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ABSTRACT 
The MHD phase change heat transfer of a phase change substance in the 
presence of a uniform magnetic field is theoretically studied in a cavity. A 
fixed grid method associated with the enthalpy–porosity method is utilized. 
The governing equations are transformed into a non-dimensional form and 
solved using the finite element method. The impacts of the crucial 
parameters such as the Hartmann number and the inclination angle on the 
phase change process are investigated. It is found that any increase in 
Hartmann number and the inclination angle of the cavity leads to a decrease 
in the rate of the melting process. 
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1. Introduction 

Solid–liquid phase change processes play a crucial role in metallurgical industries, particularly in 
extraction and fabrication operations. Therefore, modeling of such processes has drawn investigators’ 
attention to study this phenomenon by carrying out analytical, numerical, and experimental 
researches. These processes involve heat and mass transfer phenomena and thus, the capability to 
comprehend the interaction between the phase change phenomenon and the fluid flow, solidification 
models, and the heat transfer in multicomponent systems is of interest recently. As a result, multi-
farious investigations have been implemented involving experimental and theoretical modeling of 
phase change problems [1–3]. Accordingly, due to the fact that conserving thermal energy is really 
challenging, utilizing latent heat storage, as one of the most efficient ways in this regard, is of para-
mount importance to researchers. In actual fact, phase change materials (PCM) have the potential to 
absorb–release significant latent heat in the course of the solidifying–melting procedure. Conse-
quently, several investigators have studied numerous problems pertinent to PCM modeling. Duan 
et al. [4], considering an enthalpy formulation of energy equation, implemented a numerical study 
of the solidification of a pure n-hexadecane into a cavity. The impacts of different parameters such 
as aspect ratio of the rectangular cavity, initial liquid superheat, and cold wall temperature were stud-
ied in terms of the solid fraction and the shape of solid–liquid phase front. Semma et al. [5] adopted 
the lattice Boltzmann method to study melting and solidification problems. Utilizing two distribution 
function approaches and D2Q9 lattice, they solved two-dimensional fluid flow and heat transfer. 
Moreover, they traced the phase interface by applying partial or parobabilistic bounce back approach 
and compared the predicted solutions for phase change problems with the conventional methods. 
Wang et al. [6] conducted a comprehensive numerical model for melting with natural convection. 
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Considering the finite-volume approach and temperature-transforming model, a new method for 
the correction of the solid velocity with an explicit update for buoyancy force and melting front is 
proposed. Chamkha et al. [7] studied melting, radiation, heat generation, and adsorption impacts 
on mixed convection from a vertical plate assuming non-Newtonian fluid saturated in non-Darcy 
porous medium. Tiwari et al. [8], considering a two-dimensional model, numerically studied the 
thermal characteristics of a fin heat pipe-assisted latent heat thermal energy storage system. In order 
to optimize the design of solar passive walls including PCMs heated from a vertical wall of a rectangu-
lar cavity, Joulin et al. [9] tried to formulate, implement, and validate a numerical method. Khodadadi 
and Hosseinizadeh [10] enhanced the functionality of the PCMs through dispersion of nanoparticles. 
They improved the thermal conductivity of the base materials proposing nanoparticle-enhanced 
phase change materials (NEPCM). Moreover, the effects of surface waviness and nanoparticle disper-
sion on solidification of Cu–water nanofluid into a vertical cavity were studied by Kashani et al. [11]. 
Considering nanofluids, Zhang et al. [12] have studied the unsteady natural convection heat transfer 
of nanofluids in an annulus enclosure. 

In some manufacturing and metallurgical processes, natural convection heat transfer is not appro-
priate due to the fact that such a process should be meticulously controlled. Therefore, investigators 
obviate this problem utilizing natural convection of electrically conducting fluids in a magnetic field. 
Proper research and thorough comprehension of the heat transfer and momentum in such processes 
is crucial for better control which results in enhancing the quality of products. Due to very important 
controlling advantages of MHD flows, the free convection heat transfer of nanofluids in a cavity [13] 
and a channel [14] in the presence of a magnetic field has been studied very recently. Xu et al. [15] 
implemented an experimental study of thermally induced convection of molten gallium subject to a 
uniform magnetic field which is assumed to be parallel to the temperature gradient. The influence of 
magnetic field on natural convection flow in a square enclosure filled with liquid gallium, considering 
heated side walls, is studied by Sathiyamoorthy and Chamkha [16]. Jena et al. [17] investigated the 
magnetoconvection of molten gallium by applying a vertical magnetic field through a center of cuboid 
opposite to the direction of gravity. Feng et al. [18] have addressed MHD phase change heat transfer 

