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In this work, the effects of the presence of a heat sink and a heat source and their lengths and locations
and the entropy generation on MHD mixed convection flow and heat transfer in a porous enclosure
filled with a Cu-water nanofluid in the presence of partial slip effect are investigated numerically. Both
the lid driven vertical walls of the cavity are thermally insulated and are moving with constant and
equal speeds in their own plane and the effect of partial slip is imposed on these walls. A segment of the
bottom wall is considered as a heat source meanwhile a heat sink is placed on the upper wall of cavity.
There are heated and cold parts placed on the bottom and upper walls, respectively, while the remaining
parts are thermally insulated. Entropy generation and local heat transfer according to different values
of the governing parameters are presented in detail. It is found that the addition of nanoparticles
decreases the convective heat transfer inside the porous cavity at all ranges of the heat sink and
source lengths. The results for the effects of the magnetic field show that the average Nusselt number
decreases considerably upon the enhancement of the Hartmann number. Also, adding nanoparticles to
a pure fluid leads to increasing the entropy generation for all values of D for λl = − λr = 1. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4981911]

NOMENCLATURE

B = Dimensionless heat source, b/H
B0 = Magnetic field strength, T
Be = Bejan number
b = Length of heat source, m
Cp = Specific heat, J kg K−1

D = Dimensionless heat source position
Da = Darcy number, Da = K/H2

d = Location of heat sink and source, m
H = Length of cavity, m
Ha = Hartmann number, B0L

√
σf /ρf νf

K = Permeability of porous medium, m2

k = Thermal conductivity, W m�1 K�1

N = slip constant
Nu = Local Nusselt number, hH/k
Num = Average Nusselt number of heat source
p = Fluid pressure, Pa
P = Dimensionless pressure, P = p

ρnf V2
0

Pr = Prandtl number, vf /αf ,
Q0 = Heat generation coefficient, W m�2

Ra = Rayleigh number, gβf (Th − Tc) H3/αf ϑf
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Ri = Richardson number, Ri = Gr/Re2

S = Entropy generation, W K�1 m�3

S1, Sr = Dimensionless partial slip parameters,
T = Temperature, K
T0 = Reference temperature (Th + T c)/2
Tc = Cold wall temperature, K
Th = Heated wall temperature, K
u, v = Velocity components in x, y directions, m s�1

u = Velocity vector
U, V = Dimensionless velocity components, u/V0, v/V0

V0 = Lid velocity m s�1

x, y = Cartesian coordinates, m
X, Y = Dimensionless coordinates, x/L, y/L

Greek symbols
α = Thermal diffusivity, m2 s - 1, k/ρ cp

β = Thermal expansion coefficient, K�1

φ = Solid volume fraction
σ = Effective electrical conductivity, s m�1

θ = Dimensionless temperature, (T � T c)/(Th � TC)
µ = Dynamic viscosity, N s m�2

λ = Constant moving parameter
ν = Kinematic viscosity, m2 s �1

ρ = Density, kg m�3

ε = Porosity
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Subscripts
c = Cold
0 = Reference
f = Pure fluid
h = Hot
m = Average
nf = Nanofluid
p = Nanoparticle
s = Porous matrix
r = Right
l = Left

Vectors
J = Electric current density, A m�2

B* = External magnetic field, T

I. INTRODUCTION

Mixed convection in a cavity is an important phenomenon
in many transport processes in nature and in engineering
devices. Indeed, the combination of forced and natural con-
vections has been recommended for high heat dissipating
electronic components, where natural convection is notable
for providing effective cooling. Significance of the mixed con-
vection flow can be found in atmospheric flows, solar energy
storage, heat exchangers, lubrication technology, drying tech-
nologies, and cooling the electronic devices. A brief review of
literature shows that the study of mixed convection heat trans-
fer in enclosures has attracted remarkable attention in the past
few decades.1–6

Due to porous media dissipation area and its irregular
motion of the fluid flow around the individual beads, using
the porous media which can increase the heat transfer. On
the other hand, the low conductivity of base fluids such as
water has restricted designers. Fluids containing nano-sized
solid particles offer a possible solution to conquer this prob-
lem. The nanofluid has greater effective thermal conductivity
than based fluid. Nanofluids, a name conceived by Choi,7 in
Argonne National laboratory, are fluids consisting of solid
nanoparticles with size less than 100 nm suspended with solid
volume fraction typically less than 4%. Nanofluids can be
used to improve thermal management system in many engi-
neering applications such as transportation, micromechanics,
instrument, and cooling devices.

A relatively few papers dealing with the mixed convec-
tion of nanofluids saturated in porous media were published;
Ahmed and Pop8 studied numerically the mixed convec-
tion of nanofluid past a vertical plate using three different
nanoparticles based on the conventional model of Tiwari and
Das9 which incorporates only the nanofluid volume fraction.
Cimpean and Pop10 studied the fully developed steady-state
mixed convection flow of nanofluids in an inclined porous
channel. Hajipour and Dehkordi11 considered mixed con-
vection heat transfer of nanofluids based on the Brownian
motion and thermophoresis in a vertical channel partially filled
with highly porous medium using the Brinkman-Forchheimer
model.

Matin and Ghanbari12 studied the effects of Brown-
ian motion and thermophoresis effect on the mixed con-
vection of nanofluid in a porous channel including flow

reversal. Recently, Srinivasacharya and Kumar13 investi-
gated mixed convection along an inclined wavy surface in
a nanofluid saturated porous medium with wall heat flux.
Conjugate heat transfer of MHD non-Darcy mixed convec-
tion flow of a nanofluid over a vertical slender hollow cylin-
der embedded in porous media is investigated by Jafarian
et al.14

All the aforementioned studies are based on the first-law
analyses. Recently, the second-law based investigations have
gained attention for studying thermal systems. Entropy gen-
eration has been used as a gauge to evaluate the performance
of thermal system. The analysis of the exergy utilization and
the entropy generation has become one of the primary objec-
tives in designing a thermal system. Bejan15,16 focused on the
different reasons behind entropy generation in applied ther-
mal engineering. Generation of entropy destroys the available
work of the system. Therefore it makes a good engineering
sense of focus on the irreversibility of heat transfer and fluid
friction process. There are only a very few studies that con-
sider the second law analyzes in the presence of nanofluid
as a working fluid in porous media. The effect of heat trans-
fer in flow of nanofluids over a permeable stretching wall in
a porous medium is investigated by Sheikholeslami et al.17

They showed that an increase in the nanoparticle volume
fraction decreases the momentum boundary layer thickness
and entropy generation rate whereas the thermal boundary
layer thickness increases. Ting et al.18 studied the entropy
generation of viscous dissipative nanofluid flow in thermal
non-equilibrium porous media embedded in micro-channels.
Ismael et al.19 have studied the entropy generation due to
conjugate natural convection conduction heat transfer in a
square domain under steady-state condition. They proposed
a new criterion for the assessment of the thermal perfor-
mance. In some applications like fluoro-plastic coating (e.g.,
Teflon) which resist adhesion, the no-slip boundary condition
imposed on the tangential velocity cannot be held. Moreover,
some surfaces are rough or porous such that equivalent slip
occurs.20 A brief review of the literature21–26 shows that due
to practical importance, the study of heat transfer and fluid
flow for various geometries with partial slip boundary condi-
tions has attracted remarkable attention in the past few years.
Recently, Alizadeh et al.27 studied unaxisymmetric stagnation-
point flow and heat transfer of a viscous fluid on a moving
cylinder with time-dependent axial velocity. They also inves-
tigated MHD unaxisymmetric stagnation-point flow and heat
transfer of a viscous fluid on a stationary cylinder28 and unax-
isymmetric stagnation-point flow and heat transfer of a viscous
fluid with variable viscosity on a cylinder in constant heat
flux.29

