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Considering Buongiorno’s model, the unsteady free convection in a porous enclosure filled with a nanofluid is studied
while the nanoparticles, the base fluid, and the solid porous matrix are in local thermal nonequilibrium. It is assumed
that the left and right vertical walls are suddenly heated and cooled. Moreover, the movement of the nanoparticles is
affected by Brownian and thermophoresis forces. The influence of multifarious thermophysical variables, such as solid–
fluid and nanoparticle–fluid interaction heat transfer parameters, buoyancy ratio parameter, and Rayleigh number, on
the transient average Nusselt number for the solid matrix, the base fluid, and the nanoparticles is investigated. It is
found that the increase of solid–fluid and nanoparticle–fluid interaction heat transfer parameters would majorly aug-
ment the solid and nanoparticle average Nusselt numbers, respectively. Furthermore, the decrease of the buoyancy ratio
and the increase of Rayleigh number would boost the average Nusselt number for all of the three phases. Eventually,
the period of reaching to steady state shows a direct proportion to buoyancy ratio and a reverse proportion to Rayleigh
number.

KEY WORDS: unsteady free convection, porous media, thermal nonequilibrium model, nanofluids, Buon-
giorno’s model

1. INTRODUCTION

Convective heat transfer of nanofluid-saturated porous media has attracted considerable attention due to wide applica-
tions in engineering, such as electronic geothermal systems, chemical catalytic reactors, component cooling, packed
sphere beds, and paper production. Porous structures are also enthusiastic in relation to solar power collectors and the
underground spread of pollutants. In fact, the mechanical systems due to external power supply almost are doomed
to failure, and therefore a reliable natural convection system could be an appropriate alternative to mechanical sys-
tems. It also substantially declines the induced noise because of the fans. Accordingly, because of such virtues, many
engineers and investigators are fascinated by natural convection phenomena. There is a rich literature concerning the
convective flows in porous media, such as Nield and Bejan (2013), Ingham and Pop (2005), Vafai (2005, 2010), Bejan
and Kraus (2003), Narasimhan (2013), Bejan (2013), and Shenoy et al. (2016).

In essence, when the thermal conductivity of the porous structure is relatively low or the interaction between
porous medium and fluid is high, perfectly rational is the assumption that the temperatures of porous medium and
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NOMENCLATURE

C nanoparticle volume fraction
C0 ambient nanoparticle volume fraction
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
g gravitational acceleration vector
hfp interface heat transfer coefficient

between the fluid/particle phases
hfs interface heat transfer coefficient

between the fluid/solid-matrix phases
K permeability of the porous medium
k effective thermal conductivity
L cavity size
Le Lewis number
N total number of nodes
Nb Brownian motion parameter
Nhp Nield number for the fluid/nanoparticle

interface (fluid/nanoparticle interface
parameter)

Nhs Nield number for the fluid/solid-matrix
interface (fluid/solid-matrix interface
parameter)

Nr buoyancy ratio parameter
Nt thermophoresis parameter
Nu local Nusselt number
Nu average Nusselt number
p pressure
R residual of weak form
Ra thermal Rayleigh–Darcy number

Ra= (1− C0) gKρf0β∆TL/(αfµ)
Sh local Sherwood number
Sh average Sherwood number
T nanofluid temperature
Tc temperature at the right wall

Th temperature at the left wall
ū, v̄ the velocity components along

x̄, ȳ directions
V Darcy velocity
x̄, ȳ Cartesian coordinates

Greek Symbols
α effective thermal diffusivity
β thermal expansion coefficient
γp modified particle heat capacity
γs modified porous solid matrix thermal

conductivity
ε porosity
εp modified diffusivity ratio

boundary
Θ nondimensional temperature
µ dynamic viscosity
ρ fluid density
(ρc) effective heat capacity
η parameter defined byη = (ρc)p/(ρc)f
ξ basis functions
τ dimensionless time
φ relative nanoparticle volume fraction
ψ nondimensional stream function
ψ̄ stream function

Subscripts
0 the ambient property
f base fluid phase
i residual number
k node number
p nanoparticle phase
s porous medium solid-matrix phase

fluid are much the same and the mixture is in local thermal equilibrium (LTE). This consideration facilitates the
problem so that the fluid and porous structure can be assumed as a uniform mixture. Nevertheless, in several other
cases, there are substantial temperature differences between the fluid and the porous medium. In such cases, the
assumption of LTE is no longer valid and the local thermal nonequilibrium between the porous matrix and the fluid is
much better considered (see Ingham and Pop, 2005; Baytas and Pop, 2002; Baytas, 2003; Jamalabadi, 2015; Wu and
Zhou, 2016).

