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A B S T R A C T

This paper investigates numerically the problem of unsteady natural convection inside a square cavity
partitioned by a flexible impermeable membrane. The finite element method with the arbitrary Lagrangian-
Eulerian (ALE) technique has been used to model the interaction of the fluid and the membrane. The horizontal
walls of the cavity are kept adiabatic while the vertical walls are kept isothermal at different temperatures. A
uniform magnetic field is applied onto the cavity with different orientations. The cavity has been provided by
two eyelets to compensate volume changes due the movement of the flexible membrane. A parametric study is
carried out for the pertinent parameters, which are the Rayleigh number (105–108), Hartmann number (0–200)
and the orientation of the magnetic field (0–180°). The change in the Hartmann number affects the shape of the
membrane and the heat transfer in the cavity. The angle of the magnetic field orientation also significantly
affects the shape of the membrane and the heat transfer in the cavity.

Greek symbols.

α thermal diffusivity
β thermal expansion coefficient
ε strain
λ Lame's first constant
μ dynamic viscosity of fluid
μl Lame's second constant
φ angle of magnetic field orientation
σ stress tensor
σl electric conductivity of fluid
τ dimensionless time
ν kinematic viscosity
ϕ electric field
υ Poisson's ratio
ρ density
ρR density ratio

Subscripts

avg average
c cold
f fluid
h hot
P partition
s solid

Superscripts

* dimensional parameters

1. Introduction

The natural convection of fluids in enclosed spaces has been studied
extensively due to its vital importance in industrial and engineering
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applications, such as cooling of electronic components, cooling systems
in nuclear reactors, solar collector-receivers, insulation and flooding
protection for buried pipes used for district heating and cooling, etc.
Therefore, interested in natural convection may find a variety of
investigations regarding natural convection in enclosures. The effect
of enclosure geometry can be concluded from various studies [1–4]. In
some applications, the natural convection becomes undesirable phe-
nomenon as in material solidification; hence, the process can be
controlled by applying an external magnetic field [5–9]. There are
interesting studies about the utilization of magnetic field to control
segregations and flow fluctuations in nanofluids [10–13]. Another
procedure to control the flow inside cavities is by insertion of baffles or
fins [14–18], hence, forming a partly partitioned cavity. The natural
convection studies have been developed to handle partitioned cavities
composed of two different materials with permeable interface to
simulate say the design of building and heat storage systems insulation
[19–23].

When the simulation is carried out further by considering imperme-
able divider to separate two media, the problem can be utilized to
model more interesting applications such as a box containing electronic
units and divided into partitions using thermal conductive plates. Some
of the sensitive electronic equipment should be insulated from the
surrounding using a conductive metallic cover. In many cases, a
chemical reactor should be divided in sections in which each section
contains different chemical species, but the heat transfer could be
occurred between the species through partitions. In a solar collector,
the convection in the two adjacent air layers couples at the glazing.
Hence, the practical application of partitions in enclosures has
encouraged researchers to examine the effect of the presence of
partitions on convective heat transfer in cavities. Varol et al. [24]
considered a diagonally divided square cavity by an inclined plate and
filled with a porous medium. They studied the effect of thermal
conductivity of the divider plate. Tatsuo et al. [25] wrote a technical
note about the limitations of the boundary layer approximation for
various positions of a partition. Tatsuo et al. [26] performed an
experimental study about natural convection in rectangular enclosure
divided by N multiple vertical partitions. They found that the Nusselt
number is inversely proportional to the (1+N). Oztop et al. [27] studied
the natural convection in a differentially heated square enclosure
divided by an impermeable partition, where two combinations of air
and water were studied on each sub cavity. Kahveci [28] reported a
considerable influence of a vertical partition inside an enclosure heated
by uniform heat flux. He considered the same fluid filling the two
partitions of the enclosure. However, it is essential to consider the
transient numerical solution to investigate the transient features of the
coupled thermal boundary layers adjacent to a partition that spilt a
cavity (Xu et al. [29]), to simulate a time varying thermal boundary
conditions (Kalabin et al. [30]), or for the simulation of fluid-structure
interaction (Küttler and Wall [31]).

During the last two decades, there is a developing efficient
mechanism to enhance the force [32,33] and natural convection heat

transfer. One way to enhance the natural convection heat transfer is by
exciting the entire cavity or its boundary using an external mechanical
force. Hence, this mechanism is unrestricted by the electrical or
thermal properties of fluid. The analysis of such problem is classified
as moving boundary problem, which encountered in many engineering
applications and in nature as well. Cooling fan induced vibration in
electronic devices, biological micro-scale experiments, mixing and
sterling devices, and heat exchangers are examples of these applica-
tions. Fu and Sheih [34,35] simulated the effects of vertical vibration
and gravity on the induced convection inside enclosure. Kimoto and
Ishidi [36] investigated the vibration effects on the natural convection
heat transfer in a square enclosure. Fu et al. [37] reported a remarkable
increase in heat transfer associated with laminar forced convection in a
parallel-plate channel including an oscillating block. Florio and Harnoy
[38] studied the enhancement of natural convection cooling of discrete
heat source in a vertical channel using a vibrating plate. Razi et al. [39]
reported the convection in porous media undergoing to mechanical
vibration. Chung and Vafai [40] investigated the vibrational and
buoyancy induced convection in a vertical porous channel with an
open-ended top and a vibrating left wall. Cheng et al. [41] proposed a
novel approach to enhance the convective heat transfer in heat
exchanger by using the flow induced vibration instead of strictly
avoiding it.