The literature survey above led us to be sure that the
effects of the presence and locations and lengths of a heat
sink and a heat source and entropy generation on the mixed
convection of a nanofluid in porous media filled in a lid-driven
square enclosure with partial slip and subjected to a magnetic
field has not been investigated yet. Therefore, the purpose of
this work is to carry out a comprehensive numerical study
on this problem. It is believed that this study will contribute
in improving the thermal performance in some engineering
instruments.
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II. PROBLEM DESCRIPTION
AND MATHEMATICAL MODEL

The geometry of the present study, the steady two-
dimensional mixed convection of nanofluid inside a square
porous enclosure of length H filled with a nanofluid, is shown
in Figure 1. The coordinates x and y are chosen such that x
measures the distance along the bottom horizontal wall while y
measures the distance along the left vertical wall, respectively.
A heat source and a heat sink are located on a part of the bot-
tom and upper walls, respectively, with length b. Two parts of
the upper and bottom walls of the enclosure are maintained at
Tc and Th such that Th > Tc while the other parts are thermally
insulated. The left and right walls are adiabatic and move at a
constant and equal velocity V0. A magnetic field with strength
B0 is applied at an angle Φ with the horizontal direction. The
walls and the lid of the cavity are considered to be perfectly
electrically conductive.

The nanofluids used in the analysis are assumed to be
incompressible and laminar, and the base fluid (water) and the
solid spherical nanoparticles (Cu) are in thermal equilibrium.
The single phase approach is used for modeling the nanofluid
heat transfer. The porous medium is also assumed with a very
low electrical conductivity, i.e., electrically insulated porous
medium. The thermo-physical properties of the base fluid and
the nanoparticles are given in Table I. The thermo-physical
properties of the nanofluid are assumed constant except for the
density variation which is determined based on the Boussinesq
approximation. Under the above assumptions, the conserva-
tion of mass, and in the case of mixed convection, and also
the conservation of energy equations can be written as in
Refs. 30–32,

∇u = 0, (1)

ρnf

ε2
u .∇u = −∇p −

µnf

K
u +

µnf

ε
∇2u

+ ρnf βnf (T − T0)g + J × B∗, (2)

FIG. 1. Schematic diagram of the problem under consideration.

TABLE I. Thermo-physical properties of water and nanoparticles.42

Property Water Copper (Cu)

ρ 997.1 8933
Cp 4179 385
k 0.613 401
β 21 × 10�5 1.67 × 10�5

σ 0.05 5.96 × 107

u · ∇T = αeff ,nf∇
2T +

Q0

(ρCp)nf
, (3)

∇2
Ω = B∗ · ∇ × u, (4)

J = σnf
(
−∇Ω + u × B∗

)
. (5)

Here, u = (u, v) is the velocity vector, K is the permeability of
the porous medium, g is the gravitational acceleration vector,
µnf is the nanofluid dynamic viscosity, p is the pressure, J
is the electric current, B* is the external magnetic field, ρnf

is the density of the nanofluid, Tis is the temperature of the
nanofluid, T0 is the average temperature (T c + Th)/2, Ω is the
electric potential, σnf is the electrical conductivity, βnf is the
coefficient of thermal expansion of the nanofluid, and (Cp)nf

is the heat capacitance of the nanofluid. Here, αeff , nf is the
effective thermal diffusivity of the nanofluid and the porous
medium.

Sreenivasan et al.33 have discussed the effect of magnetic
field on the flow motion and concluded that for the case of
a two-dimensional steady flow and where the magnetic field
lies in the plane of motion, the term B∗ · ∇ × u is zero. Hence,
Eq. (4) reduces to

∇2
Ω = 0. (6)

Taking into account that the enclosure walls are perfectly
electrically conductive, they could provide a very low resis-
tance guide path for the induced current. Therefore, it can be
concluded that the electric field vanishes everywhere in the
cavity.34 Invoking these conditions, the term J × B* in the
momentum equation reduces to σnf B2

0u.35

The governing equations can be expressed as follows:

∂u
∂x

+
∂v

∂y
= 0, (7)

1

ε2

(
u
∂u
∂x

+ v
∂u
∂y

)
= −

1
ρnf

∂p
∂x

+
υnf

ε

(
∂2u

∂x2
+
∂2u

∂y2

)
−
υnf

K
u

+
σnf B2

0

ρnf
(v sinΦ cosΦ − u sin2

Φ), (8)

1

ε2

(
u
∂v

∂x
+ v

∂v

∂y

)
= −

1
ρnf

∂p
∂y

+
υnf

ε

(
∂2v

∂x2
+
∂2v

∂y2

)
−
υnf

K
v

+
σnf B2

0

ρnf
(v sinΦ cosΦ − u sin2

Φ)

+
(ρβ)nf

ρnf
g(T − T0), (9)
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u
∂T
∂x

+ v
∂T
∂y
= αeff ,nf

(
∂2T

∂x2
+
∂2T

∂y2

)
+

Q0

(ρCp)nf
(T − T0),

(10)

where u and v are the velocity components along the x-axis
and y-axis, respectively, T is the fluid temperature, p is the
fluid pressure, g is the gravity acceleration, Q0 is the heat
generation coefficient, ρnf is the density, µnf is the dynamic
viscosity, νnf is the kinematic viscosity, and ε is the porous
medium porosity. The effective thermal diffusivity of the
nanofluid and the porous medium, αeff ,nf , can be represented
as keff ,nf /(ρnfCnf ), where keff ,nf is the effective thermal con-
ductivity of the nanofluid and the porous medium; Cnf is the
specific heat capacity of the nanofluid.

The boundary conditions are as follows:

y = 0, u = v = 0,

On the bottom wall: T = Th, (d − 0.5b) ≤ x ≤ (d + 0.5b),

∂T
∂y
= 0 otherwise,

(11a)

y = H, u = v = 0,

On the top wall: T = Tc, (d − 0.5b) ≤ x ≤ (d + 0.5b),

∂T
∂y
= 0 otherwise,

(11b)

On the right wall:
x = H, u =

∂T
∂x
= 0,

v = λrV0 + N µnf
∂v

∂x
,

(12a)

On the left wall:
x = 0, u =

∂T
∂x
= 0,

v = λlV0 + N µnf
∂v

∂x
.

(12b)

A. Thermo-physical properties of nanofluid

The effective density of the nanofluid is given as36

ρnf = (1 − φ)ρf + φρp, (13)

where φ is the solid volume fraction of the nanofluid, ρf and
ρp are the densities of the fluid and of the nanoparticles, respec-
tively. The heat capacitance of the nanofluid is given by the
following equation:36

(ρcp)nf = (1 − φ)(ρcp)f + φ(ρcp)p. (14)

The thermal expansion coefficient of the nanofluid can be
determined by the following equation:37

(ρβ)nf = (1 − φ)(ρβ)f + φ(ρβ)p, (15)

where βf and βp are the coefficients of thermal expansion of
the fluid and of the nanoparticles, respectively.

