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suspend the convective mechanisms. However, high 
magnetic fields induce more uniform temperature gradi-
ents. Therefore, using a strong magnetic field can have 
a significant impact on the melting control process of 
electrically-conducting materials.
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List of symbols
Amush	� Mushy-zone constant (Carman–Koseny equation 

constant)
B0	� Magnetic induction
C	� Specific heat (J/kg K)
c1–c4	� Coefficients of the basis
Cp	� Specific heat in constant pressure (J/kg K)
g	� Gravity (m/s2)
Ha	� Hartmann number
k	� Thermal conductivity (W/m K)
L	� Latent heat of fusion (J/kg)
Lx	� Length x-direction (m)
Ly	� Length y-direction (m)
Nu	� Average Nusselt number
P	� Pressure (Pa)
Pr	� Prandtl number
Ra	� Rayleigh number
Re	� Reynolds number
S	� Enclosure inclination angle
S(T)	� Carman–Koseny equation (source term)
Ste	� Stefan number
T	� Temperature (K)
t	� Time (s)
Tf	� Melting temperature (K)
u	� Velocity in the x-direction (m/s)
v	� Velocity in the y-direction (m/s)

Abstract  The present study aims to investigate the 
effect of the presence of a uniform magnetic field on the 
rate of melting and melting behavior of an electrically-
conducting material in an enclosure. The left and right 
walls of the cavity are isothermal at hot and cold tem-
peratures, respectively. The top and bottom walls are 
adiabatic. The phase-change process is formatted using 
the enthalpy-porosity model by considering a fixed 
computational grid. The governing equations are trans-
formed into a non-dimensional form and then solved 
by the aid of the finite element method. The results of 
the present study are compared with the experimental 
and numerical data available in the literature and are 
found to be in good agreement. In order to investigate 
the effect of magnetic field on the melting process, the 
results of the present study are reported for various val-
ues of the Hartmann number in the range 0–100. The 
results show that increasing of the Hartmann num-
ber reduces the melting volume fraction and tends to 
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Greek symbols
α	� Thermal diffusivity (m2/s)
∆T	� Mushy-zone temperature range (K)
µ	� Dynamic viscosity (kg/m s)
µ0	� The permeability of free space
ε	� Carman–Koseny equation constant
θ	� Non-dimensional temperature
ξ	� Basis functions
ϕ(T)	� Liquid fraction
β	� Thermal expansion coefficient (1/K)
γ	� The ratio of thermal diffusivity
ρ	� Density (kg/m3)
σ	� Electrical conductivity
ν	� Kinematic viscosity (m2/s)

Subscripts
c	� Cold
F	� Fusion
h	� Hot
i	� Interface position
k	� Node number
l	� Liquid phase
m	� Magnetic field
s	� Solid phase

1  Introduction

The natural convection heat transfer in an enclosure with 
isothermal side walls has been investigated in many previ-
ous studies. The natural convection in a cavity is important 
due to its applications in cooling of electronic packages, 
solar technology, crystal growth in liquids, glass melting, 
isolation in buildings, and safety aspects of gas cooled reac-
tors. In many of these applications, the performance of the 
system and the quality of the final product are influenced 
by the temperature distribution and heat transfer rates in the 
system. For example, in a casting process, the fragmenta-
tion of crystals is a direct function of the temperature treat-
ment [1]. The presence of a magnetic field could result in 
formation of textures along an easy-magnetization axis in 
a casting process of a metallic melt for producing of a tex-
tured material [2].

In a cavity filled with a fluid, the presence of the tem-
perature difference induces a buoyancy force which results 
in fluid motion. This phenomenon is known as “natural 
convection”. When the cavity is filled with an electrically 
conducting liquid and subject to a magnetic field, the mov-
ing fluid experiences the Lorentz force and its effect is to 
resist the fluid motion [3]. This effect, consequently, alters 
the heat transfer rate and the temperature distribution in the 
cavity. Thus, the magnetic field in magnetohydrodynamic 
flows (MHD) may be utilized as a controlling agent for the 

flow and temperature distributions in the cavity in order 
to increase the quality of some products. For instance, the 
action at a distance of a magnetic field on the metals pro-
cessing industry include the control of liquid metals in con-
tinuous casting process and electro-magnetically supported 
melts [4]. Another important application of liquid metals is 
in nuclear engineering applications. The metal coolants are 
much denser than the conventional liquids such as water 
which has been utilized in power plants. The metal liquids 
can remove heat more rapidly, and hence, they can provide 
much higher power density compared to water. Moreover, 
the cooling with water requires a high pressurized system 
to raise the boiling point of the water. The higher the pres-
sure is, the higher the safety maintenance issues are. In 
contrast, the liquid metals can be utilized at very high tem-
peratures in a low pressurized system. Another important 
advantage of liquid metals is its radiation shielding proper-
ties that makes them attractive in nuclear applications. As 
the liquid metals are highly electrically conducting, they 
can be pumped using an electromagnetic field [5].

In recent years, the effect of magnetic field has been 
examined on the convective heat transfer of MHD flows in 
molten electrically-conducting liquids. Sathiyamoorthy and 
Chamkha [6, 7] have studied the effect of a magnetic field 
on the natural convection heat transfer of molten gallium 
for various magnetic field inclination angles and uniformly 
or linearly heated adjacent walls. Gontijo and Cunha [8] 
have experimentally investigated the heat transfer rate and 
the thermo-magnetic convection inside a cavity with an 
aspect ratio near unity. They reported that by using a very 
dilute suspension of a magnetic composite with a particle 
volume fraction of 0.5%, the average temperature of the 
fluid inside a cavity decreases up to 10% and the Nusselt 
number increases about 10% by applying a moderate mag-
netic field. Maatki et al. [9] have investigated the convec-
tion heat transfer of a binary mixture in a three-dimensional 
cavity in the presence of a magnetic field.