Nomenclature 

Amush mushy-zone constant (Carman–Koseny equation 
constant) 

a enclosure inclination angle 
B0 magnetic induction 
C specific heat (J/kg K) 
Cp specific heat in constant pressure (J/kg K) 
f nondimensional liquid fraction 
g gravity (m/s2) 
Ha Hartmann number 
k thermal conductivity (W/m K) 
L latent heat of fusion (J/kg) 
Lx length in x-direction (m) 
Ly length in y-direction (m) 
N total number of grid nodes 
Nu average Nusselt number 
P pressure (Pa) 
Pr Prandtl number 
Ra Rayleigh number 
S(T) Carman–Kozeny equation (source term) 
Ste Stefan number 
T temperature (K) 
t time (s) 
Tf melting temperature (K) 
u velocity in the x-direction (m/s) 

v velocity in the y-direction (m/s) 
α thermal diffusivity (m2/s) 
β thermal expansion coefficient (1/K) 
ε Carman–Kozeny equation constant 
γ the ratio of thermal diffusivity 
φ(T) liquid fraction 
µ dynamic viscosity (kg/m.s) 
θ nondimensional temperature 
ρ density (kg/m3) 
σ electrical conductivity 
ν kinematic viscosity (m2/s) 
ξ(x,y) horizontal and vertical coordinate in a unit square 
ΔT mushy-zone temperature range (K) 

Subscripts 
c cold 
F fusion 
h hot 
p interface position 
l liquid phase 
k node number 
R ratio 
i residual number 
s solid phase   
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of gallium in a cavity heated from below. They have analyzed the effect of magnetic field and the 
inclination angle of the magnetic field on the melting process of gallium. They reported that the 
magnetic field with an inclination angle has a significant impact on the flow and heat transfer in 
the melting process. 

To the best of the authors’ knowledge, the effect of the presence of a magnetic field on a phase 
change process of a differentially heated tilted cavity has not been addressed yet. The motivation 
behind the present work is to study the melting of an electrically conductive substance in the presence 
of a magnetic field in an inclined cavity. The fundamental results of the present study could be of 
interest in future modeling and control of the functionality of the MHD phase change processes in 
metallurgical processes and thermal systems. 

2. Geometric and mathematical models 

2.1. Physics of the problem 

Consider a rectangular cavity with the width Lx and height Ly. A schematic view of the physical model 
is represented in Figure 1. The rectangular cavity is filled with an electrically conductive frozen sub-
stance (solid) such as gallium or an electrolyte inside an inclined rectangular enclosure. It is assumed 
that the temperatures of the left and right walls are Th, where Th >Tf in which Tf is the melting 
temperature of the substance. The bottom and top walls are insulated and the substance inside the 
cavity is initially at the uniform temperature of Tf. A uniform magnetic field with magnitude B0 is 
applied normal to the vertical walls as shown in Figure 1. 

2.2. Governing equations 

The enclosure walls are considered to be rigid, conducting, and impermeable. Moreover, the tempera-
ture differences are assumed to be small, and hence, the thermophysical properties in each phase are 
constant, and the Boussinesq approximation is applicable for considering the density changes in the 

Figure 1. Schematic diagram of a physical model.  
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liquid phase. However, the thermophysical changes due to phase change is taken into account as the 
density, heat capacity, and thermal conductivity for the solid and liquid phases of a substance could 
be different. It is also assumed that Joule heating effects as well as viscous dissipation effects and radi-
ation effects are negligible. The induced magnetic field due to the induced current in the cavity is 
neglected as the magnetic Reynolds number is small. Considering the above assumptions, the conser-
vation equations for mass, momentum, temperature, and the electric transfer are written as [1, 8, 19] 

Continuity 

r � u ¼ 0 ð1Þ

Momentum 

q
qu
qt
þ u � rð Þu

� �

¼ � rP þr � m uð Þruð Þ þ F ð2Þ

Energy 

qT
qt
þ uð Þ � rT ¼ r a uð ÞrTð Þ �

L
cp

qu Tð Þ
qt

ð3Þ

where the F term in Eq. (2) is the volume force that is explained as follows: 

F ¼ FL þ FB þ SðTÞ � u ð4Þ

The term F in Eq. (2) is the result of three sub-terms, the magnetic field (FL) force, the buoyancy 
force (FB), and the Carman–Kozeny model (S(T)). Here, φ is the liquid volume fraction. FL is the 
effect of the magnetic field that is entered in the momentum equations in the form of the Lorentz 
volume force as [20] 

FL ¼ J � B ð5Þ

where J and B are also expressed as follows [19]: 

J ¼ r � r/þ V � Bð Þ ð6aÞ

r2/ ¼ B � x; x ¼ r� V ð6bÞ

where u, B, V, ω, and J are the velocity, the magnetic, the vorticity, and the voltage fields, respectively. 
The variables of P, T, ϕ, and φ denote the pressure, the temperature, the electric potential, and the 
volume fraction of the liquid phase, respectively. Here, t is time and g is the vector of gravitational 
acceleration constant. In addition, α is the thermal diffusivity, L is the latent heat of fusion, CP is 
the heat capacity at constant pressure, ρ is the density, β is the thermal expansion coefficient, ν is 
the kinematic viscosity, and σ is the electrical conductivity. Subscripts l and s denote the liquid 
and solid phases, respectively. In Eq. (4), the term S(T).u indicates a source term for forcing the fluid 
velocity to zero in solid phase which will be discussed in more detail later. 