The thermal diffusivity, αnf , of the nanofluid is defined by
Abu-Nada and Chamkha37 as

αnf =
knf

(ρcp)nf
. (16)

In Eq. (16), knf is the thermal conductivity of the nanofluid
which for spherical nanoparticles, according to the Maxwell-
Garnetts model38 is given by

knf

kf
=

(kp + 2kf ) − 2φ(kf − kp)

(kp + 2kf ) + φ(kf − kp)
. (17a)

Following the study of Ghalambaz et al.,39 the effective
thermal conductivity of the porous medium and the nanofluid
is evaluated using

keff , nf = εknf + (1 − ε) ks, (17b)

where ks is the solid thermal conductivity and ε is the poros-
ity of the porous medium. Accordingly, the effective thermal
conductivity of the base fluid and the porous medium (keff,f)
can be evaluated using the following equation:

keff , f = εkf + (1 − ε) ks. (17c)

These equations are valid when the thermal conductivity of the
solid and the fluid is close as discussed in Ref. 40. Hence, in
representing the results, the thermal conductivity of the fluid
and the porous medium has been considered very close.

The effective thermal diffusivity of the nanofluid and the
porous matrix is also introduced as follows:

αeff , nf =
keff ,nf(
ρcp

)
nf

. (17d)

The effective dynamic viscosity of the nanofluid based on the
Brinkman model41 is given by

µnf =
µf

(1 − φ)2.5
, (18)

The effective electrical conductivity of the nanofluid is pre-
sented by Maxwell38 as

σnf

σf
= 1 +

3(γ − 1)φ
(γ + 2) − (γ − 1)φ

, (19)

where γ =
σp

σf
.

B. Dimensionless forms of equations

The following non-dimensional parameters are intro-
duced:

X =
x
H

, Y =
y
H

, U =
u

V0
, P =

p

ρnf V0
2

, θ =
(T − T0)
∆T

,

Ri =
Gr

Re2
, Sl = Sr =

N µf

H
,∆T = (Th − Tc) , T0 =

Tc + Th

2
,

Q =
Q0H2(
ρcp

)
f
αf

, B =
b
H

, D =
d
H

(20)

into Eqs. (8)–(11) to yield the following dimensionless equa-
tions:

∂U
∂X

+
∂V
∂Y
= 0, (21)
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1

ε2

(
U
∂U
∂X

+ V
∂U
∂Y

)
= −

∂P
∂X

+
1

ε Re

ρf

ρnf

(
µnf

µf

) (
∂2U

∂X2
+
∂2U

∂Y2
−
εU
Da

)
+

(
ρf

ρnf

) (
σnf

σf

)
Ha2

Re
(V sinΦ cosΦ − U sin2

Φ), (22)

1

ε2

(
U
∂V
∂X

+ V
∂V
∂Y

)
= −

∂P
∂Y

+
1

ε Re

ρf

ρnf

(
µnf

µf

) (
∂2V

∂X2
+
∂2V

∂Y2
−
εV
Da

)
+ Ri

(ρβ)nf

ρnf βf
θ

+

(
ρf

ρnf

) (
σnf

σf

)
Ha2

Re
(U sinΦ cosΦ − V cos2

Φ), (23)

U
∂θ

∂X
+ V

∂θ

∂Y
=

1
Pr Re

αeff ,nf

αeff ,f

(
∂2θ

∂X2
+
∂2θ

∂Y2

)
+

1
Re Pr

(ρ cp)f

(ρ cp)nf
Qθ, (24)

where

Pr =
νf

αeff ,f
, Re =

V0H
νf

, Gr =
gβf H3∆T

ν2
f

, Ri =
Gr

Re2
, Ha = B0H

√
σf /µf , Da = K/H2, αeff ,nf =

keff , nf(
ρcp

)
nf

, αeff ,f =
keff , f(
ρcp

)
f

.

The above parameters are the Prandtl number, Reynolds num-
ber, Grashof number, Richardson number, Hartmann number,
and the Darcy number, respectively. In Eqs. (11) and (24), the
heat generation due to viscous dissipation and Darcy dissipa-
tion and Joule heat generation due to the applied magnetic field
is neglected. The viscous dissipation term is directly propor-

tional to the Brinkman number defined as Br =
µV2

0
k∆T = Pr Ec

with k and ∆T as the conductivity and the temperature differ-

ence, where Ec =
V2

0
(Cp)f ∆T is the Eckert number. The Joule heat

generation term and the Darcy dissipation are also directly
proportional to BrHa2 and Br

Da , respectively. The Brinkman
number implies the ratio of the viscous dissipation to heat
conduction. In the present study, the order of magnitude of
the aforementioned terms is negligible in comparison with
the other terms of the energy equation. (The order of the
Brinkman number for the present study is approximately

10�6(O(
µV2

0
k∆T ) ≈

10−3(10−2)2

0.1(1) ).)
The dimensionless boundary conditions for Eq. (12) are

written as follows:

Y = 0, U = V = 0,
On the bottom wall: θ = 0.5, (D − 0.5B) ≤ X ≤ (D + 0.5B),

∂θ

∂Y
= 0 otherwise,

Y = 1, U = V = 0,
On the top wall: θ = −0.5, (D − 0.5B) ≤ X ≤ (D + 0.5B),

∂θ

∂Y
= 0 otherwise,

On the right wall:
X = 1 U =

∂θ

∂X
= 0,

V = λr +
Sr

(1 − φ)2.5

∂V
∂X

,

On the left wall:
X = 1, U =

∂θ

∂X
= 0,

V = λl +
Sl

(1 − φ)2.5

∂V
∂X

.
(25)

The local Nusselt number is defined as

Nus = −
keff ,nf

keff ,f

(
∂θ

∂Y

)
Y=0,1

(26)

and the average Nusselt number is defined as

Num0 =
*..
,

1
B

D+0.5B∫
D−0.5B

Nus dX
+//
-Y=0

,

Num1 =
*..
,

1
B

D+0.5B∫
D−0.5B

Nus dX
+//
-Y=1

,

Num =
Num0 + Num1

2
. (27)

C. Governing equation for entropy generation

The entropy generation in the flow field is caused by
the non-equilibrium flow imposed by boundary conditions.
According to Mahmud and Fraser,43 the dimensional local
entropy generation can be expressed by

s = *
,

knf

T2
0

+
-



(
∂T
∂x

)2

+

(
∂T
∂y

)2
+

(
µnf

T0

) {
1
K

(u2 + v2)

+ 2


(
∂u
∂x

)2

+

(
∂v

∂y

)2
+

(
∂u
∂y

+
∂v

∂x

)2


+

(
σnf

T0

)
B2

0 (u sinΦ − v cosΦ)2. (28)

In Eq. (28), the first term represents the dimensional entropy
generation due to heat transfer (sh), the second term repre-
sents the dimensional entropy generation due to fluid fraction
irreversibility resulting from Darcy dissipation and viscous
dissipation (sv), and the third term is the dimensional entropy
generation due to the effect of the magnetic field (sj). The
entropy generation due to internal heat generation in the fluid
and the porous media has been taken into account. Indeed, the
internal heat generation results in a temperature gradient that
can be seen in the calculations of the entropy generation.44 It is
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worth noting that the internal heat generation can be assumed
smooth and weak such as a porous collector for absorbing
the solar energy or a matrix of porous media with very weak

radioactive effects. By using the dimensionless parameters
presented in Eq. (20), the expression of the non-dimensional
entropy generation, (S), can be written as

S = s.
H2.T2

0

kf (∆T )2
=

(
keff ,nf

keff ,f

) 
(
∂θ

∂X

)2

+

(
∂θ

∂Y

)2

+ Θ.

(
µnf

µf

)
. Re2 .Pr2




1
Da

(U2 + V2) + 2


(
∂U
∂X

)2

+

(
∂V
∂Y

)2
+

(
∂V
∂X

+
∂U
∂Y

)2


+ Θ.