To modify the specifications of the fluid, investigators have manufactured an engineered fluid in which some
particles in size of nanometer are mixed with a base fluid, called nanofluid. Several investigations have been estab-
lished to evaluate the characteristics and heat transfer of multifarious kinds of nanofluids (see Zhang et al., 2008;
Hirota et al., 2010; Choi et al., 2008; Khanafer and Vafai, 2011; Gümg̈um and Tezer-Sezgin, 2014; Mahajan and
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Sharma, 2014). Buongiorno (2006) examined the nanoparticle mass transfer in nanofluids utilizing scale analysis and
found that the thermophoresis and Brownian motion are two significant particle transfer mechanisms in nanofluid.
The thermophoresis force induces the force, which tends to move the nanoparticles based on temperature gradient
(nanoparticles move from the hot side to the cold side), and the Brownian motion force makes uniform nanoparticles
in the fluid.

Nanoscience is an interdisciplinary field of science which has its early beginnings in the 1980s. At small dimen-
sions of a few nanometers (billionths of a meter), new physical properties emerge, often due to quantum mechanical
effects. During the last decades, additionally, novel microscopical techniques have been developed to observe, mea-
sure, and manipulate objects at the nanoscale. It rapidly turned out that nanosized features not only play a role in
physics and materials sciences but also are most relevant in chemistry, biology, and medicine, giving rise to new
fenestrations between these disciplines and wide application prospects (see Schaefer, 2009). Therefore nanofluid
technology, a new interdisciplinary field of great importance, where nanoscience, nanotechnology, and thermal engi-
neering meet, has been largely developed over the past three decades.

The unsteady free convection of a regular flow in a cavity implementing local thermal equilibrium has been
investigated by previous researchers. For instance, Saeid and Pop (2004), considering an enclosure in which the left
vertical wall was suddenly heated to a constant high temperature and the right vertical wall was cooled suddenly
to a constant low temperature, calculated the local and average Nusselt numbers for different Rayleigh numbers.
Muthtamilselvan (2011), taking into account the left vertical wall in three different partially heated locations, studied
the transient buoyancy-driven convection in a water-saturated porous enclosure near its density maximum. In a series
of investigations, spearheaded by Amiri and Vafai (1994, 1998) and Vafai and Amiri (1998), the substantiation of the
LTE assumption and its domain of applicability have been discussed.

On the other hand, several studies have been conducted to analyze the free convection in an enclosure of a satu-
rated porous medium using a local thermal nonequilibrium model. For example, Khashan et al. (2006) examined the
numerical simulation of the natural convection heat transfer in a porous cavity incorporating different non-Darcian
effects, such as Brinkman, Forchhiemer quadratic inertial, and the convective terms. Srivastava et al. (2011), using the
Darcy model with anisotropic permeability, analyzed the onset of thermal convection in an electrically conducting
fluid-saturated porous medium, when the fluid and solid phases are not in LTE. Jaballah et al. (2012) numerically
investigated the nonequilibrium thermal transfer of heat occurring between the coolant fluid and the exchanger (chan-
nel) partially filled by successive porous matrices.

The motivation behind the present work is to study the unsteady free convection in a porous enclosure saturated by
nanofluid in which the local thermal nonequilibrium and Buongiorno’s model are considered. The effect of different
thermophysical variables, such as solid–fluid and nanoparticle–fluid interaction heat transfer parameters, buoyancy
ratio parameter,Nhs, andNhp on transient average Nusselt number is investigated. It is worth mentioning to this end
that after Telionis (1981), there is no actual flow situation, natural or artificial, that does not involve some unsteadiness.
For a long time, the flow in all engineering applications was arbitrarily assumed to be steady. For example, the lifting
characteristics of an airfoil or the drag characteristics of a blunt body were problems attacked both analytically
and experimentally as steady problems. It is well known, however, that in many other engineering applications,
unsteadiness is an integral part of the problem.

2. MATHEMATICAL FORMULATION

A two-dimensional unsteady free convection in an enclosure filled with a porous matrix and saturated with a nanofluid
is considered. It is assumed that the three phases, namely, porous structure, base fluid, and nanoparticles, are not in
thermal equilibrium. In addition, the nanoparticles are suspended in the nanofluid utilizing surface charge technology
or surfactant. Indeed, this averts the nanoparticles from agglomeration on the porous matrix or agglutination together
(see Kuznetsov and Nield, 2010, 2013; Nield and Kuznetsov, 2009, 2014). A schematic of the physical model is
presented in Fig. 1.

It is presumed that the left vertical wall is suddenly heated toTh and the right vertical wall is suddenly cooled to
Tc, whereTh > Tc. The bottom and top horizontal walls are insulated. The enclosure walls are considered to be rigid,

Volume 20, Issue 11, 2017



1002 Zargartalebi et al.

FIG. 1: Schematic of coordinate system and physical model

nonconducting, and impermeable. Moreover, the porous matrix is assumed to be isotropic and homogenous through-
out the enclosure. Apart from density variation in the buoyancy force, which conformed to Boussinesq approximation,
the other physical properties of the nanofluid and porous medium are considered to be constant.