Selimefendigil et  al. [10] have analyzed the effect of 
magnetic field on the natural convection of ferrofluids in 
a differentially-heated cavity in which the hot wall is sub-
jected to partial heating while the rest of the wall is insu-
lated. The authors have examined the effect of a magnetic 
dipole on the natural convective heat transfer in the cavity. 
Sheikholeslami et  al. [11] have considered the enclosure 
space between two tubes where the inner tube is elliptic 
shape. The authors have studied the MHD natural con-
vection heat transfer of CuO nanofluids in the enclosure. 
They found an increase of heat transfer enhancement by the 
increase of the magnetic field. Jena et  al. [12] have stud-
ied the effect of the magnetic field on the natural convective 
heat transfer of molten gallium in a three-dimensional cav-
ity heated from below. Malvandi et al. [13] have studied the 
effect of magnetic field on the convection heat transfer of 
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a magnetic nanofluid inside a vertical channel. They con-
cluded that the presence of a magnetic field reduces the 
thermal advantages of nanofluids. Adesanya et al. [14] have 
analyzed the free convective flow of an MHD fluid through 
a channel with time periodic boundary condition by consid-
ering the effects of Joule dissipation. Chamkha et al. [15] 
have investigated the entropy generation in a differentially-
heated cavity filled with a CuO-water nanofluid by consid-
ering the effect of a magnetic field. The authors reported 
that the magnetic field can suppress the entropy generation 
rate.

Mojumder et al. [16] have studied the effect of magnetic 
field on the natural convection and entropy generation of 
a magnetic nanofluid in a half-moon shaped cavity with 
semi-circular bottom heater considering various values of 
the magnetic parameter and different inclination angles 
of cavity and the position effect of the heaters. Selime-
fendigil et  al. [17] have addressed the effect of magnetic 
field strength and angle on the convective heat transfer of 
CuO nanofluids in a lid-driven cavity. They found that the 
angle of the magnetic field shows a significant effect of on 
the convective heat transfer rate and that the presence of a 
magnetic field reduces the convective heat transfer in the 
cavity. Rashidi et al. [18] have investigated the effect of a 
magnetic field on the mixed heat transfer in a channel with 
a sinusoidal wall filled with Al2O3 nanofluid. They reported 
an enhancement of heat transfer in the presence of the mag-
netic field. In all of the mentioned studies, the effect of the 
presence of a magnetic field on the flow and heat transfer in 
a cavity has been studied for fluids in liquid phase without 
any phase change.

There are some experimental and numerical studies 
regarding solid–liquid phase-change involving natural 
convection effects. Gau and Viskanta [19] have performed 
experimental test for measuring the melting interface of 
solidification of a pure metal (Gallium). Following the 
study of Gau and Viskanta [19], Brent et  al. [20] have 
reported a numerical solution for melting of Gallium in a 
rectangular differentially-heated cavity using a fixed grid 
approach known as the enthalpy-porosity technique. They 
compared the obtained numerical results with the experi-
mental results of Gau and Viskanta [19] and found com-
paratively a good agreement. Bertrand et  al. [21] have 
performed a benchmark numerical study for melting sim-
ulation of solid in a rectangular cavity by considering the 
natural convection effects. Various numerical methods in 
different laboratories were utilized to simulate the melting 
process of Tin and Octadecane.

Fan and Khodadadi [22] have reported an excellent 
review of the heat transfer studies regarding to simulation 
and experiments of phase-change material. Very recently, 
Kumar et  al. [23] have experimentally analyzed melting 
of a cuboid lead subject to a constant heat flux boundary 

condition. A neutron radiography method was employed to 
visualize the melting interface. Then, an image processing 
technique was utilized to extract the molten interface radi-
ography images. It is worth noticing that the lead provides 
shielding effects and is important in the design of transpor-
tation packages for nuclear material. Kumar et al. [24] have 
also experimentally studied the effect of boundary heat flux 
conditions on the melting behavior of a cuboid lead using 
an infra-red thermography technique. The results indicate 
that the buoyancy effects are very important in the melting 
of lead for Rayleigh number of order 107.

Ranjbar et al. [25] and Kashani et al. [26] have studied 
solidification of a nano-enhanced phase-change material 
(NEPCM) in a wavy cavity. Tiari et  al. [27] have exam-
ined the effect of the presence of a fin (heat-pipe type) on 
the phase-change behavior of a high melting temperature 
phase-change material. Tiari et  al. [28] have also studied 
the melting behavior of potassium nitrate as phase-change 
material in a cavity supported with heat-pipe type fins.

The present study aims to theoretically address the 
influence of a uniform magnetic field on the phase-change 
behavior of an electrically-conducting material involving 
natural convection effects.

2 � Geometric and mathematical models

2.1 � Formulation of the problem

Consider a cavity with the width Lx and height Ly. A sche-
matic view of the physical model is represented in Fig. 1. 
This figure shows a two-dimensional square cavity filled 
with an electrically-conducting frozen substance such as 
gallium or an electrolyte with a fusion temperature Tf. The 
right and left walls of the cavity are at the isothermal tem-
peratures Tc and Th where Th  >  Tf  >  Tc. The bottom and 
top walls are insulated. As depicted in Fig. 1, in the melting 
process, three states in the cavity can be assumed, a fully 
solid state, the mushy state and the fully liquid state. The 
mushy region state is a two-phase region that is a mixture 
of the solid and liquid phases. In the mushy region, the 
volume fractions of the liquid and the solid are functions 
of the temperature which will be discussed in details later. 
It is assumed that the cavity is initially filled with a solid 
substance at the fusion temperature Tf. A uniform magnetic 
field with magnitude B0 is applied normal to the vertical 
walls as shown in Fig. 1.