Sreenivasan et al. [21] discussed the effect of magnetic field on the flow motion and concluded that 
for the case of two-dimensional steady flow and where the magnetic field lies in the plane of motion 
the term B.ω is zero, and hence, the governing Eq. (6b) reduces to ∇ 2ϕ ¼ 0. Taking into account that 
the enclosure walls are perfectly electrically conductive, they could provide a very low resistance guide 
path for the induced current. Therefore, it can be concluded that the electric field vanishes everywhere 
in the cavity [16]. Invoking these conditions, the term J � B in the momentum equation reduces to 
σB2 [19]. 

The term FB in Eq. (4) is the buoyancy force that leads to convection heat transfer in the liquid 
(molten) and is expressed by Boussinesq approximation as follows: 

~F ¼ qb~gðT � Tf Þ ð7Þ
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Finally, the term S(T) in Eq. (4) is the body force effect of the Carman–Kozeny model that 
expresses the effect of damping in the mushy region. In the Carman–Kozeny model, it is assumed 
the mushy region is a porous medium, in which by moving from the liquid toward the solid part, 
the porosity and the permeability of the medium gets very low, and hence, the velocity of the fluid 
tends to zero. The term of S(T) in the momentum equation is defined as [8] 

S Tð Þ ¼ � Amush
1 � u Tð Þð Þ

2

u Tð Þ3þ e
ð8Þ

where φ is a function of temperature defining the solid and liquid regions by: 

u Tð Þ ¼
0 T < Tf
T� Tf
DT Tf < T < Tf þ

DT
2

1 T > Tf þ DT

(

ð9Þ

In the present study, the viscosity is also controlled in the mushy region using the following 
relation: 

m uð Þ ¼ ml 1þ Amush 1 � uð Þð Þ ð10aÞ

Control of viscosity in the mushy region, using Eq. (10), assists the uniformity of the velocity and 
pressure fields in the domain of the solution. It also helps the velocity field to remain zero at the solid 
parts of the domain. The thermal diffusivity in the liquid, mushy, and solid region is assumed as a 
linear function of the volume fraction of the liquid as 

a uð Þ ¼ ual þ asð1 � uÞ ð10bÞ

Now, the governing equations for mass, momentum, and thermal energy represented here in 
dimensional Cartesian coordinates x; y can be written as follows: 

Continuity 

qu
qx
þ
qn

qy
¼ 0 ð11Þ

Momentum in x-direction 

q
qu
qt
þ u

qu
qx
þ v

qu
qy

� �

¼ �
qp
qx
þ

q

qx
m uð Þ

qu
qx

� �

þ
q

qy
m uð Þ

qu
qy

� �� �

þ q~gbðT � Tf Þ sin aþ SðTÞ: u
ð12Þ

Momentum in y-direction 

q
qv
qt
þ u

qn

qx
þ v

qn

qy

� �

¼ �
qp
qy
þ

q

qx
m uð Þ

qn

qx

� �

þ
q

qy
m uð Þ

qn

qy

� �� �

þ q g!bðT � Tf Þ cos a � ðrB2
0Þ � nþ SðTÞ � n

ð13Þ

Energy 

qT
qt
þ u

qT
qx
þ v

qT
qy
¼

q

qx
a uð Þ

qT
qx

� �

þ
q

qy
a uð Þ

qT
qy

� �� �

þ
L

Cp

qu Tð Þ
qt

ð14Þ

Based on the problem description, the boundary conditions are written as: 

Heated wall x ¼ 0; Lx y ¼ y : u ¼ 0; v ¼ 0; T ¼ Th ð15aÞ

Top wall x ¼ x; y ¼ Ly : u ¼ 0; v ¼ 0;
qT
qy
¼ 0 ð15bÞ
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Bottom wall x ¼ x; y ¼ 0 : u ¼ 0; v ¼ 0;
qT
qy
¼ 0 ð15cÞ

where Lx and Ly are the width and height of the enclosure, respectively. At the beginning, the cavity is 
filled with the solid phase at the fusion temperature of Tf. 

It is appropriate to express Eqs. (11)–(14) in nondimensional form using the following 
dimensionless variables as: 

X ¼
x
Ly
; Y ¼

y
Ly
; U ¼

uLy

al
; V ¼

vLy

al
; h ¼

T � Tf

Th � Tf
ð16aÞ

Fo ¼
tal

L2
y
; S Tð Þ ¼

S Tð ÞL2
y

qal
; mr ¼

m uð Þ

ml
; ar ¼

a uð Þ

al
; P ¼

pL2
y

qa2
l
; AR ¼

Ly

Lx
ð16bÞ

Invoking the nondimensional variables, the corresponding nondimensional form of the governing 
Eqs. (11)–(14) is obtained as 