The unsteady form of the governing equations for mass, momentum, and thermal energy in the fluid phase,
particle phase, and solid-matrix phase and the conservation for nanoparticles are represented here in canonical form
as derived by several researchers (see Khanafer and Vafai, 2011; Khashan et al., 2006; Kuznetsov and Nield, 2010;
Nield and Kuznetsov, 2009, 2014; Tzou, 2008a,b):

∇ ·V = 0 (1)

µ

K
V = −∇p+

[
Cρp + (1− C) ρf0 (1− β (Tf − Tc))

]
g (2)

∂Tf

∂t
+

1
ε
V ·∇Tf =

kf
(ρc)f

∇2Tf +τ

(
DB∇C · ∇Tf +

DT

Tc
∇Tf · ∇Tf

)
+

[hfp (Tp − Tf ) + hfs (Ts − Tf )]

ε (1− C0) (ρ c)f
(3)

∂Tp

∂t
+

1
ε
V · ∇Tp =

kp
(ρc)p

∇2Tp +
hfp

εC0 (ρc)p
(Tf − Tp) (4)

∂Ts

∂t
=

ks
(ρc)s

∇2Ts +
hfs

(1− ε) (ρc)s
(Tf − Ts) (5)

∂C

∂t
+

1
ε
V · ∇C = DB∇2C +

DT

Tc
∇2Tf (6)

Equations (1)–(6) for the problem under consideration can be written in dimensional Cartesian coordinatesx̄, ȳ taking
into account the slow flow and dilute nanoparticle concentration, as follows:

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0 (7)

∂p

∂x̄
= − µ

K
ū (8)

∂p

∂ȳ
= − µ

K
v̄ − [C (ρp − ρf0) + ρf0 (1− β (Tf − Tc) (1− C0))] g (9)
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∂Tf

∂t
+

1
ε

(
ū
∂Tf

∂x̄
+ v̄

∂Tf

∂ȳ

)
= αf

(
∂2Tf

∂x̄2
+

∂2Tf

∂ȳ2

)
+ η

{
DB

(
∂C

∂x̄

∂Tf

∂x̄
+

∂C

∂ȳ

∂Tf

∂ȳ

)
+

(
DT

Tc

) [(
∂Tf

∂x̄

)2

+

(
∂Tf

∂ȳ

)2
]}

+
[hfp (Tp − Tf ) + hfs (Ts − Tf )]

ε (1− C0) (ρ c)f

(10)

∂Tp

∂t
+

1
ε

(
ū
∂Tp

∂x̄
+ v̄

∂Tp

∂ȳ

)
= αp

(
∂2Tp

∂x̄2
+

∂2Tp

∂ȳ2

)
+

hfp

εC0 (ρc)p
(Tf − Tp) (11)

∂Ts

∂t
= αs

(
∂2Ts

∂x̄2
+

∂2Ts

∂ȳ2

)
+

hfs

(1− ε) (ρc)s
(Tf − Ts) (12)

∂C

∂t
+

1
ε

(
ū
∂C

∂x̄
+ v̄

∂C

∂ȳ

)
= DB

(
∂2C

∂x̄2
+

∂2C

∂ȳ2

)
+

(
DT

Tc

)(
∂2Tf

∂x̄2
+

∂2Tf

∂ȳ2

)
(13)

Hereū, v̄ are the velocity components along thex̄, ȳ axes, respectively.Tf , Tp, andTs are the fluid, particle, and solid
matrix temperatures, respectively. The physical meanings of the other quantities are mentioned in the nomenclature.

Introducing a stream function̄ψ, defined as̄u = (∂ψ̄)/(∂ȳ), v̄ = −(∂ψ̄)/(∂x̄), Eq. (7) is satisfied identically.
We are then left with the following equations:

∂2ψ̄

∂x̄2
+

∂2ψ̄

∂ȳ2
= − (1− C0) ρf0gKβ

µ

∂Tf

∂x̄
+
ρp − ρf0

µ
gK

∂C

∂x̄
(14)

∂Tf

∂t
+

1
ε

(
∂ψ̄

∂ȳ

∂Tf

∂x̄
− ∂ψ̄

∂x̄

∂Tf

∂ȳ

)
= αf

(
∂2Tf

∂x̄2
+

∂2Tf

∂ȳ2

)
+ η

{
DB

(
∂C

∂x̄

∂Tf

∂x̄
+

∂C

∂ȳ

∂Tf

∂ȳ

)
+

(
DT

Tc

) [(
∂Tf

∂x̄

)2

+

(
∂Tf

∂ȳ

)2
]}

+
[hfp (Tp − Tf ) + hfs (Ts − Tf )]

ε (1− C0) (ρ c)f

(15)