2.2 � Governing equations

All of the enclosure walls are considered to be impermeable 
and the no-slip velocity boundary conditions is employed. 
The top and bottom walls are considered well insulated and 
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the side walls are isothermal. All of the enclosure walls are 
assumed perfectly electrically-conducting. Moreover, the 
Boussinesq approximation is adopted. The temperature 
differences are assumed to be small, and hence, the ther-
mophysical properties in each phase are assumed to be 
constant, and the Boussinesq approximation is applicable 
for considering the density changes in liquid phase. How-
ever, the thermo-physical changes due to phase change are 
taken into account as the density, heat capacity and thermal 
conductivity for the solid and liquid phases of a substance 
could be different. It is also assumed that Joule heating 
effects as well as the viscous dissipation effects and radia-
tion effects are negligible. The induced magnetic field due 
to the induced current in the cavity is neglected as the mag-
netic Reynolds number (Rem) is small Indeed, the magnetic 
Reynolds number (Rem = uL/(μ0σ)) shows the ratio of the 
induction of a magnetic field by the motion of the fluid to 
the magnetic diffusion where u is the velocity scale, L is 
the flow length scale, μ0 is the permeability of free space, 
and σ is the electrical conductivity of the liquid. Here, it is 
assumed that the induced magnetic field, produced by the 
motion of the electrically-conducting fluid, is negligible 
compared to the applied magnetic field B0. Considering the 
above assumptions, the conservation equations for mass, 
momentum, temperature and electric transfer are written 
as:

Continuity

Momentum

Energy

Electric transfer

where u, B, ω, φ and J are the velocity, the magnetic field, 
the vorticity and the voltage field (the electric potential), 
and the current density, respectively. The variables P, T, 
and φ denote the pressure, the temperature, and the volume 
fraction of the liquid phase, respectively. Here, t is time 
and g is the vector of gravitational acceleration constant. 
In addition, α is the thermal diffusivity, L is the latent heat 
of fusion, CP is the heat capacity at constant pressure, ρ is 
the density, β is the thermal expansion coefficient, ν is the 
kinematic viscosity, and σ is the electric conductivity. In 

(1)∇ · u = 0

(2)
∂u

∂t
+ (u · ∇)u = −

1

ρ
∇P + v∇

2u+
J

ρ
× B+ βg(T − Tf)+ S(T)u

(3)
∂T

∂t
+ (u).∇T = α∇2T −

L

Cp

∂ϕ(T)

∂t

(4a)J = σ(−∇φ + u× B)

(4b)∇
2φ = B · ω, ω = ∇ × u,

Fig. 1   Schematic diagram of 
physical model
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Eq.  (2), the term S(T)·u indicates a source term for forc-
ing the fluid velocity to zero in solid phase which will be 
discussed in more details later. The subscripts of s and l 
denote the solid and liquid phases, respectively.

Sreenivasan et al. [29] discussed the effect of magnetic 
field on the flow motion and concluded that for the case of 
2D steady flow in the cases in which the magnetic field lies 
in the plane of the fluid motion and concluded that the term 
B·ω is zero; hence, the governing equations of Eq. (4a, 4b) 
reduces to ∇2φ = 0. Taking into account that the enclosure 
walls are perfectly electrically-conducting, they could pro-
vide a very low resistance guide path for the induced cur-
rent. Indeed, perfectly conducting walls provide a resist-
ance-free path from the induced current which indicates 
that the electric field vanishes everywhere in the cavity, i.e. 
∇φ = 0. Therefore, it can be concluded that the electric 
field can be neglected inside the enclosure [6].

Invoking these conditions, the team of J × B in the momen-
tum equation reduces to σB2 [7]. Thus, the governing equa-
tions for mass, momentum and thermal energy represented 
here in dimensional Cartesian coordinates x, y as follows:

Continuity

Momentum in x-direction

Momentum in y-direction

Energy

where α = αlϕ + αs(1 − ϕ) and B0 is the magnitude of the 
uniform magnetic field. Here, ϕ is the melt fraction which 
is evaluated using the temperature as:

where ΔT is the mushy-zone temperature range. The source 
term of S(T) in the momentum equation is introduced as a 

(5)
∂u

∂x
+

∂ν

∂y
= 0

(6)ρ

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= −
∂p

∂x
+ µ

(

∂2u

∂x
2
+

∂2u

∂y2

)

+ S(T) u

(7)

ρ

(

∂v

∂t
+ u

∂ν

∂x
+ v

∂ν

∂y

)

= −
∂p

∂y

+ µ

(

∂2ν

∂x
2
+

∂2ν

∂y
2

)

+ ρgβ(T − Tf)− (σB2

0
)ν + S(T)ν

(8)
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

(

∂2T

∂x
2
+

∂2T

∂y
2

)

+
L

cp

∂ϕ(T)

∂t
,

(9)ϕ(T) =







0 T < Tf
T−Tf
�T

Tf < T < Tf +
�T
2
,

1 T > Tf +�T

continues equation for phase transient using the Carman–
Koseny equation as [30, 31]:

where ε is a small number constant to prevent division 
by zero. In this study, the value of ε =  10−3 is used as 
reported in similar studies in the open literature.