In some applications, flexible boundaries are oscillating periodically
resulting in a deformable domain. For example, flow through dia-
phragm pump, diaphragm sensors, flow through elastic pipes, as in
arteries or other blood vessels, moving pistons or sloshing of fluids in
elastic containers [42] and human airways [43,44] are problems of
deformable domain. Moreover, this problem is an interested vehicle to
mathematicians and those whom delineated in computational fluid
dynamics. An efficient numerical simulation technique that deals with
this time-dependent moving boundary problem is the arbitrary
Lagrangian-Eulerian (ALE) approach [43,44]. It is a developed tech-
nique that discourse the drawbacks associated with Lagrangian and
Eulerian methods individually. According to ALE technique, the mesh
nodes of the computational domain may be moved (according to
Lagrangian fashion), held fixed (according to Eulerian fashion), or
moved in arbitrary procedure. Details of this technique are illustrated
in Hirt et al. [45], Hughes et al. [46], and Donea et al. [47]. Fu and
Huang [48] utilized ALE technique to investigate natural convection of
a heat plate in vertical channel under vibration motion. One of their
main conclusions is that for a given Rayleigh number, natural convec-
tion for a certain combination of frequency and amplitude is possibly
smaller than that of stationary state.

To the authors’ best knowledge, modeling of the hydrodynamic and
the heat transfer aspects of the interaction of a flexible structure and a
fluid in the presence of a magnetic field has not been addressed yet.
This motivates our intent to discover the features of natural convection
in a differentially heated cavity containing one or more fluids separated
by a thin flexible membrane and subjected to a uniform magnetic field.
To make the present study comprehensive, various orientations of the

Nomenclature

Bo applied magnetic field
ds displacement vector
E dimensional Young's modulus
Eτ non-dimensional elasticity modulus
Fv body force vector
g gravitational acceleration vector
Ha Hartmann number vector
Ha Hartmann number
Je electric current density
L cavity size

P pressure
Pr Prandtl number
Ra thermal Rayleigh vector
Ra thermal Rayleigh number
t time
t*p dimensional thickness of the membrane
tP dimensionless thickness of the membrane
T temperature
x,y Cartesian coordinates
u velocity vector
w moving coordinate velocity
Ws strain energy density function
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magnetic field is considered as well. Moreover, the cavity is provided by
two ports to compensate the increase or decrease of fluid volume in
both sides due to the membrane deformation. It is sought that the
results of this paper are essential in the natural convection heat
transfer field.

2. Problem description and mathematical formulation

Fig. 1 shows the schematic representation of the present physical
problem and coordinates system employed for driving the governing
equations and boundary conditions. Compared with x*, y* dimensions,
the z* dimension is assumed very long. So, 2-dimensional mathema-
tical domain is considered. The left and right walls are kept isother-
mally at T*

h and T*
c, respectively, such that T*

h > T*
c. The bottom and

top walls are kept adiabatic. The square cavity has been partitioned into
two equal sub-cavities using a vertical thin flexible membrane. The
thickness of flexible membrane t*p is assumed to be dense, uniform and
isotropic. Both sub-cavities have been filled with an incompressible and
Newtonian fluid. The flow is unsteady and within the laminar range.
The Boussinesq approximation has been employed to describe the fluid
density variations in the buoyancy term of the momentum equation.
The other properties of the fluid are constant. There is no temperature
gradient, heat generation and energy storage in the flexible membrane.
This supposition is acceptable when the membrane has very low
thickness and high thermal conductivity. Two eyelets have been
embedded at the top corners of cavity with the size of L/100, where
L is the cavity length. The other walls of the cavity and the membrane
are impermeable to mass concentration and have the magnetic
permeability of free space. Since the partition is flexible, employing
the usual constant pressure points as the pressure constraint is not
found to be adequate in the present problem. However, using the open
boundary is determined to be possible. The eyelets are selected as small
as possible to provide controlled constraints on the pressure distribu-
tion in the cavity and not to significantly affect the heat transfer
mechanism in the cavity. Further reduction in the size of the cavity can
affect the grid quality.

