29,34] and Sahoo and Do [35] are in
very good agreement.
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Table 2 compares results for the reduced Sherwood number
(Shr) and the reduced Nusselt number (Nur) for Pr¼ 10, Le¼ 10 and
no slip condition (i.e. l¼ 0) obtained in the presentworkwith those
reported by Khan and Pop [32]. Consider that the zero value of slip
factor simulates the stretching model used in the work of Khan and
Pop [32]. Table 2 shows that the present results are in good
agreement with the results reported by Khan and Pop [32].
Table 2
Comparison of results for the reduced Nusselt number �q0(0) and reduced Sherwood number �b0(0) when Le¼ Pr¼ 10 and l¼ 0.

Nt Nb Nur (Khan and Pop [32]) Nur (present results) Shr (Khan and Pop [32]) Shr (present results)

0.1 0.1 0.9524 0.9523768 2.1294 2.1293938
0.2 0.1 0.6932 0.6931743 2.2740 2.2740215
0.3 0.1 0.5201 0.5200790 2.5286 2.5286382
0.4 0.1 0.4026 0.4025808 2.7952 2.7951701
0.5 0.1 0.3211 0.3210543 3.0351 3.0351425
0.1 0.2 0.5056 0.5055814 2.3819 2.3818706
0.1 0.3 0.2522 0.2521560 2.4100 2.4100188
0.1 0.4 0.1194 0.1194059 2.3997 2.3996502
0.1 0.5 0.0543 0.0542534 2.3836 2.3835712
Tables 3 and 4 show the variation of the reduced Nusselt
number (Nur) and reduced Sherwood number (Shr) respectively for
different values of Nb, Nt and l when Pr¼ 10 and Le¼ 10. It is
observed that Nur is a decreasing function of dimensionless
parameters of Pr, Le, Nb and Nt, while Shr is an increasing function
of mentioned dimensionless parameters. However, both reduced
Table 3
Variation of Nur with Nb, Nt and l for Le¼ Pr¼ 10.

Nb Nt l¼ 0 l¼ 0.5 l¼ 1 l¼ 3 l¼ 10

0.1 0.1 0.952377 0.799317 0.718928 0.569705 0.412468
0.2 0.693174 0.581772 0.523262 0.414652 0.300210
0.3 0.520079 0.436495 0.392596 0.311077 0.225245
0.4 0.402581 0.337881 0.303899 0.240821 0.174358
0.5 0.321054 0.269457 0.242357 0.192053 0.139050

0.2 0.1 0.505581 0.424328 0.381652 0.302434 0.218955
0.2 0.365358 0.306640 0.275801 0.218554 0.158230
0.3 0.273096 0.229206 0.206154 0.163364 0.118275
0.4 0.210984 0.177076 0.159267 0.126209 0.091376
0.5 0.168077 0.141064 0.126877 0.100542 0.072795

0.3 0.1 0.252156 0.211631 0.190347 0.150837 0.109199
0.2 0.181597 0.152412 0.137084 0.108630 0.078645
0.3 0.135514 0.113735 0.102297 0.081064 0.058689
0.4 0.104609 0.087797 0.078967 0.062576 0.045306
0.5 0.083298 0.069911 0.062880 0.049829 0.036078

Table 4
Variation of Shr with Nb, Nt and l when Le¼ Pr¼ 10.

Nb Nt l¼ 0 l¼ 0.5 l¼ 1 l¼ 3 l¼ 10

0.1 0.1 2.129394 1.787171 1.607430 1.277377 0.922099
0.2 2.274021 1.908555 1.716607 1.360282 0.984678
0.3 2.528638 2.122251 1.908809 1.512585 1.094883
0.4 2.795170 2.345948 2.110007 1.672014 1.210243
0.5 3.035142 2.547353 2.291156 1.815555 1.314098

0.2 0.1 2.381871 1.99907 1.798019 1.424805 1.031454
0.2 2.515223 2.11099 1.898684 1.504572 1.089178
0.3 2.655459 2.228691 2.004545 1.588456 1.149881
0.4 2.781777 2.334708 2.099898 1.664015 1.204555
0.5 2.888339 2.424144 2.180339 1.727756 1.250672

0.3 0.1 2.410019 2.022696 1.819268 1.441643 1.043650
0.2 2.514996 2.110803 1.898513 1.504438 1.089095
0.3 2.608819 2.189547 1.969337 1.560559 1.129708
0.4 2.687608 2.255673 2.028813 1.607688 1.163810
0.5 2.751875 2.309612 2.077327 1.646130 1.191622
Nusselt number and reduced Sherwood number are increasing
functions of dimensionless parameter of l. This means that by
increasing the dimensionless slip parameter on the boundary the
Nur and Shr will be decrease accordingly.