(
σnf

σf

)
.Ha2. Re2 .Pr2.(U sinΦ − V cosΦ)2 = Sh + Sv + Sj, (29)

where Sh, Sv, and Sj are the dimensionless local entropy gener-
ation rate due to heat transfer, the fluid fraction, and the Joule
heating, respectively. In Eq. (29),Θ is the irreversibility factor
which represents the ratio of the viscous entropy generation to
thermal entropy generation. It is given as

Θ =
µf .T0

kf

( αeff , f

∆T H

)2

. (30)

The Bejan number, Be, defined as the ratio between the entropy
generation due to heat transfer by the total entropy generation,
is expressed as

Be =
Sh
S

. (31)

In order to present the effect of nanoparticles, magnetic
field and the difference of temperature on the average Nusselt
number, total entropy generation, and the Bejan number, the
following Nusselt number ratio, total entropy generation ratio,
and Bejan number ratio are defined,

Nu+ =
Num

(Num)φ=0
and Nu++ =

Num

(Num)Ha=0
, (32)

S+ =
S

(S)φ=0
and S++ =

S
(S)Ha=0

, (33)

Be+ =
Be

(Be)φ=0
and Be++ =

Be
(Be)Ha=0

. (34)

III. NUMERICAL SOLUTION AND VALIDATION

In the present study, the finite volume method is used to
solve the governing equations. This method integrates the gov-
erning equations over finite control volumes and results in a
set of algebraic equations that can be solved numerically. Stag-
gered grids have been used where the velocity components are

calculated at the center of the volume interfaces while the pres-
sure as well as other scalar quantities such as the temperature
is computed at the center of the control volumes. The algebraic
discretization equations have been solved iteratively through-
out the physical domain by using the well-known tridiagonal
matrix algorithm (TDMA) technique. Pressure and velocity
were coupled using the Semi Implicit Method for Pressure
Linked Equations (SIMPLE).45 Convergence of the iterative
solution was ensured when the residual of all variables was
less than 10�6. The non-uniform grids were used in the com-
putational domains. It consists of 101 × 101 grid nodes in
the x- and y-directions, respectively. The obtained results are
independent of the number of the grids. The grid indepen-
dency results are given at kf = ks, ε = 0.5, Ha = 10, Da
= 10−3, Pr = 6.2, Gr = Re = 104, D = 0.5, B = 0.5,
Q = 1.0, Φ = 45, φ = 0.05, Sl = Sr = 1.0, λl = −λr = 1.0
and presented in Table II.

Considering the heat transfer in porous media, Iwatsu
et al.30 have studied the mixed convection heat transfer in a lid-
driven enclosure filled with a fluid-saturated porous medium
in the presence of internal heat generation. Following Iwatsu
et al.,30 Khanafer and Chamkha31 revisited the same problem
by considering internal heat generation effects. In the studies
of Iwatsu et al.30 and Khanafer and Chamkha,31 a square cavity
was investigated in which the vertical side walls were assumed
well insulated and the entire top wall was hot and the bottom
wall was cold. The top lid was driven with a constant veloc-
ity. Neglecting the effect of the magnetic field and internal
heat generation and by adopting the same boundary condi-
tions as in the mentioned references, the present study and its
governing equations can be reduced to the study of Iwatsu et
al.30 and Khanafer and Chamkha.31 Considering Re = 1000, Pr
= 0.71, Gr = 100, and φ= Ha = B = 1, a comparison between the
temperature contours of the present study and those reported
in Iwatsu et al.30 and Khanafer and Chamkha31 is depicted in
Fig. 2. The increment between each temperature contours is
0.05. The result shows a very good agreement between this
work and the previously published work.

TABLE II. Grid-independency study for Cu-water nanofluid.

Grid-size 41 × 41 61 × 61 81 × 81 91 × 91 101 × 101 121 × 121

Num 1.469 836 1.448 858 1.437 232 1.429 925 1.424 576 1.424 554
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FIG. 2. Comparison of the present study with Re = 1000, Pr = 0.71, Gr = 102, φ = Ha = B = 0.

Fig. 2 displays a comparison between the temperature
contours presented in this work with those of Khanafer and
Chamkha31 and Iwatsu et al.30 The result shows a very good
agreement between this work and the previously published
work.

Considering heat transfer in nanofluids, Abu-Nada and
Chamkha46 have studied the natural convective heat transfer
of nanofluids in a lid driven cavity. The side walls of the cavity
were insulated while the top and bottom walls were isothermal
with a temperature difference and the hot wall was the driven
lid. Considering the boundary conditions and the notation of
Abu-Nada and Chamkha46 and also neglecting the magnetic
field effect, a comparison between the evaluated Nusselt num-
bers in the present study and those reported by Abu-Nada and
Chamkha46 is reported in Table III. The results of this table are
reported for nanofluids with water as the base fluid and Al2O3

nanoparticles. As seen, a very good agreement between the
results of both studies can be seen.

Considering the MHD effects, Sheikholeslami et al.47

have addressed the free convection of Cu water nanofluids
in a square enclosure. In the study of Sheikholeslami et al.,47

the top wall of the cavity was well insulated while the verti-
cal side walls were at a constant temperature Tc. The bottom
wall was partially heated which was at a constant temperature
Th. Following the boundary condition and notation of Sheik-
holeslami et al.,47 the Nusselt number was reported as 9.429
when Ra = 105, ε = 0.8 (the bottom flash element length),
φ = 0:04, and Ha = 100. Here, we obtained the Nusselt num-
ber as 9.4286 which shows a very good agreement with the
literature value.

TABLE III. A comparison between the results of the average Nusselt number
in the present study and those reported by Abu-Nada and Chamkha46 when
Ri = 0.2, Ha = 0, Gr = 100, Da→ ∞ B = Q = 0.

φ Abu-Nada and Chamkha46 Present study

10% 3.099 3.0976
7 2.958 2.9457
5 2.867 2.8541
2 2.732 2.7317
0 2.644 2.6441

IV. RESULTS AND DISCUSSION

Selective results represented by streamlines, isotherms,
local and global entropy generation, local and global Bejan
number, and local average Nusselt number are illustrated in
this section. The effects of the heat sink and source length
(B = 0.2-1) and location (D = 0.3-0.8) are discovered and
discussed. The effects of each mentioned parameters are stud-
ied for various nanofluid volume fractions (φ = 0-0.1) and
Hartmann numbers (Ha = 0-20). The order value of poros-
ity is between 0 and 1 and the order of the Darcy number is
related to the permeability (the order of K is less than 10-6

for many of materials) and size of cavity and some papers
such as Kuznetsov48 assumed that between 10�1 and 10�4.
Therefore, the results are obtained for the fixed parameters:
Pr = 6.2, ε = 0.5, Da = 10�3, Φ = 45◦. As shown in Eq. (30),
Θ is related to the fluid thermo-physical properties, size of the
cavity and the sink, and source temperatures. Therefore, for
a small size cavity and low difference between the sink and
source temperatures, the fixed Θ can be assumed as 10�2.

Three orders of thermal conductivity of the porous
medium (ks) are considered. These cases are as follows: (I)
The thermal conductivity of the porous medium (ks) and the
base fluid (kf) are the same kf = ks, (II) the thermal conductivity
of the porous medium is higher than the thermal conductivity
of the base fluid (kf = 0.5ks), and (III) the thermal conductivity
of the porous medium is lower than the thermal conductivity of
the base fluid (kf = 2ks). The porous medium is also assumed
to have a very low electrical conductivity, i.e., electrically
insulated porous medium.

So, in these cases and with focusing on the properties’
relations, the order of Prandtl number Pr is near that of the
fluid (for water Pr ≈ 6).