The entire square cavity subjects to the influence of an externally
applied, uniform, inclined magnetic field B so that the direction of the
magnetic field makes an angle φ with the x*-axis. It is assumed that the
interaction between the fluid flow and the external magnetic field has
no influence on the magnetic field. In other words, it can be said that
the internal induced magnetic fluid and the Joule heating effect are
neglected. In addition, the gravity field is acting on the cavity area in

the negative y* direction. Viscous dissipation is neglected compared to
the convection and diffusion terms. The densities of the fluid and the
membrane are equal. In addition, it is assumed that the membrane
material is hyper-elastic and reacts nonlinearly against imposed forces.

The effect of the magnetic field on the equations of motion is
introduced through the Lorentz force. This force equals to the cross
product of the electrical current density Je and the magnetic field B
[49]: F J B= ×e . The electric current density Je is related to the electric
field ϕ and the externally applied magnetic field B by Ohm’s law [49]: ,
where u*(u, v) is the fluid velocity vector and σl is the electric
conductivity of fluid. Since the boundaries of the cavity are electrically
insulated, it can be said that the electric field is constant, therefore,
(Maxwell's theory). Combining the above two laws results in the
following relation [49]: .

Taking into account the above presumptions in writing the govern-
ing equations and also with the use of the arbitrary Lagrangian-
Eulerian (ALE) technique, the governing equations are as follows:

Continuity equation [23]

u∇*. *=0 (1)

Momentums equation [50,51]

ρ
P ν β T Tu u w u u u B B g∂ *

∂t
+( *− *). ∇* *=− 1 ∇* *+ ∇* *+σ ( *× )× + ( *− *)

f
f c

2
l

(2)

Energy equation [50,51]

T T α Tu w∂ *
∂t

+( *− *). ∇* *= ∇* *f
2

(3)

The behavior of the geometrically nonlinear elasto-dynamic struc-
tural displacement of the flexible membrane is described by the
following nonlinear elasto-dynamic equation [50]:

ρ
d
dt

d σ F
*

−∇* *= *s
s

2

2 v (4)

In Eqs. (1)–(4), u* and v* are the components of u* in x* and y*
directions, respectively, w* refers to the moving coordinate system
velocity vector, w*=(us*,vs*), us and vs* are the components of w* in
x* and y* directions, respectively. P* is the fluid pressure, T* is the fluid
temperature, g is the gravity acceleration vector. ∇* represents the
dimensional gradient operation, ds* is the displacement vector of
membrane such that dds*/dt=w*, σ* is the solid stress tensor, Fv*
denotes the body forces applied to the flexible membrane. This force
can be caused by the gravitational or magnetic fields. Due to the
assumptions made, this force is zero. αf and νf are thermal diffusivity
and kinematic viscosity of the fluid, respectively, and β is volumetric
thermal expansion coefficient. The imposed boundary conditions are:

u vOn all walls of the cavity * = * = 0

T
y

On the top and bottom walls of the cavity ∂ *
∂ *

= 0
(5)

T TOn the left side wall of the cavity * = *h

T TOn the right side wall of the cavity * = *c

Neo-Hookean solid model has been employed to define the stress
tensor in Eq. (4). This model is valid when the material of membrane is
hyper-elastic and can be applied for showing the nonlinear stress-strain
trend of materials with large deformations [50]:

J FSFσ*= T−1 (6)

where

F I J F S W εd= ( + ∇* *), = det ( ) and = ∂ /∂s s (7)

The superscript T denotes the transpose of matrix F. Ws and ε are

Fig. 1. The schematic view of the problem with the flexible membrane.
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the strain energy density function and the strain, respectively, they are
given by:

W μ J I μ J J= 1
2

( −3)− ln( )+ 1
2

λ(ln( ))s l l
−

1
2

(8)

ε d d d d= 1
2

(∇* *+∇* * +∇* * ∇* *)s s
T

s
T

s (9)

where

λ Eν
ν ν

μ E
ν

=
(1 + )(1 − 2 )

, =
2(1 + )l

are Lame's first and second constants, respectively. E and ν are the
Young's modulus and the Poisson's ratio, respectively. I1 refers to the
first invariant of the right Cauchy-Green deformation tensor. The
simulation of fluid-solid interaction (FSI) has been done using the
continuity of kinematic forces and dynamic motions at the membrane
surfaces. The mathematical relationships for these two conditions are
as follows:

t
n P μ

d u σ u∂ *
∂

= * and *. = − * + ∇* *s
f (10)

By writing the energy equation for the membrane with the
assumption of no energy generation and storage at the membrane,
we obtain

T
n

T
n

and T T∂ *
∂

= ∂ *
∂

* = *
+ −

+ −
(11)

Positive and negative superscripts refer to the right and left walls of
the membrane, respectively. For both eyelets embedded on the vertical
side walls, the following boundary condition is always established:

P μ nu[− *+ ∇* *]. =0f (12)

