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Viscoelastic nanofluids equations are mainly ill-posed at the system boundaries, and hence, achieving a
numerical solution faces serious challenges. In addition, the presence of very fine nanoparticles (with the
mean size of 100 nm and lower) in the fluid leads to new phenomena of heat and particle transfer, which
highly increases the non-linearity and complexity of the behavior of the resulting viscoelastic nanofluids.
Thus, new analytical or semi-analytical methods are highly demanded to deal with flow and heat transfer
of viscoelastic nanofluids. In this study, by a new idea using intelligent optimization methods, a new and
unique method is presented to solve the differential equations governing flow and heat transfer of vis-
coelastic nanofluids. Using intelligent optimization, it is attempted to move towards an optimum solution
by changing a trial solution that satisfies both the governing equations and the boundary conditions as
well. The results indicate the accuracy and simplicity of the method.

� 2017 Published by Elsevier Ltd.
1. Introduction

Given the broad range of non-Newtonian fluids applications in
various branches of engineering sciences including oil, roller and
plastic extrusion operations, many researchers’ attention has been
drawn to the flow and heat transfer of these fluids [1]. Moreover,
the presence of nanoparticles in the fluid could result in new prop-
erties to the base fluid. For example, the presence of ZnO or TiO2

nanoparticles in the base fluid induces anti-bacterial properties
[2,3]. The presence of nanoparticles in the base fluid can directly
absorb the solar heat in the solar collectors [4,5]. In the meantime,
since heat transfer in nanofluids is higher than conventional fluids,
the enhancement of heat transfer of non-Newtonian nanofluids
and viscoelastic fluids in particular is of interest for many
researchers.
A Newtonian fluid is a substance in which the shear stress is
only a linear function of the shear rate. Accordingly, a non-
Newtonian fluid can be defined simply as a fluid without a Newto-
nian behavior. One of the non-Newtonian fluids is the viscoelastic
fluid, which has both viscous and elastic properties simultane-
ously. Viscoelastic fluids play a crucial role in chemistry, biochem-
istry and food industry. Also, viscoelastic fluid flow applications are
transmission of the oil based materials in the oil and petrochemical
industries, food production industries, manufacturing of chemicals
and detergents, polymer injection, cooling of turbine blades and so
on [1,6].

Many fluids’ behavior can be described by non-linear differen-
tial equations. There are several numerical and analytical
approaches for solving non-linear differential equations. However,
the solution of many high-order ill-posed differential equations is
still a major challenge. Unfortunately, for many non-linear differ-
ential equations, finding an exact analytical solution is not easy
and is often impossible due to nonlinearity of the equations. In this
case, an estimate of the solution can be obtained using a series
semi-analytical method, Homotopy method and/or numerical
methods such as Euler, Runge-Kutta, finite difference, finite
volume, etc. Depending on the differential equations and their
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behavior, some methods are more appropriate than others and
some methods may not reach the correct solution.

The governing equations of the viscoelastic nanofluids and heat
transfer are inherently nonlinear and mainly ill-posed at the sys-
tem boundaries. Hence, obtaining a numerical solution for these
fluids faces serious challenges. In these equations, the term related
to the highest derivative in the differential equation is zero at the
boundary. In this case, most of the conventional numerical or ana-
lytical methods fail to obtain a solution for the problem. Thus,
developing new solution methods, dealing with the governing
equations arising from the viscoelastic nanofluids is highly
demanded.

There are several analytical methods, which can deal with the
differential equations arising from the viscoelastic flows, such as
perturbation method [7], Homotopy Analysis Method (HAM) [8]
and Adomian Decomposition Method (ADM) [9].

The main disadvantage of the perturbation method is that the
method is inherently based on large and small parameters in ques-
tion known as perturbation values and it is impossible that all non-
linear problems have such perturbation values, and the method is
applied for cases that the equation is weakly nonlinear. The con-
vergence range of the power series obtained by the Adomian
decomposition method is low, and hence, it is unable to deal with
asymptotic boundary value problems. The main disadvantage of
the Homotopy analysis method is that the method is dependent
on a convergence-parameter control (h). If one selects an incorrect
parameter h, the solution may be divergent. In addition, to achieve
an appropriate solution, a large number of analytical sentences is
also needed.