Continuity: 
qU
qX
þ
qV
qY
¼ 0 ð17Þ

Momentum in x-direction: 

qU
qFo
þ U

qU
qX
þ V

qU
qY
¼ �

qp
qX
þ Pr

q

qX
mr
qU
qX

� �

þ
q

qY
mr
qU
qY

� �� �

þ Ra Pr h sin aþ SðTÞ � U ð18Þ

Momentum in y-direction: 

qV
qFo
þ U

qV
qX
þ V

qV
qY
¼ �

qp
qY
þ Pr

q

qX
mr
qV
qX

� �

þ
q

qY
mr
qV
qY

� �� �

þ RaPrh cos a � ðHaÞ2 Pr �V þ SðTÞ � V
ð19Þ

Energy: 

qh

qFo
þ U

qh

qX
þ V

qh

qY
¼

q

qX
ar
qh

qX

� �

þ
q

qY
ar
qh

qY

� �� �

�
1

Ste
qf
qF0

ð20Þ

The relevant dimensionless parameters are then: 

Ra ¼
qgbL3

y Th � Tfð Þ

mlal
ð21Þ

Ste ¼
cl Th � Tfð Þ

L
ð22Þ

Pr ¼
clml
kl

ð23Þ

Ha ¼ B0Ly

ffiffiffiffiffiffi
r

qt

r

ð24Þ

Following Eq. (16), the nondimensional form of the viscosity and thermal diffusivity equations, 
Eqs. (10a) and (10b) can be evaluated as follows: 

mr ¼ 1þ Amush 1 � uð Þð Þ ð25aÞ

ar ¼ 1þ
as

al
1 � uð Þ

� �

ð25bÞ
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where Ra is the Rayleigh number, Ste is the Stefan number, Pr is the Prandtl number, and Ha is 
the Hartmann number. By using the variables in Eq. (16), the nondimensional boundary conditions 
are 

Heated wall X ¼ 0; 1 : U ¼ 0; V ¼ 0; hh ¼ 1 ð26aÞ

Top wall Y ¼ AR : U ¼ 0; V ¼ 0;
qh

qY
¼ 0 ð26bÞ

Bottom wall Y ¼ 0 : U ¼ 0; V ¼ 0;
qh

qY
¼ 0 ð26cÞ

The melt volume fraction as a function of θ is written as: 

u hð Þ ¼
0 h < 0
h
Dh

0 < h < Dh

1 h > Dh

(

ð27Þ

where Dh ¼ DT
Th� Tf

. The initial temperature in nondimensional form is evaluated as θ ¼ 0 in the 
cavity. 

3. Method of solution and validation 

The system of partial differential Eqs. (17)–(20) along with the boundary conditions, Eq. (26), are 
transformed into weak form and solved numerically utilizing the Galerkin finite element method 
[22]. The continuity Eq. (17) is employed as a constraint to satisfy the mass conservation by the con-
trol of the pressure distribution using the mass conservation. Thus, the following constraint equation 
for continuity equation is utilized as a penalty parameter (χ) in the momentum equations as described 
by Reference [22]. Therefore, the pressure is written as 

P ¼ v
qU
qX
þ
qV
qY

� �

ð28Þ

where χ is the penalty number, which is a large value. Invoking Eq. (28), the momentum Eqs. (18) and 
(19) are obtained as 

qU
qFo
þ U

qU
qX
þ V

qU
qY
¼ �

q

qX
v

qU
qX
þ
qV
qY

� �� �

þ Pr
q

qX
mr
qU
qX

� �

þ
q

qY
mr
qU
qY

� �� �

þ Ra Pr h sin aþ SðTÞ � U
ð29Þ

qV
qFo
þ U

qV
qX
þ V

qV
qY
¼ �

q

qY
v

qU
qX
þ
qV
qY

� �� �

þ Pr
q

qX
mr
qV
qX

� �

þ
q

qY
mr
qV
qY

� �� �

þ RaPrh cos a � ðHaÞ2 Pr �V þ SðTÞ � V
ð30Þ

Thus, in the above equations, the continuity Eq. (17) is satisfied for very large values of 
the penalty parameter (χ ¼ 107) [22]. Now, the velocities (U and V) as well as the temperature, 
θ, are expanded invoking a basis set nkf g

N
k¼1 in the domain interval of � 0.5 < X < 0.5 and 0 < Y 

< 1 as 

U �
XN

k¼1
UkfðX;YÞ; V �

XN

k¼1
VkfðX;YÞ; h �

XN

k¼1
hkfðX;YÞ ð31Þ

Here it should be noted that the basis function ζ for all of the three variables is the same. 
Therefore, the total number of nodes is N ¼ 3. Invoking the introduced basis functions introduced 
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in Eq. (31), the nonlinear residual equations (RN
i ) of the governing equations, Eqs. (17)–(20), are 

derived as follows: 

R1
i ¼

XN

k¼1
Uk

Z

X

qnK
qF0

nidXdY

þ
XN

k¼1
Uk

Z

X

XN

k¼1
Ukfk

 !
qfk
qX
þ
XN

k¼1
Vkfk

 !
qfk
qY

#

fidXdY

"