A. Effects of the heat sink and source length

Fig. 3 shows the effects of the heat sink and source length
(B) on the streamlines, isotherms, local entropy generation,
and the Bejan number for Ri = 1(Gr = 104, Re = 102), φ
= 0.05, Ha= 10, D= 0.5, λl = − λr = 1, Sl = Sr = 1, Q= 1.

Generally, the effects of the buoyancy together with the
imposed boundary conditions make the fluid rotate clockwise
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FIG. 3. Streamlines, isotherms, local entropy generation, and the local Bejan number for λl = 1, λr = −1.

with a single-cell circulation near the left wall and counter-
clockwise in the middle and near the right wall. The stream-
lines and the core shape of the cell are more symmetric when
B is increased from 0.2 to 0.8. The isotherms tend to be hori-
zontal in the middle of the cavity. The temperature gradient is
significant near the source and is decreased through increasing
B. The heat transfer irreversibility as well as the fluid friction
irreversibility near the slip walls causes the entropy genera-
tion to experience a significant value near the left and the right
walls. The entropy generation does not have a sensible value
at the middle of the cavity but the heat transfer irreversibility
is a dominant term in the entropy generation and therefore,
the local Bejan number is visible at the middle of the cavity.
With increasing values of B, the heat transfer irreversibility
is enhanced, and thus, the local Bejan number shows more
concentration in the middle of the cavity for B = 0.8.

Fig. 4 is presented for the same purpose and parameters
of Fig. 3, but for λl = �λr = 1. On the contrary, with λl = λr
= 1, the fluid rotates clockwise forming a single-cell circulation
near the walls and at the center of cavity and converts to two
weak vortices. The trend of these results is in agreement with
the results of the study of Tiwari and Das.9 The core shape
of this cell is transformed from mostly vertically extended to
mostly horizontally extended when B increases from 0.2 to 0.8.
The isotherms tend to be vertical in the middle of the cavity
when B = 0.2. The isotherm lines for the heat sink are more
crowded than the heat source for both B = 0.2 and B = 0.8.
The local entropy generation shows a similar trend to Fig. 2,
but the local Bejan number is significant in the middle of the
cavity and it vanishes near the heat source and sink because of
the decrease in the temperature gradient for B = 0.8.

Fig. 5 illustrates the local Nusselt number (Nus) for both
λl = −λr = 1 and λl = λr = 1. Fig. 5(a) illustrates Nus for
λl = −λr = 1 at Y = 0. As shown in the isotherm lines in Fig. 3,
the temperature gradient near the heat source is decreased by
increasing B, thus, B = 0.2 shows the maximum value for Nus.
The temperature gradient in the left side of the heat source
is greater than that of the right side and the maximum value
of Nus is, therefore, experienced at the beginning of the heat
source for all ranges of B. The unsymmetrical temperature gra-
dient is due to the motion of the lids. When the lids move in the
same direction, two smooth circular cells can be seen in Fig. 3
(the case of streamlines). However, in the core regions, the
induced flows tend to oppose each other and very low veloc-
ities (as seen in streamlines of Fig. 4) are observed. Thus, as
a result, a uniform temperature distribution over the elements
can be observed. In contrast, when the lids move in the oppo-
site direction, a big circulation flow can be observed. Hence,
following the induced big circulation cell, the parts of the ele-
ments, which are in aid with the circulation flow experience
higher temperature gradients due to aiding of the fluid flow.
By paying attention to the temperature contours of Fig. 4(a), it
can obviously be seen that the temperature gradient at the right
side of the bottom hot element is higher than that of the left
side (the temperature contours are more close to each other).
Indeed, this is due to the fact that the movement of the right
lid toward the top tends to move the cooled fluid from the top
cold element toward the hot element at the bottom. The same
is true for the cold element at the top, in which, the left lid wall
takes the warm fluid from the bottom and delivers it to the
left side of the cold element. Therefore, according to the tem-
perature distributions, a symmetric distribution of the Nusselt
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FIG. 4. Streamlines, isotherms, local entropy generation, and the local Bejan number for λl = 1, λr = −1.

number for Figs. 5(a) and 5(b) and an unsymmetrical one for
Figs. 5(c) and 5(d) can be expected. The Nusselt numbers next
to the edges of the elements are high which is due to the fact
that these parts are the first parts that receive fresh fluids. For
B = 0.8, Nus is almost equivalent on both sides of the source.
The local Nusselt number is increased till the middle of B
and then it is decreased with an axisymmetric trend for a fully
heated bottom wall (B = 1). The scenario of decreasing Nus by
increasing B is also obtained in Fig. 5(b), but the opposite trend
is seen for Nus for each B; in other words, the maximum value
of Nus occurs at the end of the sink. For a fully cooled top wall
(B = 1), the beginning and the end of the heat sink experience
equal maximum Nusselt numbers and minimum Nusselt num-
bers are seen at B = 0.5. Fig. 5(c) illustrates Nus for λl = λr = 1
at Y = 0. The isothermal lines in Fig. 4 indicate that the tem-
perature gradient has a significant value at the end of the heat
source, and hence, the maximum Nusselt number occurs at the
end of it. The Nusselt number increases when B is increased
because of the consequent increase in the temperature gradient.
For B = 1, a continuous increment is observed for the local Nus-
selt number from the beginning to the end of the heat source.
Fig. 5(d) shows that the maximum Nusselt number occurs at
the beginning of heat sink for all values in the range of B.
Also, the Nusselt number has a significant value at the end of
heat sink. For B = 1, a continuous decrease is observed for the
local Nusselt number from the beginning to the end of the heat
sink.

Fig. 6 displays the variation of the average Nusselt num-
ber with the nanofluid volume fraction. Fig. 6(a) shows that
the average Nusselt number decreases as the nanofluid volume

fraction increases for all of the covered ranges of B at kf = ks

and λl = − λr = 1. Fig. 6(b) indicates that the Nu+
m decreases

when the nanofluid volume fraction is increased. This sce-
nario is seen for Figs. 6(c) and 6(d). As shown in Fig. 5, for
λl = λr = 1, the integration of the local Nusselt number on the
heat sink and source domains for all values of B is greater
than that for λl = − λr = 1, and therefore, the average Nusselt
number is relatively higher in the case of Fig. 6(a) compared
to Fig. 6(c).

Ho et al.49 have discussed the effect of utilizing differ-
ent dynamic viscosity models for the analysis of the natural
convection heat transfer of nanofluids in a cavity. Ho et al.49

addressed the effect of utilizing Brinkman’s model40 as well
as the relationship of Maı̈ga et al.50 for the dynamic vis-
cosity of Al2O3-water nanofluids. Considering the Maxwell
model for the thermal conductivity of the nanofluid, the fol-
lowing results were reported. Enhancement of heat transfer can
be observed by utilizing Brinkman’s model for the dynamic
viscosity of Al2O3-water nanofluid. However, utilizing the
relationship of Maı̈ga et al.,50 the results indicate a deterio-
ration of heat transfer for high values of the Rayleigh number,
i.e., convective dominant heat transfer regimes. In addition, in
another study, Abu-Nada and Chamkha37 also consider a log-
arithmic relation for the dynamic viscosity of CuO-EG-water
nanofluid and studied the natural convection heat transfer in
a cavity. The results reveal different trends of heat transfer
enhancement or deterioration in a cavity due to the pres-
ence of nanoparticles. The observed trends of the behavior
were mainly a function of the Rayleigh number. Indeed, both
of the studies of Ho et al.49 and Abu-Nada and Chamkha37
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FIG. 5. Local Nusselt number for Cu-water for ((a) and (b)) λl = λr = 1 and ((c) and (d)) λl = 1,λr = −1.

reveal that the dynamic viscosity and the Rayleigh number
are two important factors for the heat transfer behavior of
nanofluids.