In recent years, a number of researchers have investigated vis-
coelastic fluids equations in boundary layers. Sadeghi and Sharifi
[10] proposed a similarity solution to the boundary layer equations
for a viscoelastic fluid of second order flowing over a moving plate.
Cortell [11] has investigated the viscoelastic fluids’ flow and heat
transfer over a moving semi-infinite horizontal plate. Cortell iden-
tified an important behavior for viscoelastic flows, which shows
that a change in the behavior of the fluid occurs at a critical Weis-
senberg number (approximately equal to one). Munawar et al. [12]
published a comment on the study of Cortell [11] and demon-
strated that the governing differential equations for flow of vis-
coelastic flows derived Sadeghi and Sharifi [10] that has also
been used in Cortell [11] study needs some corrections. Then they
[12] provided a new solution for the corrected form of the govern-
ing equation using the Homotopy Analysis Method (HAM). The
results reported by Munawar et al. [12] do not confirm the pres-
ence of a critical Weissenberg number about unity. Tonekaboni
et al. [13] have investigated the boundary layer flow of a second-
order viscoelastic fluid. They utilized the fourth-order predictive-
corrective finite-difference method to solve the governing equa-
tions. They reported that by increasing the fluid elasticity, the wall
shear stress is increased for a stagnation-point flow and is
decreased for the Blasius and Sakiadis flows. Ramesh et al. [14]
have studied the mixed convection boundary layer flow over an
inclined stretching surface immersed in an incompressible vis-
coelastic fluid, and found that velocity decreases as the value of
angle of inclination increases. Duwairi et al. [15] examined the vis-
coelsatic boundary layer flow and the heat transfer near a vertical
isothermal impermeable surface. They have shown that the coeffi-
cients of friction and heat transfer enhance for higher viscoelsatic
parameters.

The term nanofluid was introduced by Choi [16] and is said to
be a new type of fluid in which metal or non-metal particles smal-
ler than 100 nm in size are in suspended in a base fluid. The
increase in the resulting mechanical properties such as the thermal
conductivity coefficient, fluid viscosity and the heat transfer coef-
ficient is unique a property of these fluids compared to base fluids
[17]. Buongiorno [18] has investigated different heat transfer
mechanisms of nanofluids displacement by performing different
experiments. He concluded that high heat transfer increase in
nanofluids is mainly caused by Brownian motion of particles and
thermophoresis effect. It is noteworthy that thermophoresis effect
is implied to the force applied opposed to temperature gradient on
particles existing in solution. There are excellent studies on differ-
ent engineering aspects of nanofluids such as boundary layer flows
[19,20] natural convection [21–23], mixed convection flows
[24–27], heat transfer in porous media [28], Newtonian and
non-Newtonian nanofluids [29–32], heat transfer with radiation
[33–35] and heat transfer with phase change [36]. The magnetic
nanofluids are a new type of nanofluids flow in which the flow
and heat transfer is under the significant influence of a magnetic
field. The effect of a magnetic field on the flow and heat transfer of
nanofluids has been studied in the literature [37,38]. There are also
types of nanofluids containing magnetic nanoparticles [39–41].

Sheu et al. [42] have investigated convective heat transfer in
boundary layer flows of viscoelastic nanofluids. They modeled
the viscoelastic nanofluids rheological behavior by using
Oldroyd-B model and examined natural convection heat transfer.
Yang et al. [43] have experimentally measured the viscosity and
the thermal conductivity of a viscoelastic-fluid-based nanofluid
(a viscoelastic fluid as the base fluid and copper nanoparticles).
Goyal et al. [44] have theoretically studied the flow and heat trans-
fer of a second-order viscoelastic nanofluid over a stretching sheet.
They have solved the governing equations of a viscoelastic nano-
fluid over a stretching sheet with a heat source/sink, under the
action of a uniform magnetic field, orientated normally to the plate
using the finite element method.

Artificial neural networks are systems and new computational
methods for machine learning and its application to predict the
output responses of complex systems. The main idea of these net-
works is inspired by biological nervous system performance. Arti-
ficial neural networks have shown very high performance in
estimation and approximation of functions [45].

Optimization is a mathematical tool that is used to find the
solution of many questions on how to solve various problems. To
this end, researchers and engineers in recent years have simulated
methods of artificial intelligence and computational method of
these methods to the logic of organisms’ life by studying the life-
style of some of organisms and their logics. The birds’ lifestyle that
is the pattern of particle swarm optimization [46] and also bees’
logic of life that is the pattern of a bee colony optimization [47]
are two examples of artificial intelligence optimization methods.

Recently, new synthetic methods have been developed by
which differential equations governing engineering problems can
be solved. Lee and Kang [48] used parallel processing computers
to obtain an approximate solution to the first-order differential
equations. In another method, Meade and Fernandez [49] and
Lagaris et al. [50] using a neural network have solved ordinary
and partial differential equations. Malek and Shekari Beidokhti
[51] used a combination of neural network and intelligent opti-
mization methods for solving higher-order differential equations.
They solved higher-order differential equations by using a neural
network and Nelder-Mead optimization.