þ
XN

k¼1
Uk

Z

X

qni
qX

vð Þ
qnK
qX

dXdY
� �

þ
XN

k¼1
Vk

Z

X

qni
qX

vð Þ
qnK
qY

dXdY
� �

þ Pr
XN

k¼1
Uk

Z

X

qni
qX

mr
qnK
qX

dXdY
� �

þ
XN

k¼1
Uk

Z

X

qni
qY

mr
qnK
qY

dXdY
� �" #

þ Ra Pr
Z

X

XN

k¼1
hkfk

 !

fidXdY

" #

sin aþ SðTÞ
XN

k¼1

Z

X

XN

k¼1
Ukfkð Þfi

 !

dXdY

ð32Þ

R2
i ¼

XN

k¼1
Vk

Z

X

qnK
qF0

nidXdY

þ
XN

k¼1
Vk

Z

X

XN

k¼1
Ukfk

 !
qfk
qX
þ
XN

k¼1
Vkfk

 !
qfk
qY

#

fidXdY

"

þ
XN

k¼1
Uk

Z

X

qni
qY

vð Þ
qnK
qX

dXdY
� �

þ
XN

k¼1
Vk

Z

X

qni
qY

vð Þ
qnK
qY

dXdY
� �

þ Pr
XN

k¼1
Vk

Z

X

qni
qX

mr
qnK
qX

dXdY
� �

þ
XN

k¼1
Vk

Z

X

qni
qY

mr
qnK
qY

dXdY
� �" #

þ Ra Pr
Z

X

XN

k¼1
hkfk

 !

fidXdY

" #

cos a

þ Hað Þ
2Pr
XN

k¼1

Z

X

XN

k¼1
Vkfk

 !

fidXdY þ SðTÞ
XN

k¼1

Z

X

XN

k¼1
Vkfkð Þfi

 !

dXdY

ð33Þ

R3
i ¼

XN

k¼1
hk

Z

X

qnK
qF0

fidXdY

þ
XN

k¼1
hk

Z

X

XN

k¼1
Ukfk

 !
qfk
qX

"

þ
XN

k¼1
Vkfk

 !
qfk
qY

#

fidXdY

XN

k¼1
hk

Z

X

qni
qX

ar
qnK
qX

dXdY
� �

þ
XN

k¼1
hk

Z

X

qni
qY

ar
qnK
qY

dXdY
� �" #

þ
1

Ste

XN

k¼1
fk

Z

X

qnK
qF0

fidXdY

ð34Þ

In order to numerically evaluate integral terms, the bi-quadratic functions with three-point 
Gaussian quadrature are employed. Then, the Newton–Raphson method is employed to evaluate 
the coefficients of the expansions, that is, Uk, Vk, and θk, in the nonlinear residual Eqs. (32)–(34). 
More details about the solution procedure can be found in the excellent studies by Reddy [22] 
and Basak et al. [23, 24]. In the present study, a non-uniform grid is utilized. The grid points are 
symmetrically clustered next to the vertical and horizontal walls with the ratio of 1.05. The zero values 
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for the initial velocities and temperature are adopted. Commencing the solution from the initial 
values, the system of residual equations are solved iteratively and the calculations are repeated until 
the residuals for the field variables, that is, velocities and temperature become small (10� 7 or lower). 
The solution procedure, in the form of an in-house computational fluid dynamics (CFD) code, 
has been validated successfully against the results available in the literature including the studies of 
References [1, 3, 25]. 

3.1. Grid check 

In order to check the grid independency of the solution, the calculations are repeated for several grid 
sizes in the case of Pr ¼ 0.0216, Ra ¼ 2.1 � 105, Ste ¼ 0.039, Amush ¼ 1.6 � 106. Table 1 indicates the 
required time for simulation of approximately 90% of melting for various grid sizes. The calculations 
are performed using a supercomputer with 40 GB of memory and 20 CPU cores each of 2.2 GHz. The 
liquid fraction for different grid sizes is also depicted in Figure 2. The results of Figure 2 indicate that 
the grid size of 150 � 150 can provide acceptable accuracy. Hence, the results of the present study are 
carried out using the grid size 150 � 150. 

3.2. Validation of the results 

To check the precision of the solution, several investigations have been performed. As the first case, 
the results of the present study are compared with the experimental results of Gau and Viskanta [25] 
and the numerical results available in literature for a rectangular cavity with aspect ratio (height/ 
width) of 0.714. In the experiment of Gau and Viskanta [25], the left wall is hot, while the top 
and bottom walls are insulated. 