∂Tp

∂t
+

1
ε

(
∂ψ̄

∂ȳ

∂Tp

∂x̄
− ∂ψ̄

∂x̄

∂Tp

∂ȳ

)
= αp

(
∂2Tp

∂x̄2
+

∂2Tp

∂ȳ2

)
+

hfp

εC0 (ρc)p
(Tf − Tp) (16)

∂Ts

∂t
= αs

(
∂2Ts

∂x̄2
+

∂2Ts

∂ȳ2

)
+

hfs

(1− ε) (ρc)s
(Tf − Ts) (17)

∂C

∂t
+

1
ε

(
∂ψ̄

∂ȳ

∂C

∂x̄
− ∂ψ̄

∂x̄

∂C

∂ȳ

)
= DB

(
∂2C

∂x̄2
+

∂2C

∂ȳ2

)
+

(
DT

Tc

)(
∂2Tf

∂x̄2
+

∂2Tf

∂ȳ2

)
(18)

It is convenient to cast the conservation equations onto terms of dimensionless variables, such as

x = x̄/L, y = ȳ/L, ψ = ψ̄/αf , φ = C/C0, τ = αf t/εL
2

θf = (Tf − Tc)/∆T , θp = (Tp − Tc)/∆T , θs = (Ts − Tc)/∆T
(19)

where∆T = Th − Tc, and substituting Eq. (19) into Eqs. (14)–(18), we obtain

∂2ψ

∂x2
+

∂2ψ

∂y2
= −Ra

∂θf
∂x

+ Ra·Nr
∂φ

∂x
(20)

∂θf
∂τ

+
∂ψ

∂y

∂θf
∂x

− ∂ψ

∂x

∂θf
∂y

= ε

(
∂2θf

∂x2
+

∂2θf

∂y2

)
+Nb

(
∂ϕ

∂x

∂θf
∂x

+
∂ϕ

∂y

∂θf
∂y

)
+Nt

[(
∂θf
∂x

)2

+

(
∂θf
∂y

)2
]
+Nhp (θp − θf ) +Nhs (θs − θf )

(21)

∂θp
∂τ

+
∂ψ

∂y

∂θp
∂x

− ∂ψ

∂x

∂θp
∂y

= εp

(
∂2θp

∂x2
+

∂2θp

∂y2

)
+Nhp · γp (θf − θp) (22)
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∂θs
∂τ

= ε

(
∂2θs

∂x2
+

∂2θs

∂y2

)
+Nhs · γs (θf − θs) (23)

∂φ

∂τ
+

∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
=

1
Le

(
∂2φ

∂x2
+

∂2φ

∂y2

)
+

Nt

Le ·Nb

(
∂2θf

∂x2
+

∂2θf

∂y2

)
(24)

The preceding equations are subjected to the following initial and boundary conditions (see also Kuznetsov and Nield,
2013):

ψ (x, y, 0) = 0, θf (x, y, 0) = θp (x, y, 0) = θs (x, y, 0) = 0.5, φ (x, y, 0) = 1

ψ (0, y, τ) = 0, θf (0, y, τ) = θp (0, y, τ) = θs (0, y, τ) = 1, Nb
∂φ (0, y, τ)

∂x
+Nt

∂θf (0, y, τ)
∂x

= 0

ψ (1, y, τ) = 0, θf (1, y, τ) = θp (1, y, τ) = θs (1, y, τ) = 0, Nb
∂φ (1, y, τ)

∂x
+Nt

∂θf (1, y, τ)
∂x

= 0

ψ (x,0, τ) = 0,
∂θf (x,0, τ)

∂y
=

∂θp (x,0, τ)
∂y

=
∂θs (x,0, τ)

∂y
= 0,

∂φ (x, 0, τ)
∂y

= 0

ψ (x,1, τ) = 0,
∂θf (x,1, τ)

∂y
=

∂θp (x,1, τ)
∂y

=
∂θs (x,1, τ)

∂y
= 0,

∂φ (x, 1, τ)
∂y

= 0

(25)

Here the nine parametersNr, Nb, Nt, Nhp, Nhs, εp, γp, γs, and Le denote a buoyancy ratio parameter, a Brown-
ian motion parameter, a thermophoresis parameter, the interface heat transfer parameters called Nield numbers (see
Vadász, 2008), a modified thermal diffusivity ratio, modified thermal capacity ratios, and Lewis number, respectively,
which are described as

Nr =
(ρp − ρf0)C0

ρf0β∆T (1− C0)
, Nb =

τDBC0ε

αf
, Nt =

τDT ε∆T

αfTc
, Nhp =

hfpL
2

kf (1− C0)
,

Nhs =
hfsL

2

kf (1− C0)
, εp =

αpε

αf
, γp =

(1− C0) (ρc)f
C0 (ρc)p

, γs =
kfε (1− C0)

ks (1− ε)
, Le =

αf

DBε

(26)

The interesting physical quantities are the local Nusselt numbers Nuf , Nup, and Nus; the local Sherwood number Sh;
the average Nusselt numbersNuf , Nup, Nus; and Sherwood numberSh.