In a new idea and by using intelligent optimization methods,
the non-linear differential equations governing viscoelastic
nanofluids for the Sakiadis flow and heat transfer problem can be
solved. The method combines the neural network and intelligent
optimization algorithms and resolves the shortcomings of the pre-
vious methods. The present method can be utilized for solving
high-order boundary value problems and nonlinear differential
equations and there is no need for small parameters, linearization
or convergence parameter control. Regarding the optimized
structure of the trial solution used in this method, the solution is
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convergent. In addition, this method is very powerful, yet simple to
solve differential equations. The aim of the present study is to solve
the viscoelastic nanofluids ill- posed equations using the combined
method of neural network and intelligent optimization (Fig. 1).

2. Artificial neural networks

The main idea of the neural networks is inspired by the way the
biological nervous system performs. In fact, it can be stated that
the neural network is a form of artificial intelligence that mimics
the learning process of a human brain. The system consists of a
large number of inter-connected processing elements called neu-
rons, that each neuron performs a simple command [45].

A data structure can be designed by the help of a programming
knowledge that simulates the operation of a neuron. Then, an
intended network is learnt by forming a network of inter-
connected artificial neurons and using a learning algorithm. This
structure was introduced in 1962 CE by Rosenblatt [52], showing
a high performance in estimation and approximation of functions
[53].

In multi-layer neural networks, the input layer receives data,
and there are many hidden layers, that receive data from the pre-
vious layers, and finally, the output layer which shows the result of
the calculations. Fig. 2 shows an example of a multi-layer neural
network.

One of the major factors in neural network is the network topol-
ogy. One of the simplest and yet most efficient arrangements of the
neural network is the Multi-Layer Perceptron or MLP which is a
part of forward networks and is formed of an input layer, one or
more hidden layers and an output layer. In this structure, all the
neurons in one layer are connected to all neurons in the next layer
[45]. In order to increase the number of layers of a perceptron, the
number of its hidden layers should be increased. A multi-layer per-
ceptron model is shown in Fig. 3.

The most important application of multi-layer neural networks
is their ability to approximate the functions. According to Kol-
mogorov existence theorem [54], each continuous function of n
variables can be approximated by a three-layer perceptron with
Fig. 1. An artificial neural

Fig. 2. Multi-layered
n � (2n + 1) nodes. Thus, it can be stated that the accuracy of func-
tions approximation do not depend on the number of the network
hidden layers, but it depends entirely on the number of hidden
layer neurons. Fig. 4 shows the neural network with three layers
(input layer, hidden layer and output layer) with one input (x),
one hidden layer with H neuron and one output N (x, p). In a per-

ceptron, the output is N ¼PH
i¼1v isðziÞ where zi = wix + bi and wi, bi

and vi are weight parameters of the neural network and s is an
arbitrary sigmoid function.

In this study, the multi-layer perceptron is used for forming a
model of (a function of many variables) of input data. Here, a neu-
ral network training minimizes the error function. Thus, the neural
network is allowed to use the theory of differential equations to
form a function including neural network adjustable variables
[51]. By minimizing this function, optimized adjustable variables
are obtained for the desired multi-layer perceptron. The analytic
function can be used to compute the solution of a differential
equation.
3. Particles Swarm optimization algorithm (PSO)

The Particles Swarm Optimization method which acts based on
a collective search and is simulated based on social behavior of a
group of birds, is presented by Eberhart and Kennedy [46]. In this
method, a group of particles searches collectively in the domain
of the possible solutions, and during the search, the particles
exchange local information with other particles. Naturally, this col-
lective search can result in a better solution than an individual
search.

In fact, in general, it can be said that the PSO method is a
method of global minimization that can be used to face problems,
which have a point or level in n-dimensional space of the solution.
In this method, a group of particles is formed and an initial velocity
is assigned to each of them. Also, communication channels are con-
sidered between the particles. Then, these particles move in the
solution domain. Over time, the particles are accelerated toward
the particles having values that are more favorable.
network (perceptron).

neural networks.



Fig. 3. A multi-layered perceptron.