Based on the problem description, the boundary condi-
tions are written as:

where Lx and Ly are the width and height of the enclosure, 
respectively. In addition, a reference pressure point with 
the relative pressure of zero is adopted at the top left cor-
ner of the enclosure. It is appropriate to express Eqs. (5)–
(8) into the non-dimensional forms using dimensionless 
variables as following:

The relevant dimensionless parameters are then:

where Ra is the Rayleigh number, Ste is the Stefan 
number, Pr is the Prandtl number and Ha is the Hart-
mann number. Substituting Eqs. (12a, 12b) and (13) into 
Eqs. (5)–(8), the corresponding non-dimensional form of 
the governing Eqs. (14)–(17) is obtained as:

Continuity:

(10)S(T) = −Amesh

(1− ϕ(T))2

ϕ(T)3 + ε
,

(K)Heated wall x = 0, y = y : u = 0, v = 0, T = Th

(11b)Cooled wall x = Lx, y = y : u = 0, v = 0, T = Tc

(11c)Top wall x = x, y = Ly : u = 0, v = 0,
∂T

∂y
= 0

(11d)Bottom wall x = x, y = 0 : u = 0, v = 0,
∂T

∂y
= 0,

(12a)X =
x

Ly

, Y =
y

Ly

, U =
uLy

αl
, V =

vLy

αl
, θ =

T − Tf

Th − Tf

(12b)

F0 =

tαl

L2y
, S(T) =

S(T)L2y

ραl
, P =

pL2y

ρα2

l

,

γ =

α

αl
, Rk =

ks

kf
, AR =

Ly

Lx

(13)

Ra =
ρ2clgβL

3
y (Th − Tf)

µkl
, Ste =

cl(Th − Tf)

L
, Pr =

clµ

kl
, Ha = B0Ly

√

σ

ρυ
,

(14)
∂U

∂X
+

∂V

∂Y
= 0
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Momentum in x-direction:

Momentum in y-direction:

Energy:

where

In this way, in liquid zone (θ > 0,ϕ = 1), γ = 1, and in 
the solid zone (θ < 0,ϕ = 0), γ =

αs
αl

.
Upon using the variables introduced in Eq.  (12a, 12b), 

the non-dimensional boundary conditions are:

where assuming the cold wall temperature Tc at the fusion 
temperature of Tf (i.e. Tc = Tf) gives θc = 0.

The melt volume fraction as a function of θ is written as:

(15)
∂U

∂F0
+ U

∂U

∂X
+ V

∂U

∂Y
= −

∂p

∂X
+ Pr

(

∂2U

∂X2
+

∂2U

∂Y2

)

+ S(θ)U

(16)

∂V

∂F0

+ U
∂V

∂X
+ V

∂V

∂Y
= −

∂p

∂Y

+ Pr

(

∂2V

∂X2
+

∂2V

∂Y2

)

+ Ra Pr θ − (Ha)2 Pr ·V + S(θ)V

(17)
∂θ

∂F0
+ u

∂θ

∂X
+ ν

∂θ

∂Y
= γ

(

∂2θ

∂X2
+

∂2θ

∂Y2

)

−
1

Ste

∂ϕ(θ)

∂F0
,

(18)γ = ϕ(θ)+
αs

αl
(1− ϕ(θ))

(19a)Heated wall X = 0 : U = 0, V = 0, θh = 1

(19b)Cooled wall X = 1 : U = 0, V = 0, θc =
Tc − Tf

Th − Tf

(19c)Top wall Y = AR : U = 0, V = 0,
∂θ

∂Y
= 0

(19d)Bottom wall Y = 0 : U = 0, V = 0,
∂θ

∂Y
= 0,

(20)ϕ(θ) =







0 θ < 0
θ
�θ

0 < θ < �θ

1 θ > �θ

,

where �θ =
�T

Th−Tf
.

3 � Numerical method

To analyze the present problem, the obtained set of 
Eqs.  (14)–(19a, 19b, 19c, 19d) along with the boundary 
conditions Eqs.  (19a, 19b, 19c, 19d) have been calculated 
using the powerful method that is called the finite element 
[32, 33]. The continuity equation, Eq. (14), is employed as 
a constraint to satisfy the mass conservation. Hence, the 
constraint for continuity equation is introduced as a penalty 
parameter (χ) in the momentum equations as described by 
Reddy [33]. Therefore, the pressure is written as:

Using Eq.  (21), the momentum equations are reduced 
as:

Thus, in the above equations the continuity Eq.  (8) 
is satisfied for very large values of the penalty parameter 
(χ = 107) [33]. Now, the velocities (U and V) as well as the 
temperature are expanded invoking a basis set {ζk}Nk=1 as,

(21)P = −χ

(

∂U

∂X
+

∂V

∂Y

)

(22)

∂U

∂Fo
+ U

∂U

∂X
+ V

∂U

∂Y
= −

∂

∂X

×

(

χ

(

∂U

∂X
+

∂V

∂Y

))

+ Pr

(

∂U

∂X
+

∂U

∂Y

)

+ S(θ)U

(23)

∂V

∂Fo
+ U

∂V

∂X
+ V

∂V

∂Y
= −

∂

∂Y

(

χ

(

∂U

∂X
+

∂V

∂Y

))

+ Pr

(

∂V

∂X
+

∂V

∂Y

)

+ RaPrθ − (Ha)2 Pr ·V + S(θ)V

Table 1   The required time for grid size independency

Cases Grid size Run time

Case 1 100 × 100 14 h, 21 min

Case 2 125 × 125 1 day, 6 h, 12 min

Case 3 150 × 150 2 days, 1 h, 20 min

Case 4 175 × 175 2 days, 18 h, 27 min

Case 5 200 × 200 3 days, 10 h, 48 min
Fig. 2   The melting interface for various grid sizes



J Braz. Soc. Mech. Sci. Eng.	