Therefore the local Nusselt and Sherwood numbers are defined as follows:

Nuf = −
(
∂θf
∂x

)
x=0

, Nup = −
(
∂θp
∂x

)
x=0

, Nus = −
(
∂θs
∂x

)
x=0

, Sh= −
(
∂φ

∂x

)
x=0

(27)

The average Nusselt and Sherwood numbers are defined as

Nuf =

1∫
0

Nuf dy, Nup =

1∫
0

Nup dy, Nus =

1∫
0

Nus dy, Sh=

1∫
0

Shdy (28)

It should be noticed here that for analyzing of Sherwood numbers, it is viable to investigate only Nusselt numbers
because at the left and right vertical walls, we have(∂φ)/(∂x) = −(Nt/Nb)[∂θf/∂x], considering boundary
conditions forφ [Eq. (25)]. Hence the additional examination regarding integral parameters will be only average
Nusselt number owing to Sh= −(Nt/Nb)Nuf andSh= −(Nt/Nb)Nuf .

3. METHOD OF SOLUTION AND VALIDATION

Employing different kinds of finite element methods to solve industrial and environmental fluid mechanics prob-
lems is of interest recently (see Li and An, 2015; Solin et al., 2010). Therefore the system of partial differential
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equations (20)–(24) along with the boundary conditions of Eq. (25) were transformed to weak form and solved nu-
merically utilizing the Galerkin finite element method (see Reddy, 1993). The stream function (ψ), concentration of
nanoparticles (φ), and the temperature of three phases (θf , θs, andθp) could be expanded utilizing basis set{ξk}Nk=1
as

ψ ≈
N∑
k=1

ψkξk (x, y), φ ≈
N∑
k=1

φkξk (x, y), θf ≈
N∑
k=1

θfkξk (x, y),

θs ≈
N∑
k=1

θskξk (x, y), θp ≈
N∑
k=1

θpk
ξk (x, y)

(29)

for −0.5< x < 0.5 and 0< y < 1. The basis functions for all five variables are the same. Hence the total number
of nodes for all of them isN . Using the Galerkin finite element method, the ensuing nonlinear residual equations for
Eqs. (20)–(24), respectively, at nodes of internal domainΩ are derived as

R1
i =

N∑
k=1

ψk

∫
Ω

[
∂ξi
∂x

∂ξk
∂x

+
∂ξi
∂y

∂ξk
∂y

]
dxdy −

∫
Γ

ξin.∇ψdΓ− Ra

(
N∑
k=1

θfk

∫
Ω

∂ξk
∂x

ξidxdy

)

+ Ra·Nr

(
N∑
k=1

φ

∫
Ω

∂ξk
∂x

ξidxdy

) (30)

R2
i =

N∑
k=1

θfk

∫
Ω

∂ξk
∂τ
ξidxdy +

(
N∑
k=1

ψk

∫
Ω

∂ξk
∂y
ξidxdy

)(
N∑
k=1

θfk

∫
Ω

∂ξk
∂x

ξidxdy

)

−

(
N∑
k=1

ψk

∫
Ω

∂ξk
∂x

ξidxdy

)(
N∑
k=1

θfk

∫
Ω

∂ξk
∂y
ξidxdy

)
+ ε

[
N∑
k=1

θfk

∫
Ω

(
∂ξi
∂x

∂ξk
∂x

+
∂ξi
∂y

∂ξk
∂y

)]

+Nb

[(
N∑
k=1

φk

∫
Ω

∂ξk
∂x

ξidxdy

)(
N∑
k=1

θfk

∫
Ω

∂ξk
∂x

ξidxdy

)
+

(
N∑
k=1

φk

∫
Ω

∂ξk
∂y
ξidxdy

)

×

(
N∑
k=1

θfk

∫
Ω

∂ξk
∂y
ξidxdy

)]
+Nt

( N∑
k=1

θfk

∫
Ω

∂ξk
∂x

ξidxdy

)2

+

(
N∑
k=1

θfk

∫
Ω

∂ξk
∂y
ξidxdy

)2


−Nhp

[∫
Ω

(
N∑
k=1

θpk
ξk −

N∑
k=1

θfkξk

)
ξidxdy

]
−Nhs

[∫
Ω

(
N∑
k=1

θskξk −
N∑
k=1

θfkξk

)
ξidxdy

]

(31)

R3
i =

N∑
k=1

θpk

∫
Ω

∂ξk
∂τ
ξidxdy +

(
N∑
k=1

ψk

∫
Ω

∂ξk
∂y
ξidxdy

)(
N∑
k=1

θpk

∫
Ω

∂ξk
∂x

ξidxdy

)