Gau and Viskanta [25] have evaluated the melting interface using the pour-out method and the 
probing method. The evaluated melting interface for this problem is also numerically addressed by 
Kashani et al.[11], Khodadadi and Hosseinzadeh [10], Brent et al. [2], Joulin, et al. [9], Viswanta 
and Jaluria [26], and Dessai and Vafai [27]. The summary of the available numerical results are 
plotted in Figures 3a and 3b. As seen, the results of the present study are in reasonable agreement 
with the available experimental and numerical results. In the case of Fo ¼ 3.48, the results are some-
how different from the experiment but in agreement with the numerical results. The previous authors 
have concluded that the difference between the numerical and experimental results in this case could 
be due to the method of evaluating the melting interface in the experiment of Gau and Viskanta [25]. 
The authors have measured the melting interface mechanically using a manual mechanical probe. For 
high values of Fo, the solid–liquid interface of melting could be unstable, and hence, distinguishing 
the precise shape of the interface is hard. 

As another validation, the results of the present finite element code are compared with the bench-
mark study of Bertrand et al. [1] when Ra ¼ 1 � 107, Pr ¼ 50, Ha ¼ 0, and αs/αl ¼ 1. In the study of 
Bertrand et al. [1] as a benchmark study, different authors have reported the results of the melting 
interface for a square cavity. The results are shown in Figure 4. As seen, there is a good agreement 
between the results of the present study and the results available in the literature. 

Also, as another comparison, the results of the present study are compared with the experimental 
results reported by Kumar et al. [3] for melting of lead. Kumar et al. [3] have examined the melting of 

Table 1. The required time for grid size independency. 
Cases Grid size Run time  

Case 1  100 � 100 14 h, 21 min 
Case 2  125 � 125 1 day, 6 h, 12 min 
Case 3  150 � 150 2 day, 1 h, 20 min 
Case 4  175 � 175 2 days, 18 h, 27 min 
Case 5  200 � 200 3 days, 10 h, 48 min   
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lead contained in a stainless steel cuboid. In the study of Kumar et al. [3], there was a heater mounted at 
one of the vertical side walls of the cavity which provided a constant heat flux, while the other walls 
were insulated. The authors have carried out the photography of solid–liquid interface movement dur-
ing melting of lead using neutron radiography. The nondimensional parameters of the experimental 
setup of Kumar et al. [3] are shown in Table 2. Initially, the heater is put on and the temperature 
increases on both sides. In the experiment of Kumar et al. [3], when melting commenced, the tempera-
ture at the right-hand side walls (the heater side) was higher than that of the left-hand side wall. There-
fore, a linear temperature distribution was the initial condition for the commencing of the melting 
process. As Kumar et al. [3] have performed the experiment for the case of constant heat flux, the Ray-
leigh number, Stefan number, and the Prandtl number are needed to be calculated on the basis of the 
constant heat flux as Ste� ¼ Cpq00cond Lx= kLð Þ and the Rayleigh number based on constant heat flux is 
given by Ra� ¼ gbq00cond L4

y= ðkanÞ and Ste� ¼ Cpq00cond L4
x= kLð Þ. Here, the results of the present study 

are compared with the experimental results reported by Kumar et al. [3] for a case indicated in Table 3. 

Figure 2. The liquid fraction for various grid sizes.  

Figure 3. A comparison among the experimental measurement of Gau and Viskanta [25], the numerical results available in 
literature, and the results of the present study when γ ¼1 and neglecting the magnetic effects (a) and (b): uniformly heated left 
and cooled right. The bottom and top walls are insulated, Ra ¼ 6 � 105, Pr ¼ 0.0216.  
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For the case of magnetohydrodynamic flows, Sathiyamoorthy and Chamkha [19] have studied the 
effect of the presence of magnetic field effects on natural convection of electrically conducting liquids. 
In this regard, Sathiyamoorthy and Chamkha [19] have studied the natural convection flow within a 
square cavity filled with liquid metals subject to a uniform magnetic field, when the bottom and left 
walls are uniformly (constant temperature) or linearly heated, while the right and top walls are cooled. 
It should be noted that in the study of Sathiyamoorthy and Chamkha [19], there was no phase change 
and the cavity is solely filled with the liquid phase. As a comparison, the results of the present study 
are compared with the results of the study of Sathiyamoorthy and Chamkha [19] by assuming that the 
cavity is filled with a molten metal for the case of Ra ¼ 105, Pr ¼ 0.054, and two Hartmann numbers 
of Ha ¼ 50 and Ha ¼ 100. Figure 5 shows a comparison between the streamlines and isotherms 

Table 2. Input provided for one case in the simulation of Kumar et al. [3]. 
Heater input  
(right side) 

Stefan  
number 

Prandtl  
number 

Rayleigh  
number 

Hartmann  
number 

Temperature at  
left side (K) 

Temperature at  
right side (K)  

16.3 kW/m2  0.4  0.0236  1.4 � 107 0 555 599 

Figure 4. A comparison among the benchmark study of Bertrand et al. [1] and the results of the present study (τ ¼Fo � Ste) when 
(a) τ ¼ 6 � 10� 3; (b) τ ¼ 1 � 10� 2.  