Fig. 4. A three-layered neural network.
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In the PSO method, each particle has a position and a velocity,
and the motion of the particle is adjusted in the search space
according to personal information (the best position the particle
has achieved so far) and social information (the best position
obtained by other particles). In the PSO method, each particle i
has a position Zi and velocity vi which is updated in in each search
step:

v i
! ¼ x v i

! þc1r1i qi

! � Zi

!� �
þ c2r2i qg

! � Zi

!� �
ð1Þ

wherex is weight coefficient, qi

!
is the best position the particle has

achieved so far, qg

!
is the best position in the overall population, r1

and r2 are random numbers between [0–1] which cause solution
method get out of definite method, c1 and c2 are constant positive
coefficients called acceleration coefficients that determine the share
of personal information and social information relates parts. The
position of each particle at each step is updated by adding the veloc-
ity vector to the position vector:

Zi

!
¼ Zi

!
þv i

! ð2Þ
Among the important parameters in the PSO algorithm, it can

be referred to the weight coefficient x, the maximum number of
iteration (t) and the initial population (n). More details about the
swarm optimization method can be found in [55,56].

4. Mathematical formulation

In most cases, the basic equations of viscoelastic fluids are so
complex that they cannot be used in a theoretical analysis. Among
the variety of models available, the second-order fluid model can
be considered as of the most interest. One of the important fea-
tures of the second-order fluid is that its viscosity is constant
as a Newtonian fluid, and thus some of un-necessary complex
effects can be neglected [10]. The fundamental equation of an
incompressible viscoelastic fluid of second-order in the most gen-
eral case can be written as follows [13]:

s ¼ �pI þ lA1 þ a1A2 þ a2A
2
1 ð3Þ

In the above equation, s is the stress tensor, I is the unit tensor,
l is the viscosity, a1 and a2 are stress coefficients and A is the kine-
matics stress tensor and is obtained from the following equation
[10]:

A1 ¼ grad V þ ðgrad VÞT

A2 ¼ dA1
dt þ ðgrad VÞTA1 þ A1ðgrad VÞ

ð4Þ

In the above equation, V is velocity and d/dt is the material
derivative. Experiments show that the following relations are
applicable for second-order fluids [10]:

lP 0; a1 6 0; a1 þ a2–0 ð5Þ
Considering Eqs. (4) and (5), the stress components in steady

conditions are [13]:

sij ¼ 2l0dij � 2K0
Ddij

Dt
� @v j

@xm
dim � @v i

@xm
dmj

� �
ð6Þ

where dij can be obtained as follows:

dij ¼ 1
2

@Vi

@xj
þ @Vj

@xi

� �
ð7Þ
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Hence, the following equation is presented for the shear stress
of the viscoelastic nanofluid over a moving flat plate [13]:

sxy ¼ l0
@u
@y

� K0 u
@2u
@x@y

þ v @2u
@y2

þ v @u
@x

@u
@y

" #
ð8Þ

The two-dimensional, steady, incompressible and quiescent
flow of a viscoelastic nanofluid is considered over a hot flat plate.
In Sakiadis flow, it is assumed that the fluid is static and the flat
plate is moving at a constant velocity of U in parallel with the plate.
The x-axis is along the plate and the y-axis is perpendicular to it. It is
assumed that the plate is held at the constant temperature and con-
centration of Tw and Cw, respectively. Far from the plate where the
fluid is quiescent, the temperature and concentration of the nano-
fluid are the ambient temperature (T1) and concentration (C1) of
the viscoelastic nanofluid. In addition, it is assumed that the
nanoparticles and the viscoelastic fluid are in local thermal equilib-
rium. It is assumed that the temperature difference is limited and
hence, the thermodynamic properties of the nanofluids are con-
stant and the pressure gradient and the external forces are assumed
to be negligible. Following the Buongiorno model, the two mecha-
nisms of Brownian motion and thermophoresis are taken into
account for the heat transfer of a nanofluid. Given the above
assumptions, the governing equations are as follows [18,44,57]:

@u
@xþ @v

@y ¼ 0

u @u
@xþv @u

@y ¼U1 dU1
dx þ m @2u

@y2

� �
� k0

q u @3u
@x@y2 þv @3u

@y3 þ @u
@x

@2u
@y2 � @u

@y
@2u
@x@y

h i
u @T

@xþv @T
@y ¼ amr2Tþ ðqcÞp

ðqcÞf

� �
DB

@C
@y

@T
@yþ DT

T1
@T
@y

� �2� �
u @C

@xþv @C
@y ¼DB

@2C
@y2 þ DT

T1
@2T
@y2

ð9Þ

subject to the following boundary conditions:

@y ¼ 0 : u ¼ U; v ¼ 0; T ¼ Tw; C ¼ Cw

@y ¼ 1 : u ¼ 0; v ¼ 0; T ¼ T1; C ¼ C1
ð10Þ

where in these equations, u and v are the velocity components
along the x, y directions; m is the kinematic viscosity, k0 is the vis-
coelastic parameter (Weissenburg number), qf is the basic fluid
density, qp is the density of nanoparticles, a is the thermal diffusion
coefficient, C is the concentration of nanoparticles and DB and DT are
the Brownian and thermophoresis diffusion coefficients, respec-
tively. In order to transform the governing partial differential equa-
tions into a set of ordinary differential equations, the following
similarity variables are introduced [44]:

u ¼ U1f 0ðgÞ; VðgÞ ¼ U1
2
ffiffiffiffiffiffiffi
Rex

p ðgf 0 � f Þ;

gðx; yÞ ¼
ffiffiffiffiffiffiffi
U1
mx

r
y; hðgÞ ¼ T � T1

Tw � T1
; /ðgÞ ¼ C � C1

Cw � C1
ð11Þ

In the above equation, g is the similarity variable. Invoking Eqs.
(6), (7) and (11), the governing equations are achieved as follows:

f 000 þ 1
2
f 0f 00 þ K

2
ff iv þ 2f 0f 000 � f 002
� �

¼ 0

1
Pr

h00 þ fh0 þ Nbh0/0 þ Nth02 ¼ 0

/00 þ Lef/0 þ Nt
Nb

h00 ¼ 0 ð12Þ

Subject to the following transformed boundary conditions:

f ¼ 0; f 0 ¼ 1; h ¼ 1; / ¼ 1 : g ¼ 0
f 0 ¼ 0; h ¼ 0; / ¼ 0 : g ! 1 ð13Þ

where the prime represents an ordinary derivative with respect to g
and the non-dimensional parameters are as follows:
Pr ¼ t
am

; Le ¼ t
DB

; Nb ¼ ðqCÞpDBðCw � C1Þ
ðqCÞft

;

Nt ¼ ðqCÞpDTðTw � T1Þ
ðqCÞf T1t

ð14Þ

where Pr, Le, Nb and Nt respectively denote the Prantl number,
Lewis number, Brownian motion parameter and the thermophore-
sis parameter. The shear stress at the wall as well as the Nusselt
number and the Sherwood number are significant parameters of
interest for flow, heat and mass transfer of nanofluids which are
introduced as [57]:

Nu ¼ xqw

kðTw � T1Þ ; Sh ¼ xqm

DBðTw � T1Þ ð15Þ

where qw and qm are the wall heat and mass fluxes, respectively.
Using the similarity variables in Eq. (11), the following equations
are obtained:

sxy
		
y¼0 ¼ ð1� KÞl0U1

ffiffiffiffiffiffiffi
U1
mx

r
f 00ð0Þ; Re

�1
2

x Nux

¼ �h0ð0Þ; Re
�1
2

x Shx ¼ �/0ð0Þ ð16Þ
It is noteworthy that Kuznetsov and Nield [57] referred to

Rex
�1/2Nux and Rex

�1/2Shx as the reduced Nusselt number
(Nur = �h0 (0)) and the reduced Sherwood number (Shr = �/0 (0)),
respectively.

5. Solution method

Consider the transformed form of the governing equations of a
second-order fluid in Sakiadis flow, heat and mass transfer,
expressed by Eq. (12) subject to Eq. (13). To solve these equations,
the domain of the solution (D) is discretized with m = 61 points
with equal distance. In this case, the governing equations at each
point can be written as:

f 000ðgiÞ þ
1
2
f ðgiÞf 00ðgiÞ þ

K
2

f ðgiÞf ivðgiÞ þ 2f 0ðgiÞf 000ðgiÞ � f 002ðgiÞ
� �

¼ 0

1
Pr

h00ðgiÞ þ f ðgiÞh0ðgiÞ þ Nbh0ðgiÞ/0ðgiÞ þ Nth02ðgiÞ ¼ 0

/00ðgiÞ þ Lef ðgiÞ/0ðgiÞ þ
Nt
Nb

h00ðgiÞ ¼ 0 ð17Þ

where the boundary conditions are provided in Eq. (13). yT g; P1

!� �
,

hT g; P2

!� �
and /T g; P3

!� �
are approximate solutions of the above

equations, where the a subscript T denotes the trial function and
P1, P2 and P3 are adjustable parameters involving weights and biases
of three-layered feed-forward neural networks (as shown in Fig. 4).
For each of the above equations, a trial function can be considered.
Thus, the error equation is obtained for each of the equations as
follows:

E1ð~PÞ ¼
Xm
i¼1

d3yT gi; P1

!� �
dg3 þ 1

2
yT gi; P1

!� �d2yT gi; P1

!� �
dg2

2
664

þ K
2

yT gi; P1

!� � d4yT gi; P1

!� �
dg4 þ 2

dyT gi; P1

!� �
dg

d3yT gi; P1

!� �
dg3

0
BB@

�
d2yT gi; P1

!� �
dg2

0
BB@

1
CCA

21CCCA
3
7775 ¼ 0



Table 1
Obtained optimal adjustable parameters in trial function yT ðg;~P1Þ when Le = Pr = 10,
Nb = Nt = 0.1 and K = 0.2.