Velocity profiles f0(h) and shear stress f00(h) profiles for a varia-
tion of slip parameters l are shown in Fig. 2 when Pr¼ 10, Le¼ 10,
Nb¼ 0.5 and Nt¼ 0.5. This figure shows the effect of slip boundary
condition on the velocity and shear stress in the flow field. It is seen
that for increased slip l the lateral velocity decreases near the
surface but increases at larger distances. These results are in very
good agreement with reported results by Wang [34]. The decrease
in velocity at the surface is revealed the flow of fluid comes from
stretching of the sheet; therefore any increase in slip of fluid on the
stretching surface causes decrease in flow velocity profiles.
Furthermore, it is observed that the magnitude of wall shear stress
decreases with the increase of slip factor.
Fig. 2. Plots of dimensionless similarity functions f0(h), f00(h) for specified parameters.
For a typical case with Pr¼ 10, Le¼ 10, Nb¼ 0.1 and Nt¼ 0.1
which is used in the work of Khan and Pop [32], the dependent
similarity variables q(h) and 4(h) are plotted for a variation of slip
parameter of l in Figs. 3 and 4 respectively. In these figures (i.e.
Figs. 3 and 4) in the case of l¼ 0 the zero value of slip factor
simulates the stretching model used in the study of Khan and Pop
[32]. Therefore, present solution is compared with the reported
results by Khan and Pop [32]. As expected, in this case the thickness
of the temperature boundary layer is smaller than thickness of
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velocity boundary layer in Fig. 2. Also, as the parameter l increases,
the temperature of flow field increases for the specified parameters.
Fig. 3. Effect of l on temperature distribution profiles for Pr¼ 10, Le¼ 10, Nt¼ 0.1 and
Nb¼ 0.1.

Fig. 4. Effect of l on concentration distribution for Pr¼ 10, Le¼ 10, Nt¼ 0.1 and
Nb¼ 0.1.

Fig. 5. Effects of l and Nt on relation of reduced Nusselt number for Pr¼ 1, Le¼ 10 and
Nb¼ 0.1.

Fig. 6. Effects of l and Nt on the relation of dimensionless reduced Nusselt number for
Pr¼ 10, Le¼ 10 and Nb¼ 0.1.
The profiles of concentration distribution for different values of
parameter lwhen P¼ 10, Le¼ 10,N¼ 0.1 and Nb¼ 0.1 are shown in
Fig. 4. The profiles of concentration distribution increase with the
increase in parameter l.

The variation of dimensionless heat transfer rates (i.e. reduced
Nusselt number) respect to Nt for different values of slip parameter
of l are shown in Figs. 5 and 6. For Figs. 5 and 6, the Prandtl numbers
are equal to1and10 respectively. Thesefigures showtheeffects of Pr
numbers and l parameters on the dimensionless heat transfer rates
for the same combination of Le, Nt and Nb those which are used in
theworkof Khan and Pop [32]. The case of l¼ 0 simulates the no slip
boundary condition. In the case of l¼ 0 the obtained profiles of
reduced Nusselt number are compared with results reported by
Khan and Pop [32]. According to these figures (i.e. Figs. 5 and 6), the
dimensionless heat transfer rates increase with the decrease in
thermophoresis parameter or slip parameter of l. It is also clear that
reducedNusselt number is increasedwith the increase of Pr number.
A fluid with higher Prandtl number has a relatively lower thermal
conductivity, which reduces conduction and thereby increases the
heat transfer rate at the surface of the sheet.
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The effect of slip boundary condition on the reduced Nusselt
number for different values of Le¼ 5 and Le¼ 25 is shown in Figs. 7
and 8 respectively. Comparing these two figures shows that the
change in the dimensionless heat transfer rates is higher for vari-
ation of slip parameters in smaller values of the thermophoresis
parameter (Nt), and this change decreases with the increase of Nt.
Also, the results of present work in the case of no slip flow
boundary condition are comparedwith those reported by Khan and
Pop [32].
Fig. 7. Effects of l and Nt on dimensionless heat transfer rates for Pr¼ 10, Le¼ 5 and
Nb¼ 0.1.