It is clear that the presence of nanoparticles would enhance
the thermal conductivity of the synthesized nanofluid. There-
fore, in the case of a quiescent fluid or a fluid with a very low
velocity, for which the dominant mechanism of heat transfer
is the conduction heat transfer mechanism, the presence of
nanoparticles would enhance the heat transfer rate; no matter
what the viscosity of the nanofluid is. However, as the Rayleigh
number increases, the buoyancy forces get stronger and the
fluid tends to move faster in the cavity. Consequently, the
increase of the fluid motion boosts the role of the dynamic vis-
cosity. It is clear that the increase of the dynamic viscosity due
to the presence of the nanoparticles tends to induce more resis-
tance due to shear forces against the fluid motion and decrease
the fluid velocities. In fact, any reduction in the fluid veloc-
ities would directly reduce the heat transfer by the reduction
of the advection mechanism. The reduction of the adjective
heat transfer mechanism finally results in the decrease of the
overall heat transfer in the cavity. When the deterioration in
the heat transfer due to the increase of the viscosity over-
comes the heat transfer enhancement due to the increase of
the thermal conductivity due to the presence of nanoparticles,

the reduction in the overall heat transfer can be expected. The
analysis of viscosity models in the previous studies indicates
that the Brinkman model almost predicts the lowest increase
of the viscosity for nanofluids. Therefore, using the Brinkman
model shifts the reduction of heat transfer toward the high val-
ues of the Rayleigh number or the flows beyond the laminar
convection regime.

In the case of natural convection in a porous medium, the
role of the dynamic viscosity is more effective compared to
a regular fluid. This is due to the fact that in a regular clear
space, the interaction of the fluid and the solid boundaries,
which results in high gradient velocity regions next to the
walls, is limited to the solid wall boundaries. However, in a
porous space, the interaction between the solid structure of the
porous matrix and the nanofluid is within the entire porous
space as well as the wall boundaries. Therefore, in the natu-
ral or mixed convection heat transfer mechanism, occurring in
the porous spaces, the reduction of heat transfer for smaller
values of the Rayleigh number can be expected. The results
of the very recent studies regarding the analysis of the natu-
ral convection of nanofluids in a cavity filled with a porous
medium, for instance, the study of Ghalambaz et al.,39 also
confirm the reduction of heat transfer in natural convection in
porous media. Ghalambaz et al.39 have utilized the Brinkman
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FIG. 6. Variation of the average Nusselt number of Cu-water with φ.

model for the dynamic viscosity and the Maxwell model for
the thermal conductivity and reported the reduction of heat
transfer due to the natural convection of nanofluids in a square
cavity differentially heated from side walls.

Therefore, it can be concluded that adding very high
conductive solid nanoparticles will generate a nanofluid with
higher viscosity, higher density, and higher thermal conduc-
tivity. The first two properties increase the viscous and inertial
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forces, respectively, while the enhanced thermal conductivity
increases the transferred thermal energy. Hence, the trend of
the Nusselt number ratio presented in Fig. 6 elucidates that
the enhanced viscous and inertial forces are dominant over the
enhanced thermal conductivity and both buoyancy and shear
effects in addition. Also, increasing the nanofluid volume frac-
tion leads to increasing the viscosity and by increasing the
viscosity of the nanofluid velocity is decreased and then the
heat transfer is decreased as well. Figs. 6(e) and 6(f) show
the continuous reduction of Num and Num ratio with increas-
ing values of the nanofluid volume fraction for kf = 0.5ks and
λl = −λr = 1. For kf = 2ks, a similar trend can be seen in
Figs. 6(g) and 6(h). Fig. 6 also shows that the fully heated bot-
tom wall and the fully cooled top wall experience minimum
Nusselt numbers compared with the other range of B. Also,
for B = 0.2, the maximum Nusselt number is observed for all
presented cases in Fig. 6.

Fig. 7 shows the variation of S+ with the nanofluid vol-
ume fraction for both of λl = −λr = 1 (for kf = ks, kf = 0.5ks,
and kf = 2ks) and λl = λr = 1 (for kf = ks). Figs. 7(a) and
7(d) show an increment in S+ by increasing the nanofluid vol-
ume fraction but Figs. 7(b) and 7(c) show that S+ decreases
as a result of increasing φ at low nanofluid volume frac-
tions and then increases with increasing values of φ for all
covered ranges of B at λl = λr = 1 and kf = ks and B
= 0.6-1 at λl = −λr = 1 and kf = 0.5ks. As shown in Fig. 6,
the Nusselt number decreasing rate for small values of the
nanofluid volume fraction is more than that corresponding to
higher values. This trend is because of the more decrease in

temperature gradient, and so, the entropy generation because
of the heat transfer irreversibility for low volume fractions
is higher than that for higher values, leading to decreases in
the values of S+. For high volume fractions, the fluid fric-
tion irreversibility and the heat transfer irreversibility and
Joule heat irreversibility lead to increasing S+. Also, the fig-
ure shows that the entropy generation ratio is less than unity
in the two mentioned cases for low nanofluid volume frac-
tions. The different behaviors of Figs. 7(a) and 7(b) also
may be because of the nanofluid velocity boundary between
the two cases λl = −λr = 1 and λl = λr = 1 observed in
the streamlines in Fig. 4 and its difference leads to a different
behavior for fluid fraction irreversibility (FFI) and a different
trend between Figs. 7(a) and 7(b). The different values of the
effective conductivity of the porous media and heat transfer
irreversibility (HTI) lead to higher value of S+ in Fig. 7(d)
compared Fig. 7(c).

Fig. 8 indicates the effect of the addition of nanopar-
ticles to the pure fluid on Be+. As shown in Fig. 8, Be+

increases when φ is increased for all values of B and ks for
λl = −λr = 1 and λl = λr = 1. As shown in Fig. 7, the total
entropy generation ratio, and because of the different velocity
boundary manner between the two mentioned cases in Figs.
8(a) and 8(b), leads to different behaviors in the Bejan num-
ber ratio. The effective conductivity of the porous media is
the main parameter for enhancing the HTI shown in Figs. 8(c)
and 8(d).

Figs. 9–11 display the effect of the Hartmann number on
the Nusselt number, total entropy generation, and the total

FIG. 7. Variation of the total entropy generation ratio with φ.
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FIG. 8. Variation of the total Bejan number ratio with φ.

Bejan number for Ri= 1, φ= 0.05, D= 0.5, Sr = Sl = 1, Q= 1.
Fig. 9 illustrates the variation of the Nusselt number with
respect to the Hartmann number (Ha). The results show that
the Nusselt number decreases when the Hartmann number is
increased for all ranges of B. As shown in Figs. 9(a) and 9(c),
the reduction of the Nusselt number by increasing the Hart-
mann number is not very sensible, and therefore, the effect
of the Hartmann number on Nu++ is investigated too and the
effect of enhancement of Ha on Nu++

m is presented in Figs. 9(b)
and 9(d). This shows that the decreasing rate is much more
when Ha > 10. In general, an external magnetic field leads to
the suppression of the flow field, and therefore, the average
Nusselt number is expected to decrease with the Hartmann
number.

Fig. 10 depicts the effect of Ha on Be++. Generally,
Be++ increases with increasing values of Ha for B = 0.2-
1 and λl = λr = 1, but for B = 0.2, Be++ shows a different
behavior with the other curves. Fig. 10(a) shows that Be++

increases when Ha is increased for all ranges of B. The
Lorentz force as well as the velocity boundary leads to a
different trend of the Bejan number ratio with the Hartmann
number.