−

(
N∑
k=1

ψk

∫
Ω

∂ξk
∂x

ξidxdy

)(
N∑
k=1

θpk

∫
Ω

∂ξk
∂y
ξidxdy

)
+ εp

[
N∑
k=1

θpk

∫
Ω

(
∂ξi
∂x

∂ξk
∂x

+
∂ξi
∂y

∂ξk
∂y

)]

−Nhp · γp

[∫
Ω

(
N∑
k=1

θfkξk −
N∑
k=1

θpk
ξk

)
ξidxdy

] (32)

R4
i =

N∑
k=1

θsk

∫
Ω

∂ξk
∂τ
ξidxdy + ε

[
N∑
k=1

θsk

∫
Ω

(
∂ξi
∂x

∂ξk
∂x

+
∂ξi
∂y

∂ξk
∂y

)]

−Nhs · γs

[∫
Ω

(
N∑
k=1

θfkξk −
N∑
k=1

θskξk

)
ξidxdy

] (33)

Volume 20, Issue 11, 2017



1006 Zargartalebi et al.

R5
i =

N∑
k=1

φk

∫
Ω

∂ξk
∂τ
ξidxdy +

(
N∑
k=1

ψk

∫
Ω

∂ξk
∂y
ξidxdy

)(
N∑
k=1

φk

∫
Ω

∂ξk
∂x

ξidxdy

)

−

(
N∑
k=1

ψk

∫
Ω

∂ξk
∂x

ξidxdy

)(
N∑
k=1

φk

∫
Ω

∂ξk
∂y
ξidxdy

)
+

1
Le

[
N∑
k=1

φk

∫
Ω

(
∂ξi
∂x

∂ξk
∂x

+
∂ξi
∂y

∂ξk
∂y

)]

+
Nt

Le ·Nb

[
N∑
k=1

θfk

∫
Ω

(
∂ξi
∂x

∂ξk
∂x

+
∂ξi
∂y

∂ξk
∂y

)]
(34)

Using biquadratic functions with three-point Gaussian quadrature, the integrals in the residual equations are eval-
uated. Moreover, the nonlinear residual equations are solved utilizing the Newton–Raphson method to find out the
coefficients of the expansions in Eq. (29). The detailed solution could be found in the previous studies (see Reddy,
1993; Basak et al., 2006a,b). Additionally, the computational domain comprises grid points in which the discretized
equations were implemented. The nonuniform grid has been used in bothx andy directions in which the grid points
clustered near the walls. The iteration process terminates when the residuals for the stream functions become lower
than 10−8. Moreover, the time step (∆τ) is adopted to be automatically adjustable. The present model, in the form of
an in-house computational fluid dynamics (CFD) code, has been validated successfully against the work conducted
by Saeid and Pop (2004) for unsteady free convection in a square cavity filled with a porous medium.

Based on the previous studies, the Lewis number is large in the order of 103 and greater, the magnitude ofNb and
Nt are small in the order of 10−6, and the buoyancy ratio parameter, the interface heat transfer parameters, and Nield
numbers (Nhp andNhs) are higher than unity (see Bhadauria and Agarwal, 2011). The modified thermal diffusivity
ratio (εp) is about unity and higher, and the modified thermal capacity ratios (γp andγs) are of order 10.

To ensure an accurate solution that is independent of grid size, the average Nusselt number of three phases in the
left hot wall, atτ = 0.5, for different Rayleigh numbers and grid sizes is calculated (Table 1). It is depicted that the
grid size of 100× 100 provides precise results. Therefore the ensuing evaluations were conducted using the grid size
of 100× 100. It is worth mentioning that in this study, the evaluated Nusselt numbers are multiplied by the relevant
nondimensional thermal conductivity coefficients.

Eliminating the effect of nanoparticles (Nr = Nb = Nt = Nhp = 0) and considering local thermal equilibrium,
the present study reduces to the study of the transient free convection in a two-dimensional square cavity filled
with a porous medium which was examined in the work represented by Saeid and Pop (2004). The variation of
average Nusselt number as a function of nondimensional time (τ) for three different values of the Rayleigh number
is computed by the CFD code and compared with the results presented by Saeid and Pop (2004). The results of the
comparison are depicted in Fig. 2. Figure 2 shows that the average Nusselt numbers, computed in the present study,
are in excellent agreement with the results reported in the literature.

4. RESULTS AND DISCUSSION

To evaluate the free convection of nanofluids in a porous cavity, the following typical values of the dimensionless
parameters are adopted: Ra= 100,Nr = 10,Nhs = Nhp = 10,γs = γp = 10,Nb = Nt = 10−6, and Le= 103.