Fig. 8. Effects of l and Nt on dimensionless heat transfer rates for Pr¼ 10, Le¼ 25 and
Nb¼ 0.1.

Fig. 9. Effects of l and Nt on dimensionless concentration rates for Pr¼ 1, Le¼ 10 and
Nb¼ 0.3.

Fig. 10. Effects of l and Nt on dimensionless concentration rates for Pr¼ 10, Le¼ 10
and Nb¼ 0.3.
Figs. 9 and 10 show the relation of reduced Sherwood (Shr) with
thermophoresis parameter (Nt) for Pr¼ 1 and Pr¼ 10 respectively
when Le¼ 10 and Nb¼ 0.3. It is clear from these figures that the
dimensionless mass transfer rates with increase in thermophoresis
parameter is decreased for small Pr numbers (i.e. Pr¼ 1) and slowly
increased for large values of Prandtl number (i.e. Pr¼ 10). For both
small and large Prandtl numbers, increase in slip parameter results
in decrease in Shr number.
Figs. 11 and 12 show the variation of reduced Sherwood (Shr) vs
thermophoresis parameter (Nt) for Le¼ 5 and Le¼ 25 respectively
when Pr¼ 10 and Nb¼ 0.2. These figures show that the dimen-
sionless mass transfer rates increase with the increase in thermo-
phoresis parameter for small and large values of Le numbers. It is
observed that the increase of Lewis number increases the dimen-
sionless mass transfer rates. In both small and large Lewis numbers
any increase in slip parameter l leads to decrease of Shr number.
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Figs. 11 and 12 show for small and large values of Lewis number (i.e.
Le¼ 5 and Le¼ 25) an increase of thermophoresis parameter cau-
ses the increase of the Shr monotonically.
Fig. 12. Effects of l and Nt on dimensionless concentration rates for Pr¼ 10, Le¼ 25
and Nb¼ 0.2.

Fig. 11. Effects of l and Nt on dimensionless concentration rates for Pr¼ 10, Le¼ 5 and
Nb¼ 0.2.
Finally, in all cases a decrease in the dimensionless heat transfer
rates was observed with the increase in slip parameter of l.
4. Conclusion

In this paper, the effect of partial slip (i.e. Navier’s condition) on
the boundary layer flow and heat transfer of nanofluid past
stretching sheet prescribe constant temperature is investigated. The
boundary layer equations governing the flow are reduced to a set of
non-linear ordinary differential equations using a similarity trans-
formation. The obtained differential equations are solved numeri-
cally for different combinations of nanofluid parameters. Effect of
slip parameter (l) and nanofluid parameters including Lewis
number (Le), Brownian motion number (Nb), thermophoresis
number (Nt) on the momentum and thermal boundary layers are
discussed using tables and figures. It is found that the flow velocity
and the surface shear stress on stretching sheet are strongly influ-
enced by the slip parameter. It is observed that by the increase in
velocity slip factor (l) themomentum boundary layer thickness and
thermal boundary layer thickness decreased and increased
respectively. The reduced Nusselt number and reduced Sherwood
number are decreased with increase of velocity slip parameter (l).
We conclude that by the increase of thermophoresis number, the
effect of velocity slip parameter on reduced Nusselt number and
reduced Sherwood number increase and decrease respectively.
Appendix

By using the definition of j and taking P as a constant, the
momentum equations (2) and (3) can be rewritten as,

vj

vy
v2j

vyvx
� vj

vx
v2j

vy2
¼ y

 
v3j

vyvx2
þ v3j

vy3

!
(A1)

Here, by using the introduce similarity variables of (8-a) and (8-
b) each term of (A1) can be written as follows,

vf ðhÞ
vy

¼ vf
vh

vh

vy
¼ f 0

�c
y

	1=2
(A2)

vj

vy
¼ ðcyÞ1=2x f ðhÞ

vy
¼ ðcyÞ1=2xf 0

�c
y

	1=2
¼ f 0cx (A3)

vj

vx
¼ ðcyÞ1=2f (A4)

v2j

vyvx
¼ v

vx
ðf 0cxÞ ¼ cf 0 (A5)

v2j

vy2
¼ f 0ðhÞ

vy
cx ¼ cxf 00

�c
y

	1=2
(A6)

v2j

vx2
¼ 0;

v3j

vyvx2
¼ 0 (A7)

v3j

vy3
¼ cx

�c
y

	
f 000 (A8)