1 3

for −0.5  <  X<+  0.5 and 0  <  Y<1. It should be noted 
that the basic functions for U and V velocities and the 
temperature are the same, and thus, the total number of 
nodes variables is N. Invoking the Galerkin finite ele-
ment method, the non-linear residual for the governing 
equations of momentum Eqs. (22) and (23) as well as the 
energy equation Eq.  (17) at nodes of internal domain Ω 
are derived as,

(24)

U ≈

∑N

k=1
Ukζ(X, Y), V ≈

∑N

k=1
Vkζ(X, Y), θ ≈

∑N

k=1
θkζ(X, Y)

(25)

R
1

i
=

N
∑

k=1

Uk

∫

Ω

∂ξK

∂F0

dXdY +

N
∑

k=1

U
k

∫

Ω

[(

N
∑

k=1

Ukζk

)

∂ζk

∂X
ζkdXdY

+

(

N
∑

k=1

Vkζk

)

∂ζk

∂Y
ζkdXdY

]

ζidXdY

+

N
∑

k=1

Uk

∫

Ω

∂ξi

∂X

[

(χ)
∂ξK

∂X
dXdY

]

+

N
∑

k=1

Vk

∫

Ω

∂ξi

∂X

[

(χ)
∂ξK

∂Y
dXdY

]

+ Pr

N
∑

k=1

Uk

∫

Ω

[

∂ξi

∂X

∂ξK

∂X
+

∂ξi

∂Y

∂ξK

∂Y

]

dXdY

+ S(θ)

N
∑

k=1

∫

Ω

(

N
∑

k=1

(Ukζk)ζi

)

dXdY

(26)

R
2

i
=

N
∑

k=1

Vk
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where the linear basis functions are adopted. The three-
point Gaussian quadrature is also utilized to evaluate the 
integrals terms in the Eqs.  (25)–(26). Considering the 
momentum equations, the terms incorporating the pen-
alty parameter (χ) are computed using the two-point 
Gaussian quadrature employing the reduced integration 
penalty formulation [33]. The non-linear residual equa-
tions, Eqs.  (25)–(27), are solved by the Newton–Raphson 
method to compute the coefficients of the expansions (i.e. 
Uk, Vk and θk) in Eq. (24). The detailed solution procedure 
could be found in [32, 34]. Additionally, uniform meshes 
in both the X and Y directions are adopted in which the 
discretized equations are implemented. Therefore, the uti-
lized elements are quadrilateral elements. Considering the 
quadrilateral elements, ζ can be linearly approximated as 
c1 + c2X + c3Y + c4XY where c1–c4 are coefficients which 
can be obtained using the grid points. For each of the initial 
velocity and initial temperature, a value of zero is selected 
as initial guesses. The iteration process commenced 
until the residuals for the momentum residual equation, 
i.e. j =  1 and 2, and the heat equation, i.e. j =  3, satisfy 
∑

(R
j
i) ≤ 10−7. A backward differentiation formula (BDF) 

of variable order (between 1 and 2) associated with free 
time steps is utilized [35]. The results of the present code 
have been successfully validated against the numerical and 
experimental results of phase-change heat transfer in a cav-
ity filled with phase-change materials [21, 23] and against 
the works conducted by Sathiyamoorthy and Chamkha [6, 
7] who have examined the natural convection flow under a 
magnetic field in a square cavity filled with an electrically-
conducting fluid.

3.1 � Grid check

In order to check the grid independency of the solution, 
the calculations were repeated for several grid sizes in 
the case of Amush =  1×105, ∆T =  0.05  K, Pr =  0.0216, 

(27)
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Ra =  1×105, Ste =  0.039, γ =  1. Table  1 indicates the 
required time for simulation of about 90% of melting for 
various grid sizes. The liquid fraction for different grid 
sizes is also depicted in Fig. 2. The results of Fig. 2 indi-
cate that the grid size of 150 × 150 can provide acceptable 
accuracy. Hence, the results of the present study are carried 
out using the grid size 150 × 150.

3.2 � Validation of the results

To check the precision of the solution, several investiga-
tions have been performed. As the first case, the experi-
mental results of Gau and Viskanta [19] and the numerical 
results available in literature for a rectangular cavity with 
aspect ratio (height/width) of 0.714 are adopted and com-
pared with the results of the current study. In the experi-
ment of Gau and Viskanta [19], the left wall is hot while 
the top and bottom walls are insulated.

Gau and Viskanta [19] have evaluated the melting inter-
face using the pour-out method and the probing method. 
The evaluated melting interface for this problem is also 
numerically addressed by Kashani et  al. [26], Tiari et  al. 
[27], Khodadadi and Hosseinzadeh [36], Berant et al. [20], 
Joulin et al. [37], Viswanta and Jaluria [38] and Desai and 
Vafai [39]. The summary of the available numerical results 
are plotted in Fig. 3a, b. As seen, the results of the present 
study are in reasonable agreement with the available exper-
imental and numerical results. In the case of F0 = 3.48, the 
results are somehow different from the experiment but in 

agreement with the numerical results. The previous authors 
have concluded that the difference between the numerical 
and experimental results in this case could be due to the 
method of evaluating the melting interface in the experi-
ment of Gau and Viskanta [19]. The authors have measured 
the melting interface mechanically using a manual mechan-
ical probe. For high values of F0 the solid–liquid interface 
of melting could be unstable, and hence, distinguishing the 
precise shape of interface is hard.

As another validation, the benchmark study of Bertrand 
et  al. [21] is adopted in a case in which Ra =  1 ×  107, 

Fig. 3   A comparison between the experimental and numerical results available in literature and the present results when γ = 1 and neglecting 
the magnetic effects a, b uniformly heated left and cooled right and the bottom and top walls are insulated, Ra = 6×105 Pr = 0.0216

Fig. 4   A comparison between the melting interface reported by Ber-
trand et al. [21] and the current results (τ = F0 × Ste)
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Pr = 50, Ha = 0 and γ = 1. A literature review shows that 
many researchers have compared their numerical results 
with the benchmark results reported by Bertrand et al. [21]. 
Figure 4 shows the melting interface evaluated in the previ-
ous studies and those reported by Bertrand et al. [21]. The 
results of the current study have also been plotted in Fig. 4 
as a comparison. This figure shows that the present numeri-
cal results are in very close agreement with the experimen-
tal results.