TABLE 1: Grid independence test for Le= 1000,Nb = Nt = 10−6,
γp = γs = 10,Nhp = Nhs = 10,ε = 0.5,εp = 1.0,τ = 0.5

Ra = 100 Ra = 1000
Grid size Nus Nuf Nup Nus Nuf Nup

50× 50 1.3772 2.3512 3.4264 2.3852 10.048 11.985

70× 70 1.3777 2.3509 3.4261 2.3888 10.038 11.972

100× 100 1.3779 2.3507 3.4259 2.3911 10.031 11.965

120× 120 1.3780 2.3507 3.4259 2.3921 10.029 11.963
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FIG. 2: Comparison of average Nusselt number with data adapted from Saeid and Pop (2004)

In the following calculations, the results are present for this set of nondimensional parameters unless in other cases
the specified different parameters are mentioned. The isotherms of solid, fluid, and nanoparticles and streamlines for
different times ranging fromτ = 0.002 toτ = 0.3 are represented in Fig. 3. It is seen that early in the transient,
the nanofluid adjacent to the hot wall moves up and falls downward near the cold wall, and also the isotherms are
approximately parallel, which induces the conductive heat transfer in the core of the cavity. Furthermore, it is clear
that the boundary layer for the solid phase is smaller than the fluid and nanoparticle ones. Studying the streamlines
along with time, it could be seen that two large vortices are engendered near the two left hot and right cold walls in
which the left recirculation is higher than the right one due to the flow direction of nanofluid. Shortly after that, these
two vortexes become smaller and get close together to make a large recirculation about the middle of the enclosure.
Finally, according to Fig. 3(h), the mentioned vortices disappear and merge together. On the other hand, as time goes
on, the influence of convection on the isotherms becomes more obvious and stronger than conduction. As a result, the

(a)

FIG. 3.
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(b)

(c)

(d)

FIG. 3.
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(e)

(f)

(g)

FIG. 3.
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(h)

FIG. 3: (left) Streamlines and (right) isotherms in which solid, dashed, and dash-double-dotted lines indicate fluid, nanoparticles,
and solid phases, respectively, for Ra= 103: (a) τ = 0.002, (b)τ = 0.006, (c)τ = 0.01, (d)τ = 0.03, (e)τ = 0.05, (f)τ = 0.1,
(g) τ = 0.2, (h)τ = 0.3

solid, fluid, and nanoparticle boundary layers enlarge throughout the enclosure. In accordance with the isotherms and
streamlines, for almostτ > 0.2, the flow is going to attain a steady state regime. By comparing Fig. 3 forτ = 0.2 and
τ = 0.3, it is clear that the streamlines and the isotherms are the same. It is worth mentioning that the concentration
of nanoparticles undergoes a similar procedure as in Fig. 3, and hence it is not shown for the sake of brevity.

The nanofluid concentration is shown in Fig. 4 forτ = 0.5. As it is seen, the concentration boundary layer is
thin and the concentration of nanoparticles in the core of the enclosure is uniform because the Lewis number is
high. In essence, the Lewis number is the ratio of thermal diffusivity of the nanofluid to the diffusion coefficient of
nanoparticles in nanofluid. In fact, the thermal diffusivity is much larger than the nanoparticle diffusion coefficient;
hence the Lewis number has a large magnitude. Moreover, in the theory of the boundary layer, the Lewis number
indicates the relative proportion of the thickness of the thermal boundary layer to the thickness of the concentration

FIG. 4: The concentration of nanoparticles in nanofluid forτ = 0.5
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boundary layer. Since the thickness of the thermal boundary layer is mostly affected by the hydrodynamic boundary
layer and the buoyancy forces, as the thickness of the thermal boundary layer is practically fixed, when the Lewis
number is high, the concentration boundary layer is very thin.

The dependences of solid, fluid, and nanoparticle local Nusselt numbers on nondimensional time (τ) at the left
hot wall have been represented in Fig. 5 for different positions ofy. It could be seen that when the heating starts,
instantly the value of Nu reaches infinity (in singular), and this is the characteristic of all the systems that are heated
impulsively. In accordance with Fig. 5, it could be seen that in all phases, the value of the transient local Nusselt
number fory ≥ 0.5 decreases gradually and then is followed by a constant steady state magnitude. On the other hand,
this value fory < 0.5 begins with a sharp decline in the early times and then goes up to reach to the steady Nusselt
number. Figure 6 demonstrates the influence ofγs andγp on the average Nusselt number along with dimensionless
time.