By substituting (A3)e(A8) into (A1) the following equation
obtained,

f 0cx� cf 0 � ðcyÞ1=2f � cxf 00
�c
y

	1=2
¼ n

�
0þ cx

�c
y

	
f 000
	

(A9)

which can be simplified as,

f 000 þ ff 00 � f 02 ¼ 0; (A10)

The introduced similarity variables of (8-b) can be rewritten as,

qðhÞ ¼ T � TN
Tw � TN

; T ¼ qðhÞðTw � TNÞ þ TN; bðhÞ ¼ 4� 4N

4w � 4N
;

4 ¼ bðhÞð4w � 4NÞ þ 4N; ðA11Þ
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Using (A11) each term of heat equation (4) can be evaluated as
follow,

vT
vx

¼ vT
vq

vq

vh

vh

vx
¼ 0; (A12)

v2T
vx2

¼ 0; (A13)

vT
vy

¼ vT
vq

vq

vh

vh

vy
¼ q0ðTw � TNÞ

�c
y

	1=2
(A14)

v2T
vy2

¼ q00ðTw � TNÞ
�c
y

	
; (A15)

vf

vx
¼ 0; (A16)

vf

vy
¼ b0ð4w � 4NÞ

�c
y

	1=2
; (A17)

v2f

vy2
¼ b00ð4w � 4NÞ

�c
y

	
(A18)

By substituting (A12)e(A18) in (4) following equation is
obtained,

0� ðcyÞ1=2f q0ðTw � TNÞ
�c
y

	1=2
¼aq00ðTw � TNÞ

�c
y

	
þ sDB

�
�
0þ b0ð4w � 4NÞ

�c
y

	1=2
q0

� ðTw � TNÞ
�c
y

	1=2	
þ s

DT

TN

�
�
q0ðTw � TNÞ

�c
y

	1=2	2
ðA19Þ

where by dividing by c� (Tw� TN) it can be simplified as follows,

�f q0 ¼ a

y
q00 þ sDB

y
ð4w � 4NÞ q0b0 þ sDTðTw � TNÞ

TNy
q02; (A20)

1
pr
q00 þ f q0 þ Nbb0q0 þ Ntq002 ¼ 0; (A21)

where:

Pr¼ y

a
; Le¼ y

DB
; Nb¼ ðrcÞPDBð4w�4NÞ

ðrcÞfy
; Nt¼ ðrcÞPDTðTw�TNÞ

ðrcÞfyTN
(A22)

By substituting (A12)e(A18) in (5) following equation is
obtained,

0� ðcyÞ1=2fb0ð4w �4NÞ
�c
y

	1=2
¼ DBb

00ð4w �4NÞ
�c
y

	
þDTðTw � TNÞ

TN
q00
�c
y

	
; (A23)

where can be simplified as,

b00 þ DT

TNDB

ðTw � TNÞ
ð4w � 4NÞq

00 þ y

DB
fb0 ¼ 0 (A24)
Nt
Nb

¼ DT

TNDB

ðTw � TNÞ
ð4w � 4NÞ; Le ¼ y

DB
(A25)

b00 þ Nt
Nb

q00 þ Lefb0 ¼ 0; (A26)
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Nomenclature

(rc)f: heat capacity of the fluid
(rc)p: effective heat capacity of the nanoparticle material
c: constant
DB: Brownian diffusion coefficient
DT: thermophoretic diffusion coefficient
k: thermal conductivity
Le: Lewis number
N: slip constant
Nb: Brownian motion parameter
Nt: thermophoresis parameter
Nu: Nusselt number
p: pressure
Pr: Prandtl number
qm: wall mass flux
qw: wall heat flux
Rex: local Reynolds number
Shx: local Sherwood number
T: fluid temperature
TN: ambient temperature
Tw: temperature at the stretching sheet
u,v: velocity components along x- and y-axes
US: slip velocity at the wall
uw: velocity of the stretching sheet
x,y: Cartesian coordinates (x-axis is aligned along the stretching surface and y-axis

is normal to it)

Greek
a: thermal diffusivity
b: dimensionless nanoparticle volume fraction
h: similarity variable
q: dimensionless temperature
l: dimensionless slip factor
rf: fluid density
rp: nanoparticle mass density
s: parameter defined by ratio between the effective heat capacity of the nanoparticle

material and heat capacity of the fluid
y: kinematics viscosity of fluid
4: nanoparticle volume fraction
4N: ambient nanoparticle volume fraction
4w: nanoparticle volume fraction at the stretching sheet
j: stream function
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