Also, as another comparison, the results of the present 
study are compared with the experimental results reported 
by Kumar et al. [23] for melting of lead. Kumar et al. [23] 
have examined the melting of lead contained in a stain-
less steel cuboid. In the study of Kumar et  al. [23], there 
was a heater mounted at one of the vertical side walls of 
the cavity which provided a constant heat flux, while the 
other walls were insulated. The authors have carried out 
the photography of solid–liquid interface movement dur-
ing melting of lead using neutron radiography. The non-
dimensional parameters of the experiment set-up of Kumar 
et al. [23] are shown in Table 2. Initially, heater is put on 
and temperature will increase on both sides. In the experi-
ment of Kumar et al. [23], when melting commenced, the 
temperature at the right hand side wall (the heater side) was 
higher than that of the left hand side wall. Therefore, a lin-
ear temperature distribution was the initial condition for the 
commencing of the melting process. As Kumar et al. [23] 

have performed the experiment for the case of constant heat 
flux, the Rayleigh number and Stefan number are needed 
to be calculated on the basis of the constant heat flux as: 
Ste* = Cpq″condLx/(kL) and Rayleigh number based on con-
stant heat flux is given by Ra* = gβq″condLy

4/(kαν).
Here, the results of the present study are compared with 

the experimental results reported by Kumar et  al. [23] 
(Fig. 5).

As seen, the results of the present study are in very good 
agreement with the experimental results reported by Kumar 
et al. [23].

For the case of magnetohydrodynamic flows, Sathiy-
amoorthy and Chamkha [7] have studied the effect of the 
presence of magnetic effects on natural convection of elec-
trically-conducting liquids. The top and left walls of the 
cavity in the study of Sathiyamoorthy and Chamkha [7] are 
considered to be isothermal at the hot temperature of Th. 
The top and right walls are also considered to be isother-
mal at the cold temperature of Tc. Here, As a comparison, 
the current results are compared with the results of Sathi-
yamoorthy and Chamkha [7] by assuming that the cavity 
is filled with a molten metal and the same boundary con-
ditions as described in [7]. Figure  6 shows a comparison 
between the streamlines and isotherms reported by Sathiy-
amoorthy and Chamkha [7] and the results of the current 
study when Ra = 105, Pr = 0.054 and two Hartmann num-
bers of Ha =  50 and Ha =  100. Figure 6 indicates good 
agreement between the both studies.

As yet another comparison for the magnetic field effect, 
the results of the current research are compared with the 
finding of Al-Mudhaf and Chamkha [40]. Al-Mudhaf and 
Chamkha [40] have studied numerically the natural con-
vective flow of electrically-conducting gallium and ger-
manium liquid metals in an inclined rectangular enclosure 
in the presence of a uniform magnetic field due to a trans-
verse temperature gradient. The results of the compari-
son between these two studies have been summarized in 
Table 3 when Ra = 105, Pr = 0.025, S = 45° (where S is 
the enclosure inclination angle).

4 � Results and discussion

Now, as a case study, consider a cavity with the size of 
Lx = 6.35 cm, Ly = 6.35 cm filled with gallium. The tem-
perature at the hot wall is Th = 38 °C and at the cold wall 
is Tc = 28.3 °C. The thermophysical properties of gallium 

Table 2   Input provided for one case in simulation Kumar et al. [23]

Heater input (right side) Stefan number Prandtl number Rayleigh number Hartmann number Temp at left side (K) Temp at right side (K)

16.3 kW/m2 0.4 0.0236 1.4 × 107 0 555 599

Fig. 5   A comparison between the results of benchmark study of 
Kumar et al. [23] and the current results at different non-dimensional 
time steps of F0 = 0.37, F0 = 0.73, F0 = 1.10 and F0 = 2.2



	 J Braz. Soc. Mech. Sci. Eng.

1 3

are represented in Table 4. In this case, the corresponding 
non-dimensional parameters are: Pr = 0.0216, Ste = 0.039, 
Ra = 6×105 and γ = 1. These non-dimensional parameters 

Fig. 6   Isotherms and stream-
lines with reference to Sathiy-
amoorthy and Chamkha [7] and 
the results of present study

Table 3   The average Nusselt number, Nu reported by Al-Mudhaf 
and Chamkha [40] and the present research

Ha Al-Mudhaf and Chamkha [40] Present study

30 2.78 2.67

50 1.86 1.81

70 1.43 1.39

100 1.14 1.12

Table 4   Thermophysical of pure gallium

Property Symbol Value Unit

Density (solid/liquid) ρ 6093 (kg/m3)

Thermal expansion coefficient β 1.2 × 10−4 (1/K)

Fusion temperature Tf 302.85 K

Thermal conductivity (solid/
liquid)

k 32.0 (W/m K)

Latent heat of fusion L 80,160 (J/kg)

Specific heat capacity (solid/
liquid)

C 381.5 (J/kg K)

Dynamic viscosity µ 1.81 × 10−3 (kg/m .s)
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are considered as the default non-dimensional parameters 
in this study and the calculations are performed for these 
set of non-dimensional parameters otherwise they will be 
stated.