In this equation, n is the unit vector perpendicular to the flexible
membrane. Here, in order to make the problem non-dimensional, the
following dimensionless parameters are introduced:

L E
τ

tα
L

x y x y
L

t
t
L

L
α

d d σ σ u u=
*

, =
*

, = , ( , ) = ( *, *) , =
*

, =
*

s
s f

p
p

f
2

(13a)

L
α

P L
ρ α

P T
T T
T T L L

w w=
*

, = *, =
* − *
* − * , ∇* = ∇

1/
, ∇* = ∇

1/f f f

c

h c

2

2
2

2

2
(13b)

E Ra

FPr = , = ,

= , =

ν
α v

ρ ρ L

E

τ
EL
ρ α

gβ T T L
ν α

g( − )

( * − *)

f

f

f s

f f

h c

f f

2

2

3

(13c)

ρ
ρ
ρ

L σ
μ

Ha B= , =R
f

s (13d)

Substituting the parameters (13a) and (13b) in the governing
equations and using the parameters (13c) and (13d) results in the
following dimensionless equations:

ρ
d
dτ

E Ed σ1 − ∇ = F
R

s
τ τ v

2

2 (14)

u∇. =0 (15)

τ
P Tu u w u u u Ha Ha∂

∂
+( − ). ∇ =−∇ +Pr∇ +PrRa + Pr( × )×2

(16)

T
τ

T Tu w∂
∂

+( − ). ∇ =∇2
(17)

In Eqs. (14)–(17), Pr, Eτ, Fv, Ha, ρR and Ha are the Prandtl
number, non-dimensional elasticity modulus, non-dimensionless body
force vector, Rayleigh number, the density ratio number and the
Hartmann number vector, respectively. It should be noted that Ha

has two components; Ha sin(φ) and Ha cos(φ) along x and y-axes,
respectively. The body force term due to the magnetic field can be
rewritten in the Cartesian coordinates as V uPr H ( sin φ cos φ− sin φ)a

2 2

in the x-direction and u uPr H ( sin φ cos φ− cos φ)a
2 2 in the y-direction. As

mentioned, it is assumed that ρs=ρf, therefore it is obvious that the
body force imposed to the membrane Fv is zero. This condition is
adopted at all stages of solution. Here, it should be noted that the non-
dimensional value of the thickness defined for the membrane is 0.012.

The boundary conditions can be rewritten in dimensionless form as
follows:

u vOn all walls of the cavity = = 0

T
y

On the top and bottom walls of the cavity ∂
∂

= 0

TOn the left wall of the cavity = 1

TOn the right wall of the cavity = 0

T
n

T
n

T TFor the flexible membrane ∂
∂

= ∂
∂

and =
+ −

+ −
(18)

On the fluid-solid interface:

τ
E n Pd u σ u∂

∂
= and . = − + Pr∇s

τ (19)

At both eyelets:

P nu[− + Pr∇ ]. =0 (20)

At t=0, the fluid is motionless inside the whole cavity domain.
Hence, in this situation u (x, y, 0)=0. The initial temperature in the left
and right sub-cavities is Th and Tc, respectively.

The Nusselt number is representative of the heat transfer rate in the
cavity. The convective heat transfer at the left wall can be written as:
q =h(T −T )“

h
*

c
* and the conduction heat transfer at the wall can be written

as q k′ =− T
x x

′ ∂ *
∂ * *=0

. Based on the energy balance at a surface, the
conduction heat transfer at the surface equals to the convective heat

transfer which yields h (T −T )=−ky h
*

c
* (T − T )

L
∂T
∂x x=0

h
* c

*
and finally, the local

Nusselt number is obtained as:

Nu
h L

k
T
x

= =− ∂
∂local

y

x=0 (21)

The average Nusselt number Nuavg is achieved by integrating the
local Nusselt number Nulocal:

∫Nu Nu dy=−avg local
0

1

(22)

Another parameter of importance examined in this study is the
average temperature inside whole cavity that the following relation
calculates it:

∫
∫

T
T dA

dA
=avg

local

(23)

The stream function ψ is defined to describe the fluid motion and
can be expressed as follows:

u ψ
y

v ψ
x

= ∂
∂

, = −∂
∂ (24)

3. Numerical approach and validation

Because the equations (13)–(16) along with their boundary condi-
tions are non-linear and interdependent, it is necessary that an
iterative numerical method be employed to solve them. Therefore,
these equations are transformed into the weak form and numerically
solved based on the Galerkin finite element method. The details of this
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procedure are entirely described in [52]. The computational domain is
meshed by applying non-uniform triangular grids. The calculations are
terminated in any time step that the error is less than 10−7. An
automatic time step procedure is employed to monitor the solution
time step accuracy and numerical convergence.