Index (i) Adjustable parameters in ANN

wi bi vi

1 �0.2409 �9.7814 0.1522
2 0.6364 1.9691 �0.3730
3 �0.0110 �1.1142 �0.0558
4 0.6351 2.0410 0.3859
5 0.0200 �0.8320 �0.0021
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E2ð~PÞ ¼
Xm
i¼1

1
Pr

d2hT gi; P2

!� �
dg2 þ 1

2
yT gi; P1

!� � dhT gi; P2

!� �
dg

2
664

þ Nb
dhT gi; P2

!� �
dg

d/T gi; P3

!� �
dg

þ Nt
dhTðgi; P2

!
Þ

dg

0
@

1
A

2
3
775 ¼ 0

E3ð~PÞ ¼
Xm
i¼1

d2/T gi; P3

!� �
dg2 þ Le

2
yT gi; P1

!� �d/T gi; P3

!� �
dg

þ Nt
Nb

d2hT gi; P2

!� �
dg2 ¼ 0 ð18Þ

where the boundary conditions should also be satisfied. In order to
convert the equation to an unconstrained optimization problem,
each of the trial solutions is considered as the sum of the two parts.
The first part satisfies the initial/boundary conditions. The second
part of the solution includes adjustable parameters of the neural
network that are obtained by the optimization method. In order
to calculate the error function, trial solution derivatives to g are
required. Among the various transfer functions that are used in neu-
ral networks, Sigmoid function s = (1/1 + exp (�g)) is used in this
study. Considering the boundary conditions in the Sakiadis prob-
lem, i.e. Eq. (13), the trial solutions for flow, heat and mass transfer
are considered as follows:

yT ¼ a0g3 � 1þ 3a0b
2

2b

 !
g2 þ gþ g2ðg� bÞ2N g; p1

!� �

hT ¼ a1g3 þ a2g2 � 1þ a1b
3 þ a2b

2

b

 !
gþ 1þ gðg� bÞN g;p2

!� �

/T ¼ hT ¼ a3g3 þa4g2 � 1þa3b
3 þ a4b

2

b

 !
gþ1þgðg�bÞNðg;p3

! Þ

ð19Þ
In Eq. (19), a0 is the adjustable parameter of the trial solution of

the flow function, a1 and a2 are adjustable parameters of the trial
solution of the temperature function and a3 and a4 are adjustable
parameters of the trial solution of the concentration function and
are determined by the help of the optimization method.

N g; P1

!� �
, N g; P2

!� �
and N g; P3

!� �
are three-layer perceptron neu-

ral networks that includes adjustable parameters of the neural net-
work. The above equation satisfies all problem boundary
conditions in a Sakiadis flow (i.e. Eq. (13)). Now, Eq. (18) shows
an unconstraint optimization problem in which yT, hT and /T, satis-
fying the boundary conditions, are introduced in Eq. (19). Now, an
optimization method is required to find the optimum values of a0

to a4 as well as the network parameters P1

!
to P3

!
regarding to the

objective function of Eq. (18).

6. Results and discussion

The optimizations algorithm and the objective function of
Eq. (18) are coded in MATLAB 2009. The physical value of infinity
(g1) is denoted by b and is assumed large enough to satisfy the
asymptotic boundary conditions (i.e. b = 6). Five neurons (H = 5)
for each trial function (i.e. yT, hT and /T) are considered, and
the objective functions were evaluated as the sum of the error in
61 uniform points in the domain of the solution (m = 61). The
following default parameters [56] were found suitable for the
PSO by experiment:

The initial population = 150, weighted coefficient = 0.9, the
acceleration factor = 2.5, the maximum number of iteration = 150.