Table 3. Boundary locations solid–liquid (�) at different nondimensional times (Fo): A comparison between the result of the 
benchmark experimental of Kumar et al. [3] and the results of the present study. 

y 

Fo ¼ 1.83 Fo ¼ 1.47 Fo ¼ 1.1 Fo ¼ 0.73 

Present  
work 

Kumar  
et al. [3] 

Present  
work 

Kumar  
et al. [3] 

Present  
work 

Kumar  
et al. [3] 

Present  
work 

Kumar  
et al. [3]  

0  0.29  0.29  0.22  0.21  0.17  0.12  0.13  0.08 
0.1  0.39  0.29  0.26  0.23  0.19  0.15  0.16  0.09 
0.2  0.49  0.40  0.33  0.26  0.21  0.18  0.16  0.10 
0.3  0.55  0.56  0.39  0.27  0.28  0.23  0.21  0.17 
0.4  0.65  0.58  0.43  0.35  0.30  0.24  0.19  0.17 
0.5  0.84  0.78  0.59  0.56  0.30  0.29  0.21  0.18 
0.6  0.95  0.90  0.71  0.66  0.41  0.37  0.20  0.20 
0.7  1  0.98  0.80  0.77  0.52  0.53  0.27  0.27 
0.8  1.06  1.01  0.82  0.82  0.58  0.57  0.37  0.37 
0.9  1.07  1.03  0.82  0.83  0.57  0.58  0.38  0.40 
1  1.07  1.03  0.85  0.85  0.59  0.57  0.38  0.40   
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reported by Sathiyamoorthy and Chamkha [19] and the results of the present study. Figure 5 indicates 
good agreement between the results of Sathiyamoorthy and Chamkha [19] and the results of the 
present study. 

As another comparison, the result of the present study for hydromagnetic flows are compared 
with Al-Mudhaf and Chamkha [28]. In this study, natural convective flow of electrically conduct-
ing gallium and germanium liquid metals (only liquid phase) in an inclined rectangular enclosure 
in the presence of a uniform magnetic field due to a transverse temperature gradient was studied 
numerically. In the study of Al-Mudhaf and Chamkha [28], the side walls of the cavity were 
isothermal for which one wall was hot and the other one was cold; the top and bottom were 
well insulated. In the study of Al-Mudhaf and Chamkha [28], it was assumed that the cavity is 
filled with solely a liquid phase, and hence, there was no phase change procedure. In this case, 
the results of the present study are compared with the results of the study of Al-Mudhaf and 
Chamkha [28] in Table 4. In this case, Ra¼105, Pr¼0.025, a ¼ 45° (where a is enclosure 
inclination angle). 

4. Results and discussion 

Now, as a case study consider a rectangular cavity with the size of Lx ¼ 14.4 cm, Ly ¼ 7.2 cm 
filled with gallium. The temperature at the hot walls is Th ¼ 39°C. The thermophysical properties 
of gallium are represented in Table 4. In this case, the corresponding nondimensional parameters 
are Pr ¼ 0.0216, Ste ¼ 0.044, Ra ¼ 1 � 106, and αs/αl ¼ 1. These nondimensional parameters are 
considered as the default nondimensional parameters in this study and the calculations are 
performed for these set of nondimensional parameters, and otherwise the value of the nondimen-
sional parameter will be stated. The physical properties for pure gallium are obtained and shown 
in Table 5. 

Figure 5. A comparison among the numerical measurements of Sathiyamoorthy and Chamkha [19]: (a) streamlines, (b) isotherms.  

Table 4. Comparison of the evaluated average Nusselt number Nu on the hot wall of the cavity with reference to Al-Mudhaf and 
Chamkha [28]. 

Ha Al-Mudhaf and Chamkha [28] Present study  

30  2.78  2.67 
50  1.86  1.81 
70  1.43  1.39 
100  1.14  1.12   
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The present study aims to analyze the impact of variation of Ha and inclination angle α on the 
melting process. In order to investigate the effect of the Hartmann number, the streamlines and 
isotherms of the melting process, in the case for which the enclosure is horizontal, for various Fourier 
and Hartmann numbers are presented in Figures 6–8. 

As it is shown in Figures 6–8, the rate of the melting process is a decreasing function of the 
Hartmann number. As the Hartmann number is the ratio of the electromagnetic force to the 
viscous force, a high value of Ha means that the electromagnetic force is the dominant force com-
pared with the viscous one. Consequently, the magnitude of the viscous force is low and it affects 
the Gibbs free energy. In other words, the melting process occurs when the Gibbs free energy of 
the liquid becomes lower than that of the solid for the material and a decrease in viscous flow 
influences this energy. 

Table 5. Thermophysical properties of pure gallium. 
Property Symbol Value Unit  

Density (solid/liquid) ρ  6,093 (kg/m3) 
Thermal expansion coefficient β  1.2 × 10−4 (1/K) 
Fusion temperature Tf  302.85 (K) 
Thermal conductivity (solid/liquid) k  32.0 (W/m.K) 
Latent heat of fusion L  80,160 (J/kg) 
Specific heat capacity (solid/liquid) C  381.5 (J/kg.K) 
Dynamic viscosity μ  1.81 × 10−3 (kg/m.s)   

Figure 6. Isotherms and streamlines for Ha ¼ 0, a ¼ 0 when (a) Fo ¼ 0.7; (b) Fo ¼ 2.15; (c) Fo ¼ 3.6.  
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To clarify the effect of the Hartmann number on the melting process, the variation of the liquid 
fraction for different Fourier numbers and Ha is shown in Figure 9. 