The variation of S++ with Ha is presented in Fig. 11. As
explained before, a very small decrease in the heat transfer
irreversibility and, on the other hand, an increase in the Joule
heat irreversibility because of increasing the value of Ha lead
to a continuous increment in S++ as the value of Ha is increased
for all ranges of B with λl = −λr = 1 and λl = λr = 1.

B. Effects of the heat sink and source location

The effects of the heat sink and source location are stud-
ied for Ri = 1, Ha = 10, B = 0.5, Sr = Sl = 1, Q = 1,
and ks = kf . The streamlines, isotherms, total entropy gener-
ation, and the Bejan number for φ = 0.05, λl = 1, λr = −1
are presented in Fig. 12. By changing D = 0.3 to D = 0.7,
the clockwise rotation is horizontally extended and it covers
most parts of the cavity so that the counter clockwise rota-
tion is limited to a small area near the cavity’s right side. The
isotherm contours along the top wall especially near the sink
are more crowded than the heat source at the bottom wall for
both values of D. Moreover, with changing D = 0.3 to D = 0.7,
the congestion of the lines is increased near the heat source.
The local entropy contours show that the entropy generation
is concentrated along the left and the right walls. The Bejan
number is observed along the heat source and in a small area
in the middle of the cavity.

Fig. 13 depicts the same purpose and parameters of Fig.
12, but for λl = λr = 1. On the contrary, with λl = −λr = 1,
the fluid rotates clockwise forming a single-cell circulation
near the walls and two weak vortices at the center of the cavity
for D = 0.3 and one vortex near the right wall at D = 0.7.
The isotherms are mostly vertical in the cavity center, with
steeper gradients close to the sink and the left vertical walls
upon increasing the value of D. The entropy concentrators look
very strong and propagate along both the top and the vertical
walls with increasing values of D. The Bejan number shrinks in
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FIG. 9. Variation of the average Nusselt number and Nu++
m for Cu-water with Ha.

the center and along the top wall of the cavity as D is increased
from 0.3 to 0.7.

The local Nusselt number (Nus) is shown in Fig. 14 for
both of λl = −λr = 1 and λl = λr = 1. Fig. 14(a) presents
Nus for λl = −λr = 1 at Y = 0. As shown in the isothermal
lines in Fig. 12, steeper gradients are seen at the beginning of
the heat source for D = 0.3 and at the end of it for D = 0.7,
and therefore, Nus shows the maximum value at the beginning
of the source for D = 0.3 and at the end of the source for
D = 0.7. As shown in Fig. 14(b), the temperature gradient
and thus the Nusselt number are increased at the beginning
of the sink upon increasing the value of D, but at the end
of the sink, a decreasing trend in Nus is experienced as D is

increased. Fig. 14(c) illustrates the Nus for λl = λr = 1 at
Y = 0. The Nusselt number at the end of the source is higher
than that at the beginning of the source. It is noted that at
D = 0.6 and 0.7, the positive temperature gradient (can be seen
in the isothermal lines in Fig. 13) leads to negative values of
Nus at the beginning of the source. Generally, the increasing
trend for Nus at the outset of the source is experienced such
as in Fig. 14(b). However, Fig. 14(d) shows that Nus does not
have a significant change with increasing values of D at the
end of the sink. In the streamlines presented in Figs. 12 and 13,
the velocity near the heat sink and source for the two slip cases
are different from each other. Generally, the convective heat
transfer near the heat sink and source for the case λl = λr = 1

FIG. 10. Variation of the total Bejan number with Ha for (a) λl = 1,λr = −1 and (b) λl = λr = 1.
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FIG. 11. Variation of the total entropy generation with Ha for (a) λl = 1,λr = −1 and (b) λl = λr = 1.

is greater than that for λl = −λr = 1 because of its velocity,
and therefore, it leads to a greater local Nusselt number.

Fig. 15 shows the variation of the average Nusselt number
with the nanofluid volume fraction for λl = −λr = 1 and λl

= λr = 1. For λl = λr = 1, a continuous decrease in the aver-
age Nusselt number is experienced upon enhancing the value
of φ. This trend also occurs for λl = −λr = 1. In Figs. 15(a)
and 15(c), three distinct groups of curves are visible: D = 0.3
and D = 0.4, D = 0.5 and D = 0.6, and D = 0.7. This is,
because of the relatively similar values observed for the local
Nu number at Y = 0 and Y = 1 and also its integration in the
sink and source domain for the three mentioned groups. The
trend of Figs. 15(a) and 15(c) indicates a continuous reduc-
tion of the average Nusselt number ratio due to the increase in
the nanofluid volume fraction in Figs. 15(b) and 15(d). But the
Nusselt number graphs for various values of D in Fig. 15(c) are

closer together than those shown in Fig. 15(a), and therefore,
the Nusselt number ratio follows the same trend (Figs. 15(b)
and 15(d)).

The effect of the volume fraction on the global entropy
generation is presented in Fig. 16. Fig. 16(a) shows the S+

enhancement by increasing the nanofluid volume fraction for
all ranges of D. Two stages of the nanofluid effect on S+ is
observed in Fig. 16(b); stage 1 is for low volume fractions
where the nanoparticles’ actions cause the reduction of S+,
and in stage 2 for high volume fractions, S+ increases with
increasing values of the volume fraction. It should be noted
that for all considered values of D, S+ is less than unity except
for D = 0.3 at φ = 0.1. As mentioned in Fig. 7, this different
behavior between Figs. 16(a) and 16(b) may be because of the
different trend in the streamlines and the nanofluid velocity.
This reason also may be acceptable for the justification of the

FIG. 12. Streamlines, isotherms, local entropy generation, and the local Bejan number for φ = 0.05,λl = λr = 1 at (a) D = 0.3 and (b) D = 0.7.
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FIG. 13. Streamlines, isotherms, local entropy generation, and the local Bejan number φ = 0.05,λl = 1,λr = −1 at (a) D = 0.3 and (b) D = 0.7.

FIG. 14. Profiles of the local Nusselt number for Cu-water for ((a) and (b)) λl = 1,λr = −1 and ((c) and (d)) λl = λr = 1.
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FIG. 15. Variation of the average Nusselt number for Cu-water with φ for ((a) and (b)) λl = −λr = 1 and ((c) and (d)).

difference in behavior shown in Figs. 17(a) and 17(b).
The enhancement of the total Bejan number ratio (Be+)
through enhancing the volume fraction is presented in
Fig. 17.

C. Effect of Richardson number (Ri)

The ratio of natural to forced convection modes is mea-
sured by the Richardson number. Its effect is studied by fixing
the other dependent parameters at Ha = 10, φ = 0.05, Q = 1.
The Richardson number is related to the Grashof number per

square of the Reynolds number, and in this section, Re = 100
and the Richardson number changes by changing the Grashof
number.

Fig. 18 shows the effects of the Richardson number on
the streamlines, isotherms, local entropy generation, and the
Bejan number for λl = −λr = 1. For Ri = 0.001, the dominance
of forced convection can be characterized by the dominance
of shear action where two counter rotated vortices exist and
each one is guided by a moving wall. Moving up the cores and
two weak vortices near the bottom wall due to the enhanced
buoyancy effect can be observed in the streamlines for Ri = 10.

FIG. 16. Variation of the global entropy generation ratio (S+) with φ.
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FIG. 17. Variation of the total Bejan number (Be+) with φ.