Based on Fig. 6, it is clear that the variation ofγp does not have any significant effect on the fluid and solid
average Nusselt numbers. Conversely, the augmentation ofγp increases the nanoparticle Nusselt number. Feasibly,

FIG. 5: Variation of transient local Nusselt number for different positions and Ra= 1000

FIG. 6: Effect of variation of (left)γs and (right)γp on the average Nusselt number
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any change in the parameterγp clearly affects the temperature of the nanoparticles directly [see Eq. (22)]. Moreover,
the value of average Nusselt number for three phases falls down drastically and then gradually soars to its steady
value in allγp magnitudes. On the other hand, it seems that apart from the solid Nusselt number, the variation ofγs
affects fluid and nanoparticle Nusselt numbers. Furthermore, it is glaringly obvious that the variation ofγs andγp
when these values are lower than 10 is more effectual than the case in whichγs andγp are higher. In addition, an
increase inγs causes a noticeable boost in average Nusselt number for three phases. Furthermore, the average Nusselt
number of three phases has an increasing manner in solid, fluid, and nanoparticles, respectively. As a case in point,
the value of average Nusselt number atγs = 20 for solid, fluid, and nanoparticles is 1.59, 2.38, and 3.44, respectively.

The influence of variation ofNhs on the solid, fluid, and nanoparticle transient average Nusselt number has been
shown in Fig. 7. As substantiated in Fig. 7, though an increase in solid–fluid interface heat transfer parameter leads
average Nusselt number of the solid to soar considerably, it causes a decrease in both nanoparticle and fluid average
Nusselt numbers. Based on Eqs. (20)–(22), it could deduce that any change inNhs has a direct impact on the solid
and fluid temperatures. Moreover, in essence, the augmentation ofNhs intensifies the interaction between the fluid
and solid matrix, and as a result, it tends to decline the temperature differences between two phases. It is notable
that the alterations in temperature of nanoparticles are primarily the implication of interactions of base fluid and the
nanoparticles. Therefore the temperature behaviors of nanoparticles and base fluid are the same for the most part.

The variation of average Nusselt number of solid, fluid, and nanoparticles for differentNhp has been depicted
in Fig. 8. As expounded in Fig. 8, ascending the nanoparticle–fluid interface heat transfer parameter (Nhp) leads
the average Nu of nanoparticles to notably increase. In contrast, the average Nusselt numbers of two other phases
are poorly affected byNhp variation. Additionally, it could be seen that when the nanoparticle–fluid interface heat
transfer parameter has high value, the effect of fluctuation of this parameter on the average Nusselt number of three
phases becomes less than the time in whichNhp is low.

The effect of buoyancy ratio parameter on the transient average Nusselt numbers has been illustrated in Fig. 9.
According to Fig. 9, an increase ofNr causes the average Nusselt number to decrease for three phases. It is obvious
that the mentioned marked decline in the base fluid and nanoparticles is more noticeable with respect to the porous
solid matrix. In fact, the buoyancy ratio parameter is equivalent to the induced buoyancy mass transfer effects. It means
that any increase ofNr leads to augmentation of the buoyancy mass transfer. For this reason, the augmentation of
buoyancy ratio parameter would speed up the motion of the base fluid adjacent to the vertical wall, which results

FIG. 7: Effect ofNhs on the average Nusselt numbers
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FIG. 8: Effect ofNhp on the average Nusselt numbers

FIG. 9: Effect ofNr on the average Nusselt numbers

in the decrease in the temperature gradient (average Nusselt number). In addition, the fluctuation of theNr induces
direct conspicuous changes in the buoyancy forces in the vicinity of the vertical walls, which leads to resultant indirect
variation of average Nusselt number (temperature gradient) of the base fluid. In consequence, the variation of the base
fluid would influence the temperature gradient of the solid porous medium. Moreover, it seems that the increase of
Nr would augment the time to reach steady state.

The eventual effect of Rayleigh number on the average Nusselt number of three phases is depicted in Fig. 10. It
is illustrated that except for solid matrix, the behavior of variation of average Nusselt number is totally different at
Ra= 100 in early times. In other words, the average Nu falls for Ra= 100, and then it follows by gradually increasing
to reach its steady value. On the contrary, this value for base fluid and nanoparticles ascends drastically as time begins
at Ra= 1000 and 10,000. Generally, it is clear that the augmentation of Ra tends to increase the average Nusselt
number. Additionally, as Rayleigh number declines, the period of reaching steady state is increased.
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FIG. 10: Effect of Ra on the average Nusselt numbers

5. CONCLUSION

The transient natural convection in a porous enclosure saturated with a nanofluid is studied. Buongiorno’s model for
nanofluid and the local thermal nonequilibrium state for the mixture are adopted in the present study. Furthermore, it
is considered that the motion of nanoparticles in the cavity is affected by Brownian and thermophoresis forces. The
effect of thermophysical parameters on the Nusselt number is investigated. In a nutshell, the concentration boundary
layer of the nanofluid is thin with respect to thermal ones. Moreover, the increase ofγs andγp led to a substantial
augmentation in the average Nusselt numbers of the solid matrix and nanoparticles, respectively. The decrease ofNr
and increase of Ra would boost the average Nusselt number for all phases. Finally, the time to reach steady state is
directly proportional to buoyancy ratio and reversely proportional to Rayleigh number.
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