Figure  7 shows the streamlines and isotherms of the 
melting process at the beginning of the melting process, i.e. 
τ = F0 × Ste = 0.015, for various values of the magnetic 
field strength when Ra = 6×105. At the background of the 
streamlines figures, the contours of the volume fraction of 
the liquid phase (ϕ) are plotted. As seen, the liquid phase is 
commenced in the vicinity of the hot wall. A large region 

near the cold wall is remained frozen yet. A fast variation of 
the volume fraction from unity (only liquid) to zero (only 
solid) occurs at the interface, controlled by Eq.  (21) as a 
function of temperature. These figures demonstrate that the 
increase of the Hartmann number slightly affects the melt-
ing process. It is clear that the magnetic field effect tends 
to reduce the velocity of the fluid as it is always against the 
motion of the fluid. At the beginning of the melting process, 
there is a narrow region filled with molten trapped between 
two solid walls (the heater and the melting interface). 
Therefore, the fluid motion is slow, and the variation of the 
magnetic field could not induce a significant effect on the 
motion and melting process. Figure 8 depicts the shape of 
the interface at the non-dimensional time step of τ = 0.015 
for various values of the Hartmann number. This figure is in 
agreement with the results of Fig. 7 and indicates that the 
presence of the magnetic field is not important at the begin-
ning stages of the melting process.

Figure  9 shows the streamlines and isotherms of the 
melting process at time step of τ = 0.04 for various values 
of Ha. This figure indicates that after elapsing of a while, 
the melting interface is pushed forward into the frozen area. 
When the magnetic field is weak (i.e. Fig. 9a, b), there are 
three circulation cells in the molten region. These circula-
tion flows take the heat from the hot wall and try to dis-
tribute it on the frozen interface. Hence, regarding the three 
circulation flow streams, three caved regions on the inter-
face can be seen. As the magnetic field gets strong, the cir-
culation cells break down into a large circulation cell. In 
this case, the caved regions disappeared and obviously the 
molten rate is decreased. A comparison between the shapes 
of the solid–liquid interfaces is depicted in Fig. 10. This fig-
ure demonstrates that the increase of the Hartmann number 

Fig. 7   Isotherms and streamlines for τ = F0 × Ste = 0.015 when a 
Ha = 0, b Ha = 30, c Ha = 50, d Ha = 70, e Ha = 100

Fig. 8   The melting interface for various Hartmann numbers at 
τ = 0.015
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results in a smoother interface shape, but it decreases the 
molten volume fraction.

Figure 11 demonstrates the effect of the Hartmann num-
ber on the streamlines and isotherms in the cavity at the 
non-dimensional time of τ = 0.08. This time for the melt-
ing of gallium as described at the beginning of this section 
is equivalent to 10 min from the beginning of the melting 
process. Figure 11a is in agreement with Fig. 9a and con-
firms the presence of three circular flows in the absence 
of the magnetic field effect. Figure  11b depicts that the 

presence of a weak magnetic field reduces the circulation 
patterns into just two. The further increase of the magnetic 
field effect results in large circulation patterns and prevents 
the formation of local circulation patterns.

This figure indicates that the effect of the magnetic field 
is more obvious in the top side of the cavity rather than the 
bottom side. Indeed, the molten liquid absorbs the heat by 
conduction from the hot plate, and then it moves upward 
due to the buoyancy forces. Therefore, the top of cavity in 
the molten region is filled with a hot molten. Then, the hot 
molten interacts with the cold interface and moves down-
ward. As a result, there is a large caved area filled with 
molten near the top of the cavity. As the hot molten at the 
top moves downward and interacts with the cold frozen 
interface, it loses heat and gets colder and colder. There-
fore, when the molten reaches the bottom of the cavity, 
it has lost a considerable amount of heat, and hence, the 
molten region at the bottom of the cavity is a narrow area. 
Figure  12 summarizes the obtained solid–liquid interface 
at the non-dimensional time of τ = 0.08 for various values 
of the magnetic field parameter (Ha). As seen in Fig.  12, 
the position of the interface at the bottom of the cavity is 
not a monotonic function of Ha. As the Hartmann number 
increases, the interface moves towards the hot plate, until 
the Hartmann number is around Ha = 70 and then it moves 
back toward the cold wall.

As mentioned, at the bottom part of the cavity, the 
change in the position of the interface is not a monotonic 
function of the magnetic field strength (Ha). Indeed, the 
position and the shape of the interface are functions of 
the convective and diffusive heat transfer mechanisms. 
When the Hartmann number is small, the increase of Ha 
mostly affects the fluid velocity at the regions where the 
fluid velocity is high. In this region, which is about the 

Fig. 9   Isotherms and streamlines for τ = F0 ×  Ste =  0.04 when a 
Ha = 0, b Ha = 30, c Ha = 50, d Ha = 70, e Ha = 100

Fig. 10   The melting interface for various Hartmann numbers at 
τ = 0.04
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middle height of the cavity next to the melting interface, 
the shape of the mushy region and the melting interface is 
under the significant influence of the variation of the mag-
netic field. Consequently, the shape of the interface at the 
upper regions of the cavity gives directions to the fluid flow 
moving from the upper to the lower side along the melt-
ing interface. Hence, the shape of the interface near the bot-
tom of the cavity is under the influence of the fluid flow. 
As a result, and as seen for the low values of the Hartmann 

number, (Ha  =  0–50), the position of the melting inter-
face next to the bottom part of the cavity almost follows 
the expected flow patterns monastically. However, as the 
Hartmann number gets very strong, it almost suppresses 
the natural convection flows and significantly decreases 
the melting volume fraction. In this case, the overall posi-
tion of the melting interface is seized to advance and the 
interface shape also gets flattened. Therefore, in this case, 
a different trend of behavior for the change in the location 
of the melting interface at the bottom part of the cavity can 
be seen. As a summary, it can be said that the shape and 
the position of the melting interface at the bottom part of 
the cavity are functions of the shape of the interface at the 
upper region of the cavity as well as the overall position of 
the melting interface. The change in the Hartmann number 
has the tendency to change the shape of the interface at the 
upper region as well as the overall position of the melting 
interface (the melting volume fraction), and hence, based 
on the magnitude of the Hartmann number, two different 
trends of change in the position of the melting interface at 
the bottom part of the cavity can be expected.