The corresponding isotherms tend to be nearly plumed from
the heat source towards the heat sink with isothermal zones
localized close to the moving walls and dense isotherms close
to the heat sink for Ri = 0.001. For Ri = 10, the isotherms tend to
be horizontal in the middle of cavity and with approximately
equal isotherms distribution on both sides of the heat sink
and source. The formation and growth of the boundary layer
and the fluid friction irreversibility lead to more generation of
entropy at the top wall for Ri = 10 than Ri = 0.001. The Bejan
number is significant near the top and bottom walls for both of
the Richardson numbers, and for Ri = 10, it is sensible in the
middle of the cavity because of the heat transfer irreversibility.

Fig. 19 indicates the effects of the Richardson number on
the streamlines, isotherms, local entropy generation, and the

Bejan number for λl = λr = 1. When the Richardson number
is increased from 0.001 to 10, due to the dominance of natural
convection, the streamlines are affected by the buoyancy forces
and rotate with four weak vortices. By enhancing the thickness
of the boundary layers at Ri = 10 and fluid irreversibility as
well as heat transfer irreversibility near the walls, the entropy
generation is more sensible than it is for Ri = 0.001.

Considering the assumed value of Gr and Re, i.e., Gr
= 104 and Re = 102, the effect of the enhancement of Ha on
Nu++

m for Ri = 0.001-1000 is presented in Figs. 20(a) and 20(b).
Fig. 20(a) shows a continuous reduction of the Nusselt num-
ber by increasing the Hartmann number for Ri = 0.001-1. For
Ri = 100-1000, a very smooth decrease is observed in the
Nusselt number by increasing the Hartmann number. When

FIG. 18. Streamlines, Isothermal, total entropy generation and the local Bejan number ε = 0.5, Ha = 10, φ = 0.05, B = 0.5, D = 0.5, λl = 1, λr = −1, Sr
= Sl = 1, Q = 1.
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FIG. 19. Streamlines, Isothermal, total entropy generation and the local Bejan number Ha = 10, φ = 0.05, B = 0.5, D = 0.5, λl = 1, λr = 1, Sr = Sl
= 1, Q = 1.

FIG. 20. Variation of Nu++ with the Richardson number (a) λl = 1,λr = 1, (b) λl = −λr = 1.

FIG. 21. Variation of S++ with the Richardson number (a) λl = 1, λr = 1, (b)λl = −λr = 1.
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FIG. 22. Variation of Be++ with the Richardson number (a) λl = 1, λr = 1, (b) λl = −λr = 1.

Ri is small, the natural convection regime is strong and there
is almost a smooth distribution of velocity and temperature
gradients in the cavity. As the Richardson number decreases,
the contribution of moving walls in the streamlines and the
temperature patterns in the cavity increases. In the case of low
values of Ri, for which the moving wall effects are important,
there is a strong velocity gradient in the vicinity of the moving
side walls. Therefore, the effect of the variation of the mag-
netic field (Hartmann number) on the Nusselt number is more
obvious compared to the large values of Ri, as the Lorentz
force is proportional to the velocities in the cavity.

As mentioned, when the Richardson number is large (nat-
ural convection dominant regime), the velocities in the entire
cavity and next to the side walls are comparatively small.
Therefore, the induced magnetic force, which acts proportional
to the magnitude of the velocities, is also small. Thus, as it
can be seen in Figs. 20(a) and 20(b), Nu++ is almost indepen-
dent of the Hartmann number for the cases with large values
of Ri.

The scenario of decreasing Nu++
m by increasing the Hart-

mann number is obtained in Fig. 20(b) for a low Richardson
number and also the smooth decrease of Nu++

m is observed

FIG. 23. The local Nusselt number with various values of heat generation ((a) and (b)) λl = λr = 1 ((c) and (d)) λl = −λr = 1.
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FIG. 24. Variation of the average Nusselt number with various values of heat generation.

for Ri = 100 and 1000 when Ha is enhanced. The magnetic
field effect can be clearly observed by the increment of the
entropy generation ratio (S++) with increasing values of Ha
expect for Ri = 1000 with λl = −λr = 1 and Ri = 100 and
1000 with λl = λr = 1 as shown in Fig. 21. Fig. 22 depicts
the effect of Ha on Be++ for various values in the range of the
Richardson number. Generally, Be++ increases with increasing
values of Ha for Ri = 0001-1 with λl = −λr = 1 and λl

= λr = 1.
The local Nusselt number (Nus) is presented in Fig. 23 for

Ri = 0.1 and Ha = 10 and various values of Q for both cases of
λl = λr = 1 and λl = −λr = 1. Figs. 23(a) and 23(b) illustrate
Nus for λl = λr = 1. The negative values of Q indeed show
a sink. The increase in the values of Q shows the increase of
the internal heat generation in the cavity. The increase of the
heat generation tends to increase the overall temperature of the
cavity. Hence, the areas next to the hot elements experience a
lower temperature difference due to the fact that the temper-
ature of the domain has increased and gets closer to the hot
temperature of the wall. However, an increase of the temper-
ature gradient near the cold wall can be expected due to the
fact that the generated heat in this region has increased the
temperature of the domain. The increase of the temperature
next to the cold wall results in a higher temperature gradient at
the cold wall and therefore an increase in the Nusselt number.
Hence, as seen, in Fig. 23, the increase of Q increases Nus
at the cold wall, i.e., Y = 1, but it decreases Nus at the hot
wall, i.e., Y = 0. The trend of the variation of Nus over the
hot and cold elements is almost symmetrical in the case of
λl = λr = 1 and unsymmetrical in the case of λl = −λr = 1.
The symmetrical and unsymmetrical trends of behaviors are
the result of two smooth circulations in the case of λl = λr = 1
and one big circulation flow in the case of λl = −λr = 1. For
the case of λl = −λr = 1, the maximum value of Nus occurs
at the beginning of the heat sink and at the end of heat source.
The variations of the average Nusselt number ratio with heat
generation are displayed in Fig. 24. A continuous reduction of
Nu++ is observed with the increase in the volume fraction for
both of λl = −λr = 1 and λl = λr = 1. As observed in the
figure, an increment in the heat generation parameter declines
the magnitude of the temperature gradient, and thereby, lead-
ing to a decrease in the reduced Nusselt number. As men-
tioned before, the different behaviors in the streamlines and the

velocity of the two lid-driven cases cause the differences
between Figs. 24(a) and 24(b).

V. CONCLUSION

The effects of the presence of a heat sink and a heat source
and their lengths and locations and the entropy generation on
mixed convection of a Cu-water nanofluid in a porous media
filled in a lid-driven square enclosure with partial slip and
subjected to a magnetic field are numerically studied. The
effects of the nanofluid volume fraction, Hartmann number
and the lengths and locations of the heat sink, and heat source
are studied. The results have led to the following concluding
remarks:

(1) Increasing the volume fraction of the nanoparticles
decreases the convective heat transfer inside the porous
cavity for all ranges of the heat sink and the heat source
lengths.

(2) The average Nusselt number decreases considerably
upon the enhancement of the Hartmann number for all
considered range of B.

(3) The enhancement of the total Bejan number ratio (Be+)
through enhancing the volume fraction is seen in the
results.

(4) A continuous increment in S++ is observed by increasing
the Hartmann number for all ranges of B for λl = −λr

= 1 and λl = λr = 1.
(5) The maximum Nusselt number is seen for B = 0.2 and

λl = λr = 1.
(6) At Ri = 1000, increasing the Hartmann number leads to

enhancing the Nusselt number for and this behavior is
also seen for Ri = 100 and 1000 with λl = λr = 1.

(7) The maximum Nusselt number is seen for D = 0.7 and
λl = λr = 1.
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