3.1. Grid independency test

To ensure that the obtained results are independent of the number
of mesh elements, a grid independency test is achieved. For this
purpose, the variations of the Nusselt number according to dimension-
less time are investigated on the hot wall for different grids at Ra=108,
Ha=0 and φ=0. Fig. 2 shows the result of this assessment. Because the
variations of the average Nusselt number versus time are not sig-
nificant for the grid size more than 13,773, this grid size has been used
to represent of the results.

3.2. Validation

To validate the method used, our results have been compared with
the results reported in several published literatures. In the first
validation, we have evaluated the correctness and accuracy of our

results with those obtained by Xu et al. [29] as depicted in Fig. 3. This
validation includes comparing the dimensionless temperature reported
by [29] and the temperature in the current study at the specified point
(0.0083, 0.375). It is necessary to mention that the definition of the
dimensionless time in our investigation and Xu et al. [29] is different.
The dimensionless time defined by Xu et al. is τ=tαRa1/2/L2.

In another validation (Fig. 4), the deformation curve of the bottom
wall of a lid-driven square cavity have been compared in our study and
the investigation performed by Küttler and Wall [31]. Here, also the
accuracy of the solution has been confirmed.

Considering the magnetic effects and for a regular cavity without a
partition, the results of the present study can be compared with the
results of the study of Sathiyamoorthy and Chamkha [7].
Sathiyamoorthy and Chamkha [7] have studied the natural convective
heat transfer in the presence of a magnetic field. Fig. 5 illustrates a
comparison between the streamlines and isotherms patterns obtained
in the present study and those reported by [7]. This figure shows that
the results of the present study are in good agreement with those
available in the literature.

One of the most important validations is comparing the experi-
mental results represented by Tatsuo et al. [26] and the numerical
results obtained by the present numerical code. The experimental study
of [26] includes an examination of the natural convection heat transfer
and flow in a rectangular cavity (the ratio of height to length or AR=4)
divided into several sub-cavities using the rigid thin surfaces. The
thermal conditions imposed on the boundaries of their cavity and the
cavity in present study is the same. Fig. 6 compares the results of the
current simulation with experimental consequences of Tatsuo et al. and
Churchill's relation [53]. In the figure, N shows the number of the rigid
plates dividing cavity. It is evident that our numerical simulation
accuracy is very good.

4. Results and discussion

The results of this investigation have been presented in this section.
In the present study, the influence of controlling parameters such as
Rayleigh number (105≤Ra≤108), Hartmann number (0≤Ha≤200) and
inclination angle of magnetic field (0≤φ≤180°) on the streamlines and
isotherms patterns, the heat transfer rate and the average temperature
inside the entire cavity are investigated. While the parameters ρR and
Eτ are kept fixed at 1 and 1014, respectively. Water is selected as the
working fluid with Pr=6.2.

Fig. 2. Variations of average Nusselt number on the hot wall according to the
dimensionless time for different grid size at Ra=108, Ha=0, Eτ=10

14.

τ

T

10-1 100 101 102
-0.5

-0.4

-0.3

-0.2

-0.1

0

Xu et al. [29]
Present study

Fig. 3. Comparison with Xu et al. [29] in the case of square cavity divided into two parts
by a rigid membrane.

Fig. 4. The deformation of the flexible bottom wall of the lid-driven cavity perused by
Küttler and Wall [31], and the present study at t=7.5 s in a dimensional case with the led
velocity of ux=(1-cos(2πt/5)) m/s, νf=0.01 m2/s, ρf=1 kg/m3, E=250 N/m2, ρs=500 kg/
m3 and t*p=0.002 m.
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Fig. 7 displays the steady-state streamlines contours for different
values of Ha and Ra at φ=2π/3. At the lower range of the studied value
of Ra (Ra=105), a central weak vortex is formed inside each sub-cavity.
Increasing Ra means increasing the buoyancy force in the momentum
equation; hence, it is obvious that for all Ha, the strength of vortices
formed in both sub-cavities |ψ|max increases when Ra increases. It
can be seen that the vortices formed in both sub-cavities are extended
horizontally as Ra increases. In some cases, this extension continues
until each vortex breaks up into two vortices. On the other hand, the
strength of the fluid flow decreases as Ha increases. In fact, the
magnetic field plays the role of a drag force that acts at odds with the
buoyancy force. The chance that the vortices split into two vortices is
reduced as the magnetic field strength or Ha increases. It is interesting
to note that at Ha=200 and Rayleigh numbers of Ra=105 and Ra=106,
the vortices extend diagonally with respect to each sub-cavity.
However, when the heated fluid hits the top horizontal wall, it falls
with the aid of gravity forming clockwise vortices. The right sub-cavity
vortex is stronger than that of the left, so the flexible membrane
stretched to the left. Furthermore, it is interesting to note that although
an increment in the Hartmann number reduces the strength of the fluid
flow, it has no effect on the steady state condition of the flexible
membrane.