Based on Figure 9, it is clear that augmentation of Fo leads to an increase in the liquid fraction. 
Moreover, for low values of Fourier numbers, that is, Fo < 0.5, the variation of the Hartmann number 
does not have significant effect on the liquid fraction. On the other hand, further increase in the 
Fourier number for Fo greater than 0.5 leads to more difference between liquid fractions. One other 
point to note is that when the parameter Ha goes up, the liquid fraction magnitude descends. The 
variation of the melting interface for multifarious Hartmann numbers and inclination angles has been 
depicted in Figure 10. 

According to Figures 10a–10d, the melting process in the inclined enclosure is not symmetric and 
the progression of melting of the left section, which is placed at the bottom of the right one, is further 
than the right section. In addition, in the case for which the parameter Ha ¼ 0, the melting phenom-
enon has taken place before the cases corresponding to Ha ¼ 100, 200 and the differences between 
these two cases are much noticeable in the left part compared with the right one. To clarify how 
the variation of the inclination angle affects the melting interface for different Fourier numbers, 
Figure 11 is displayed. 

In accordance to Figure 11, it is obvious that the effect of alteration of the inclination angle on the 
melting interface rises as the nondimensional time increases. Moreover, the melting interface is a 
decreasing function of the angle. As an illustration, when the Fourier number is 3.6, the percentage 
of the melted material for a ¼ 0 is clearly more than the cases corresponding to a ¼ 30, 60. Eventually, 

Figure 7. Isotherms and streamlines for Ha ¼ 100, a ¼ 0 when (a) Fo ¼ 0.7; (b) Fo ¼ 2.15; (c) Fo ¼ 3.6.  
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Figure 8. Isotherms and streamlines for Ha ¼ 200, a ¼ 0 when (a) Fo ¼ 0.7; (b) Fo ¼ 2.15; (c) Fo ¼ 3.6.  

Figure 9. Effect of magnetic induction on liquid fraction without an incline enclosure (a ¼ 0°) for various Hartmann number.  
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for more investigation, the impact of changing the inclination angle on the liquid fraction is shown in 
Figure 12. 

As expounded in Figure 12, following the results of Figure 11, any increase in the inclination 
angle leads to a decrease in the liquid fraction. In other words, changing the value of the inclination 
angle causes the melting process to occur asymmetrically due to the difference in temperature 
gradients at the right and left sides of the inclined cavity and consequently, the rate of melting 
becomes slower. 

Figure 10. The melting interface for different Hartmann numbers: (a) Ha ¼ 0, 100 and a ¼ 30; (b) Ha ¼ 0, 200 and a ¼ 30; (c) 
Ha ¼ 0, 100 and a ¼ 60; (d) Ha ¼ 0, 200 and a ¼ 60.  
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5. Conclusion 

The impact of the magnetic induction and cavity inclination angle on the melting phenomenon of an 
MHD phase change process is addressed. The left and right vertical walls are maintained at a constant 
temperature Th and the bottom and top walls are kept thermally insulated. The effects of crucial para-
meters such as the Hartmann number and inclination angle of cavity are studied. The results of the 
present study are compared with the experimental and numerical results available in the literature 
and found to be in reasonable agreement. The outcomes of the present study can be summarized 
as follows: 
1. The utilized enthalpy–porosity formulation is capable of modeling the phase change phenomenon 

for a pure substance. 
2. The increase of the Hartmann number tends to suppress the convective mechanism and decrease 

the rate of phase change process. 
3. The liquid fraction is a decreasing function of the Stefan number. Furthermore, the augmentation 

of the inclination angle makes an asymmetric melting, and consequently a decrease in the liquid 
fraction is predicted. 

4. The effect of variation of the Hartmann number (Ha) and the inclination angle (a) on the melting 
process becomes significant for high values of the Fourier number. 
The results of the present study show that the presence of a magnetic field can reduce the advective 

heat transfer mechanism and induce a more uniform temperature gradient. However, even the pres-
ence of a very strong magnetic field is not capable of fully eliminating the effect of the convective heat 

Figure 12. Effect of an inclined enclosure on liquid fraction in Hartmann number 0 (Ha ¼ 0).  

Figure 11. The melting interface for Hartmann number 0 at a ¼ 0°, 30°, 60°.  
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transfer mechanism, and the melting interface is not linear. It should be noted that the effects of the 
cavity inclination angle and the magnetic field strength are addressed in the present study; however, 
the magnetic inclination angle could also play a significant role on the MHD melting process of PCMs 
which could be subject of future studies. 
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