Figure  13 illustrates the streamlines and isotherms 
contours inside the cavity in the non-dimensional time of 
τ = 0.15 for various values of the Hartmann number. In this 
case, most regions of the cavity are filled with the liquid 
phase and the fluid can freely move inside the cavity. A jet 
of hot fluid is present near the hot wall which drives the hot 
liquid upward. There is also a downward jet of cold liquid 
at the interface side. The hot liquid is almost present along 
the top wall while the cold liquid exists along the bottom 

Fig. 11   Isotherms and streamlines for τ = F0 × Ste = 0.08 when a 
Ha = 0, b Ha = 30, c Ha = 50, d Ha = 70, e Ha = 100

Fig. 12   The melting interface for various Hartmann numbers at 
τ = 0.08
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wall. There is a stratified region at the core of the cavity 
in which the heat transfer occurs in the vertical direction 
from top to bottom. Near the bottom of the cavity, there is 
a local slow circulation regime which results in a very low 
temperature gradient at the bottom of the cavity near the 
solid–liquid interface region (the mushy region). At this 
region where the temperature gradient is low and almost 
linear, the thickness of the mushy region is also increased 
(as seen in the volume fraction contours in the background 
of the streamline contours). Figure 14 surmises the melting 

interfaces for various values of the Hartmann number when 
τ = 0.15. This figure shows that the trend of the motion of 
the interface at the bottom of the cavity follows the trend of 
behavior observed in Fig. 12. For low values of the Hart-
mann number, e.g. Ha = 30 and 50, the melting interface 
is closer to the cold wall compared to that of Ha =  0. In 
contrast, the melting interface for high values of the Hart-
mann number, e.g. Ha = 70 and 100, is not as close to the 
cold wall as that of Ha = 0. This is because of the fact that 
the presence of the magnetic field induces a magnetic force 
that tends to suppress the natural convection velocity in the 
cavity. The decrease of velocity reduces the strength of the 
advective heat transfer mechanism in the cavity. Thus, the 
more increase of the magnetic field (the raise of Ha) the 
more the suppression of melting.

It is also interesting that for the cases of Ha =  0, 30 
and 50, the temperature gradients next to the hot wall and 
the melting front (melting interface) are strong and the 
isotherms are close together. The temperature distribution 
in the core of the cavity is almost horizontal. This trend 
of behavior is similar to the temperature distribution for 
a regular cavity with a high Rayleigh number [41]. How-
ever, as the Hartmann number increases (Ha =  70 and 
100), the gradients of temperature next to the hot wall 
and the melting front decrease and the temperature dis-
tribution forms almost a vertical shape. This temperature 
distribution could be of interest in some of the engineer-
ing applications or in a metallurgical process where a 
uniform temperature distribution is demanded.

Figure  15 shows the overall volume fraction of the 
molten phase, i.e. the liquid phase, as a function of the 

Fig. 13   Isotherms and streamlines for τ = F0 × Ste = 0.15 when a 
Ha = 0, b Ha = 30, c Ha = 50, d Ha = 70, e Ha = 100

Fig. 14   The melting interface for various Hartmann numbers at 
τ = 0.15
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non-dimensional time (τ) for Hartmann numbers in the 
range Ha  =  0–100. As observed in Fig.  9, at the early 
stages of the melting process, the conduction heat transfer 
is the dominant effect in the cavity, and hence, the effect 
of the presence of the magnetic field is negligible. As the 
fraction of the liquid phase increases and the molten region 
gets wider, the natural convective flows get stronger, which 
boosts the effect of the magnetic field. As mentioned, the 
magnetic field tends to decrease the velocity of the molten 
as it always acts against the motion direction of the fluid. 
The decrease of the molten motion results in the decrease 
of the convective heat transfer in the cavity. As the Hart-
mann number increases, the effect of the magnetic field 
increases. Therefore, as seen in Fig. 15, the increase of Ha 
results in decreases in the molten volume fraction.

5 � Conclusion

The impact of magnetic induction on the melting process 
of a metallic electrically-conducting phase-change mate-
rial (PCM) in an enclosure was investigated. There was a 
temperature difference between the side walls of the cav-
ity and the bottom and top walls were well insulated. An 
enthalpy-porosity approach was utilized to model the phase-
change process. The effect of buoyancy forces were taken 
into account using the Boussinesq model. The results of 
the present study were compared with different numeri-
cal and experimental results available in the literature and 
were found in good agreement. The results were reported 
in the form of the melting volume fraction and contours to 

study the effect of the magnetic field (Hartmann number) on 
phase-change heat transfer and melting behavior of an elec-
trically-conducting PCM in the cavity. The results showed 
that the increase of the Hartmann number would decrease 
the rate of phase-change process. The presence of a uniform 
magnetic field was found to play an effective role in the 
melting front and controlled velocity of flow. Of course, it is 
important to notice that even in the case of a strong applied 
magnetic field, i.e. Ha  =  100, the melt front area in the 
upper parts of the enclosure was still in a convex shape, and 
hence, the melting front was not perfectly uniform.

Since in the present study, the angle of the magnetic 
field was assumed to be constant in the horizontal direction, 
the magnetic controlling parameter was solely the Hart-
mann number. The results demonstrated that the increase 
of the intensity of the applied magnetic field (increase of 
Hartmann number) could suppress the flow velocity, but it 
could not well control the temperature distribution and the 
melting front shape. However, the change in the inclination 
angle of the magnetic field may induce more significant 
controlling mechanism on the flow, heat transfer and the 
melting front which can be studied in future researches.
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