The effects of Ra and Ha on the temperature distribution at φ=2π/

3 are shown in Fig. 8. The isotherms patterns shown in Fig. 8 represent
how the predominant mechanism heat transfer changes with the
variation of Ra and Ha. As seen, the lines of isotherms contours tend
to stratify horizontally as Ra increases. This result can be attributed to
the increase of the strength of the fluid flow due to an increase in the
buoyancy effect. In addition; Fig. 8 shows that for Ra=105–106 the
isotherms look mostly parallel to the vertical walls more and more with
the increase of Ha owing to the predomination of conduction mechan-
ism of heat transfer against advection mode.

Figs. 9 and 10 illustrate the influence of the Rayleigh number Ra
and the Hartmann number Ha on the average Nusselt number and the
mean temperature inside whole cavity according to the dimensionless
time. As observed, at the initial stages of natural convection, the
average Nusselt number at the hot wall is exactly zero for all Ra andHa
values. This result is perfectly acceptable because initially, the fluid has
no any external driving force and the natural convection flow not
induces yet. With time evolution, the fluid thermal mixing increases,
the heat transfer rate also increases by the advection mechanism. Also,
it is found that the average Nusselt number overshoots before reaching
steady state at the high values of Ra (Ra=107–108). The variations of
the dimensionless temperature versus time represent that the average
temperature inside whole cavity is exactly 0.5 for the initial stages. This
result coincides with the defined initial conditions. Afterwards, the

Fig. 5. Comparison of the streamlines and isotherms patterns reported by Sathiyamoorthy and Chamkha [7] (a) and the results of the present study (b) for Ra=105, Ha=50, φ=0,
Pr=0.025 for a cavity without a partition.
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temprature decreases until it reaches its minimum value, finally, the
average temperature rises up until reaching a constant value at the
steady state condition. These graphs also indicate that the minimum
values of the average temperature with time decreases with increasing
Ha and Ra.

At the beginning, the left sub-cavity connected to the hot wall is at a
uniform temperature T*h (i.e. T=1) while the right sub-cavity con-
nected to the cold temperature is at a uniform temperature T*c (i.e.
T=0). The volumes of both sub-cavities are equal, and hence, the
average temperature in the cavity is exactly Tavg=0.5 at the very early
stage of heat transfer. As both sides of the membrane are at different
non-dimensional temperatures of 0 and 1, the heat transfer between
the sub-cavities commences. The heat transfer in the vicinity of the
membrane influences the temperature distribution in the cavity, and as
a result, the average temperature of the fluid in the cavity changes. It
should be noted that at the very early stages of heat transfer, the
temperature of the fluid next to the vertical walls is equal to the
temperature of the wall (because of the initial conditions), and hence,
the average Nusselt number is zero. Indeed, the temperature in the
cavity in the vicinity of the membrane starts to change, and conse-
quently, it affects the average temperature. However, the heat flux next
to the vertical walls is zero because of the lack of temperature gradient
in the vicinity of the hot or cold walls. After elapsing a sufficient time,
the temperature gradient from the area in the vicinity of the membrane
develops into the inner regions of the sub-cavities and into the vertical

Fig. 6. Comparison between the average Nusselt number obtained in the present study
and the experimental data represented by Nishimura et al. [26] and the Churchill's
relation [46] for a rectangular enclosure with various rigid partitions (N) versus Rayleigh
number when AR=4 and Pr=6.

Fig. 7. Streamlines contours for the different values of Ra and a: Ha=0, b: Ha=25 and Ha=200 at φ=2π/3.
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walls by advective and diffusive heat transfer mechanisms. As the
temperature of the fluid finally changes next to the vertical walls, the
heat transfer from the wall commences, and the average Nusselt

number at the wall starts to raise from zero. For relatively small values
of Rayleigh numbers (Ra=105, 106), the time required for a tempera-
ture gradient to develop in the cavity from the membrane to a vertical

Fig. 8. Isotherms contours for the different values of Ra and a: Ha=0, b: Ha=50 and Ha=200 at φ=2π/3.

Fig. 9. The variations of average Nusselt number on the hot wall and dimensionless temprature versus the dimentionless time for the different values of Ra at Ha=100, φ=2π/3.
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wall is about 10−2. It is clear that as the Rayleigh number increases, the
heat transfer mechanism gets stronger, and hence, the time scale
required for developing a temperature gradient from the membrane to
the wall drops to τ=10−3 in the case of Ra=108.