The governing equations (Eq. (12)) were solved for the following
combination of the non-dimensional parameters K = 0.2,
Le = Pr = 10 and Nt = Nb = 0.1 by optimizing Eq. (18) using the PSO
method. The adjustable parameters of the first part of the flow func-
tion trial solution (i.e. a0 to a4) are obtained as a0 = 0.0137,
a1 = 0.0356, a2 = 0.4316, a3 = 0.0127 and a4 = 0.2755. The network

parameters for P1

!
are also obtained and summarized in Table 1. In

this case, the values of the error for the trial functions are equal to

E1 P1

!� �
= 5.55 � 10�3, E2 P1

!� �
= 3.84 � 10�2 and E3 P1

!� �
=

1.84 � 10�2.
Considering the value of a0 and the network parameters in

Table 1, the obtained solution, representing the flow of the vis-
coelastic nanofluid, is summarized as follow:

yTðg;p1
! Þ ¼ 0:0137g3 �0:2066g2 þgþg2ðg�6Þ2

� 0:1522
1þ e0:2409gþ9:7814

þ �0:3730
1þ e�0:6364g�1:9691

þ �0:0558
1þ e0:0110gþ1:1142

�

þ 0:3859
1þ e�0:6351g�2:0410 þ

�0:0031
1þ e�0:0200gþ1:8320

�
ð20Þ

The temperature and concentration equations are also solved
using HNNPSO where the obtained functions can be summarized
as follows:

hTðg;p2
! Þ¼ 0:0356g3 þ0:3416g2 �4:0378gþ1þgðg�6Þ

� 0:6078
1þ e1:8636g�2:1330 þ

�1:3411
1þ e0:1418gþ0:0070 þ

0:4939
1þ e2:6321g�0:4734

�

þ 1:0210
1þ e�1:7557gþ1:5879

þ 0:2102
1þ e�1:4388g�3:8562

�
ð21Þ

/T g;p3
!� �

¼ 0:0127g3 þ0:2755g2 �2:2768gþ1þgðg�6Þ

� 0:0547
1þ e�2:6320gþ3:9761 þ

�0:6146
1þ e�0:1793gþ0:7671 þ

0:2344
1þ e0:9597g�3:8594

�

þ 0:1274
1þ e�4:8882gþ1:3620 þ

0:6763
1þ e�0:6325gþ2:3988

�
ð22Þ

The results of the viscoelastic fluid Sakiadis flow solution using
the neural network-intelligent optimization method for three, four
and five neurons are shown in Table 2. As it can be seen, by increas-
ing the number of neurons in the hidden layer of the neural
network from three neurons to five neurons, better results are
obtained. According to the survey, increasing the number of neu-
rons to more than five neurons does not cause much change in
the accuracy of the solution obtained.

Table 3 shows a comparison between the results of the
Homotopy analysis method [12], forth-order predictor-corrector
finite-difference method [13] and the neural network-intelligent
optimization method (with 5 neurons in the present study) for



Table 4
Variation of Nur and Shr as a function of Weissenberg number (K) for Pr = Le = 10 and
Nb = Nt = 10.

Weissenberg number (K) Nur Shr

0.0 0.6904 1.5704
0.2 0.6881 1.5699
0.4 0.6668 1.6622
0.6 0.6895 1.5645

Fig. 5. Effect of various Weissenberg number on f(g).

Fig. 6. Effect of various Weissenberg number on f 0(g).

Table 3
Comparison between results obtained via HNNPSO method (5 nonrons), fourth-order predictor-corrector method and HAM for different Weissenberg number (K).

Weissenberg number (K) �f00 (0)

Fourth-order predictor-corrector method [13] HAM [12] HNNPSO % Error = f ðgÞNM�f ðgÞHNNPSO
f ðgÞNM

			 			� 100

0.0 0.44349 – 0.44255 0.21
0.2 – 0.44975 0.45294 0.71
0.4 0.45658 0.45681 0.45871 0.46
0.5930 – 0.46491 0.46501 0.01
0.75 – 0.47261 0.47082 0.38
0.8 0.47529 – 0.7493 0.01
0.85 – 0.47820 0.47721 0.21
0.95 – 0.48445 0.47929 1.06
1.2 0.50525 – 0.49169 2.6

Table 2
Comparison between results obtained via HNNPSO method for 3 neurons, 4 neurons and 5 neurons.

Weissenberg number (K) �f00 (0)

Fourth-order predictor-corrector method [13] HNNPSO

3 neurons 4 neurons 5 neurons

0.0 0.44349 0.45031 0.44695 0.44255
0.4 0.45658 0.44404 0.45466 0.45871
0.8 0.47529 0.47135 0.47173 0.47493
1.2 0.50525 0.48912 0.48378 0.49169
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the case of a pure fluid for different values of the Weissenberg
number. The results of this table indicate the accuracy of the pre-
sent solution using HNNPSO.