As mentioned in the description of Figs. 9 and 10, at the very early
stages of heat transfer, when the non-dimensional time is very small
(i.e. τ≈10−3), the heat transfer commences next to the membrane. As
the fluid is initially quiescent, the heat transfer next to the membrane
takes place moslty by diffusion. Hence, it should be noted that the
variation of the inclination angle or the Hartmann number only affects
the fluid through the momentum equations (i.e. they only affect the
motion of the fluid) when τ is small. Therefore, as seen in Fig. 14(b),
the variations of the average temperature for various inclination angles
is the same as they have no significant influence on the conduction
(diffusive) heat transfer mechanism. The reason for the observed
decrease of the average temperature in the cavity is the decreasing
trend of the volume of the hot sub-cavity due to the movement of the
membrane into the left side (as depicted in Figs. 8 or 12 in the steady-
state situation). Therefore, as the membrane moves toward the hot
wall, the volume of the hot cavity reduces and volume of the cold cavity
increases, and hence, the average temperature, which is defined as the
average temperature over all of the cavity decreases. After a while, the

advective mechanism of heat transfer in the cavity gets stronger and
tends to change the temperature profiles toward the steady state
situation. At this stage (τ higher than 10−2), the volume of the hot
cavity is smaller, or it can be said that the membrane is closer to the hot
wall compared with its distance to the cold wall (see Figs. 8 or 12 which
depict the steady state shape of the membrane). As the hot wall is
closer to the membrane, the range of the temperature distribution in
the hot cavity is closer to the temperature of the hot wall (T=1)
compared to the case of the cold cavity which is a wider sub-cavity.
Therefore, it can be concluded that as the convective heat transfer gets
stronger (τ higher than 10−2), the average temperature of the cavity
smoothly rises to a constant steady average temperature. The average
temperature at the steady state is lower than the initial mean
temperature of the 0.5 due to the shape of the membrane and the
final smaller size of the hot cavity. For the time snaps of τ higher than
10−2, the effect of variation of the inclination angle is obvious.

The average Nusselt number exhibits almost a monotone trend of
behavior. As mentioned, at the very early stage of heat transfer (i.e.
τ≈10−3), the average Nusselt number is zero because of the lack of
temperature gradient at the hot wall. After a while, the advective heat
transfer mechanisms gets stronger, and a flow of a cold fluid, coming
from the membrane, reaches the hot wall. Therefore, as the convective

Fig. 10. The variations of average Nusselt number on the hot wall and dimensionless temprature versus the dimentionless time for the different values of Ha at Ra=107, φ=2π/3.

Fig. 11. Average Nusselt number on the hot wall and dimensionless temprature as function of Hartmann number for the different values of Ra at φ=2π/3. Ha=50 Ha=200.
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heat transfer gets stronger, the average Nusselt number also rises until
it reaches its steady-state value. At the time scale around 10−2, the
average Nusselt number shows a significant increasing trend of
behavior; this is where the heat transfer from the wall starts to affect
the temperature distribution of the fluid in the hot cavity and changes

Fig. 12. Streamlines contours for Ha=50 and Ha=200 when Ra=107.

Fig. 13. Isotherms contours for Ha=50 and Ha=200 when Ra=107.
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the decay trend of the average temperature in the cavity into a rising
trend.

Fig. 11 presents the influence of the Hartmann number on the
steady state average Nusselt number and temprature for different
values of Ra at φ=2π/3. It is observed that for a specified Hartmann
number, the average Nusselt number and average fluid temprature
increases and decreases with Ra, respectively. There is a downward
trend of the Nusselt number as a function of the Hartmann number.
However, a defined behavior does not exist for changes in the average
temperature againstHa as is depicted in Fig. 11(b). As can bee seen, for
an effective value of Ha (Ha≥50), the presence of the magnetic field
enhances the dimensionless temperature at Ra=106–107, whereas the
temperature decreases with Ha at Ra=108.

Fig. 12 presents the influence of φ on the steady state streamlines
contours for various values of Ha at Ra=107. First, it is found that the
strength of the fluid flow circulation increases as the magnetic field
inclination angle increases until π/2 and then it begins to decrease with
increasing φ beyond π/2 to π. This behavior refers to the diminishing
of the magnetic force component acting in downward direction, which
is opposite to the buoyancy forces. In addition, it can be seen that at the
lower range of the Hartmann number (i.e. Ha=50), increasing the
angle of the magnetic field inclination has no significant effects on the

extension direction of the vortices formed, whereas for the higher
Hartmann number (Ha=200), the streamlines are noticeably affected
by the direction of the magnetic field. That is, the center of vortices
inside the right and left sub-cavities shift up and down, respectively as
the magnetic field inclination shifts away from the perpendicular
fashion.

In case (II) of Figs. 12 and 13, the streamlines and isotherms
counters for the two vertically symmetric angles of φ=π/3 and φ=2π/3
are compared. As seen, the streamlines and temperature distributions
in the cases of φ=π/3 and φ=2π/3 are not the same. However, in case
(I) where the results are compared for the inclination angles of φ=0
and φ=π, the results are perfectly the same. This result was predictable,
because, as previously mentioned, the magnetic field term in the
momentum equations is periodic with the period of π.