It is worth noticing that the error in Table 3 is measured by
comparison with the results of the fourth-order predictor-
corrector finite-difference method reported by Tonekaboni et al.
[13]. However, in some cases in which the values of f00 (0) were
not reported by Tonekaboni et al. [13] the values f00 (0) evaluated
using the HAM and reported by Munawar et al. [12] were utilized
to estimate error in Table 3. In the evaluation of the error in Table 3,
the subscripts of NM and HNNPSO indicate the numerical solution
(reported by Tonekaboni et al. [13]) and the results of the present
study, respectively. As seen, the results of Table 3 show good
agreement between the results of the present study and those
reported by previous researchers. It is worth noticing that using
the present method would also results in analytical expressions
for flow, heat and mass transfer. According to the results presented
in Table 3, it is clear that by increasing the fluid elasticity (K), the
value of f00 (0) slightly increases, and thus, according to Eq. (16),
the value of the wall shear stress decreases. This is because of
the fact that the wall shear stress is a decreasing function of K



Fig. 10. Effect of various Weissenberg number on u(g) when Le = Pr = 10 and
Nb = Nt = 0.1.

Fig. 7. Effect of various Nb on h(g) when K = 0.5930, Le = Pr = 10 and Nt = 0.1.

Fig. 8. Effect of various Nb on u(g) when K = 0.5930, Le = Pr = 10 and Nt = 0.1.

Fig. 9. Effect of various Weissenberg number on h(g) when Le = Pr = 10 and
Nb = Nt=0.1.

A. Noghrehabadi et al. / Thermal Science and Engineering Progress 4 (2017) 150–159 157
and an increasing function of f00 (0). This result has an important
industrial application where less force is needed to pull a moving
belt in a viscoelastic fluid by increasing the fluid elasticity, which
increases the speed of production.

The values of the reduced Nusselt number and the reduced
Sherwood number are presented in Table 4 for the case of a vis-
coelastic nanofluid when Pr = Le = 10 and Nb = Nt = 10. The results
show that the reduced Nusselt number is almost a decreasing func-
tion of the fluid elasticity (Weissenberg number) when the values
of the fluid elasticity are small (K � 0.4). The effect of different non-
dimensional parameters on the non-dimensional stream function,
flow velocity, temperature and concentration of a viscoelastic
nanofluid are plotted in the Figs. 5–9. Figs. 5 and 6 depict the
stream function and the velocity profiles (f) and (f0) for different
values of the Weissenberg number.

As seen in Figs. 5 and 6, it is clear that the increase of the fluid
elasticity (K) decreases the boundary layer thickness. In other
words, by increasing the Weissenberg number, the fluid’s normal
stresses tend to accelerate the fluid near the plate, but they would
decrease the penetration of the fluid motion into the quiescent part
of the ambient fluid. Figs. 7 and 8 show respectively profiles for the
non-dimensional temperature distribution and concentration of a
viscoelastic nanofluid for selected values of the Brownian motion
parameter. As it can be seen, by increasing the Brownian motion
parameter, the fluid temperature and the nanoparticles concentra-
tion are decreased. Fig. 7 depicts that the decrease of the Brownian
motion parameter significantly increases the slope of the temper-
ature profiles at the surface, and hence, it results in augmentation
of heat transfer from the surface.

Figs. 9 and 10 present the dimensionless temperature distribu-
tion and nanoparticles concentration of a viscoelastic nanofluid for
selected values of the Weissenburg numbers, respectively. These
figures indicate that the effect of variation of the Weissenberg
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number (fluid elasticity change) on the boundary layer thickness is
not significant. This is because of the fact that the variation of the
Weissenberg number smoothly changes the velocity profiles, and
consequently, the variation of the velocity profiles affects the tem-
perature and concentration profiles. Hence, the effect of variation
of the Weissenberg number on the temperature and concentration
profiles is almost negligible.

7. Conclusion

The problem of boundary layer flow and heat and mass transfer
of viscoelastic nanofluids for the Sakadis problem was analyzed. A
similarity solution approach was utilized to transform the govern-
ing partial differential equations into a set of non-linear high-order
ordinary differential equations. A new method using the artificial
neural network and the intelligent optimization algorithm
(HNNPSO) was utilized to obtain the solution expressions for the
boundary layer profiles. The solution results were compared with
the results of the fourth-order predictor-corrector finite-
difference method and the Homotopy analysis method for the case
of a regular fluid. The results indicated the robustness and the
accuracy of the present method. It was found that using a very
few number of neurons could provide acceptable accuracy. The
solution results for flow, heat and mass transfer of viscoelastic
nanofluids indicated that by increasing the fluid elasticity, the
value of f00 (0) was increased, and the value of the wall shear stress
was decreased. However, the variation of the Weissenberg number
(K) did not show a significant effect on the thermal and concentra-
tion boundary layer thicknesses. The decrease of the Brownian
motion parameter boosted the heat transfer from the plate.
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