The influence of φ on the steady state isotherms contours for
various values of Ha at Ra=107 are depicted in Fig. 13. The reduction
of the fluid flow intensity because of the presence of the magnetic field
and thus, reduction of the fluid thermal mixing, the isotherms tend to
become mostly vertical. It is noticed also that the magnetic field
inclination has no significant effects on the isotherms pattern, espe-
cially at the low values of Ha.

Fig. 14(a) and (b) illustrate that, at the initial steps of natural

Fig. 14. The variations of average Nusselt number on the hot wall and dimensionless temprature versus the dimentionless time for the different values of φ at Ra=107, Ha=100.

Fig. 15. Average Nusselt number on the hot wall and dimensionless temprature as function of inclination angle of magnetic field for the different values of Ha at Ra=107.
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convection, the average Nusselt number and temperature are 0 and 0.5,
respectively, for all values of φ. Then, the heat transfer rate grows due
to the increase of fluid motion. It is interesting to note that the average
temperature is the same for all the inclination angles of the magnetic
field before reaching its minimum value. In addition, it is necessary to
note that the reduction and then, augmentation of the average
temperature until reaching its steady state condition is due to the exit
and entry of the fluid as it has been explained previously.

Fig. 15(a) and (b) represent the variations of the average Nusselt
number and the average fluid temperature at steady state according
with inclination angle of magnetic field φ for different values of Ha.
From Fig. 15(a), it is apparent that for a given value of Ha, except
Ha=0, the average Nusselt number increases to reach its maximum at
φ=π/2 and afterwards decreases to mostly reach the value recorded at
φ=0. The peak values of the Nusselt number at φ=π/2 becomes steeper
with increasing Ha. This means that orientating the magnetic field
from the horizontal direction to the vertical direction can change its
action from retardation of the buoyancy force to acceleration of the
fluid originated from the heated wall. On the other hand, Fig. 15(b)
shows that there is a quasi-sinusoidal trend for the temperature
variation versus the inclination angle of the magnetic field. Here, it
can also be seen that the amplitude of these quasi-sinusoidal curves
grows with the rise of the magnetic field strength. Finally, we can say
that the minimum and maximum values of the average temperature of
the fluid occur at π/4 and 2π/3, respectively.

Fig. 15 which is in agreement with the streamline and isotherm
contours depicted in Figs. 12 and 13 indicates that the values of Tav
and Nuav are identical for the two cases φ=0 and φ=π. However, the
results are not symmetric about the vertical direction. This asymmetric
behavior is also observed in Figs. 12 and 13.

The effects of the Rayleigh (Ra), Hartmann (Ha) and the angle of
magnetic field orientation (φ) on the maximum stresses σm induced in
the flexible membrane are illustrated in Table 1. When the Rayleigh
number increases, the stress in the flexible number becomes more
intense. This is due to the fact that increasing the Rayleigh number
increases the strength of the fluid flow and accordingly, the interaction
between the fluid and the flexible membrane augments. On the other
hand, the results show that for Ra=107 and φ=π/3, an increase in Ha
increases σm until Ha reaches 150. After that, as Ha increases from 150
to 200, a decrease in σm can be seen. Also, it is observed that although
the increase of φ can change σm, but there is no certain trend for
changing σm with φ. It can be observed that for Ra=107 and Ha=100,
the maximum and minimum σm occurs at π/2 and π/6, respectively.

5. Conclusions

Unsteady natural convection inside a square cavity equally parti-
tioned by a flexible impermeable membrane is investigated numerically
using the finite element method with the arbitrary Lagrangian-Eulerian
(ALE) technique. A uniform magnetic field is applied in different
orientations to the cavity. The cavity is provided by two eyelets to

compensate volume changes due the movement of the flexible mem-
brane. The collected results have led to the following conclusions:

1. In the case of high values of the Hartmann numbers (Ha≥50), the
presence of the magnetic field increases the dimensionless average
temperature for moderate values of the Rayleigh number (Ra=106–
107). However, in the case of high values of the Rayleigh number
(Ra=108), the presence of a strong magnetic field decreases the
dimensionless average temperature.

2. The fluid flow circulation is strengthened as the magnetic field
inclination angle is increased from 0 up to π/2 and then it begins to
decrease with further increase of φ to π.

3. For a given value of Ha (higher than zero), the average Nusselt
number increases with the magnetic inclination angle to reach its
maximum at φ=π/2 and afterwards decreases to mostly reach its
value recorded at φ=π. The increment of the Nusselt number at
φ=π/2 is steeper at higher value of the Hartmann number.

4. Depending on the angle of the magnetic field orientation and the
Rayleigh number value, the increase of the magnetic filed could
increase or decrease the induced stresses σm in the membrane.

In the present study, it is assumed that both of the sub-partitions
are filled with only one type of fluid. However, in many practical
applications, the membrane may be utilized to separate two different
fluids. In this case, the electrical conductivity and other thermophysical
properties of each sub-partition may be different. Considering a cavity
filled with two different fluids could be the subject of future studies.
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