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The unsteady natural convective heat transfer of an incompressible fluid is studied in a square cavity
divided into two triangles using a flexible thermal conductive membrane. The temperature difference
in the cavity induces buoyancy forces and natural convective flows. The membrane is adopted to be very
flexible and thin, and hence, the interaction of the fluid and solid structure interaction (FSI) could change
the shape of the membrane. An arbitrary Lagrangian-Eulerian (ALE) formulation associated with an
unstructured grid is utilized to formulate the motion of the membrane. The solid and fluid governing
equations are formulated and written in a non-dimensional form and the behavior of the membrane
and the convective heat transfer of the cavity for various non-dimensional parameters are examined.
The effects of the stiffness of the membrane and the fluid parameters on the shape of the membrane
and the convective heat transfer in the cavity are studied.
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1. Introduction

The natural convective heat transfer has been the subject of
many studies due to its prime importance in various industrial
and natural processes. Some of the practical applications of natural
convection in enclosures are solar collectors, cooling of electronic
equipment, energy storage systems, air conditioned system in
buildings, thermal insulation and fire propensity control in build-
ings [1-3].

Giving the popularity of the natural convection heat transfer in
a differentially heated cavity, this problem has been addressed as a
benchmark study in many of the previous studies [3,5-15].

Earlier investigators have theoretically and experimentally
addressed many aspects of convective heat transfer in cavity enclo-
sures involving conjugate heat transfer effects [16], nanofluids and
entropy generation [17], magnetic field effects [18], cavity filled
with porous media [19] and the presence of a solid partition [20].

Many researchers have studied different geometry aspects of
convective heat transfer in simple enclosures, such as the geome-
try of triangular shape [21], C-shape [22], concentric annulus
[23], hemispherical shape [24-26], and parallelogrammic shape
[27].
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Modeling of real systems may differ distinctly from a simple
enclosure. For example, a box containing electronic units is divided
into partitions using thermal conductive plates. Some of sensitive
electronic equipment should be insulated from the surrounding
using a conductive metallic cover. In many cases, a chemical reac-
tor should be divided in sections in which each section contains
different chemical species, but the heat transfer could be occurred
between the species through partitions. In a solar collector, the
convection in the two adjacent air layers is coupled at the glazing.
There are applications in which two fluids or containment gases
are separated by a very thin flexible layer. In building insulation
applications, the cavity in the walls is filled with a layer of poly-
ethylene to prevent heat loss. For the case of a very thin membrane
layer, the membrane is completely flexible and can go under
deflection through the interaction of the structure with the free
convection flow. Hence, the practical application of partitions in
enclosures has encouraged researchers to examine the effect of
the presence of partitions on convective heat transfer in cavities.

Tatsuo et al. [20] have experimentally studied the effect of the
presence of a partition on the steady-state natural convective heat
transfer in a cavity with a differential difference temperature at the
sidewalls. Acharya and Jetli [28] have numerically studied the
effect of the presence of a vertical partition on the natural convec-
tive heat transfer in a cavity with differentially difference sidewalls
temperature. Nishimura et al. [14] have addressed the effect of the
presence of multiple vertical partitions on the convective heat
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Nomenclature

Latin symbols

d displacement

E Young’s modulus

E. dimensionless flexibility

fi dimensionless body force

fo dimensionless body force

F, dimensionless body force

g gravitational acceleration vector
Gr Grashof number

k thermal conductivity

L cavity size

Nu Nusselt number

p dimensionless pressure

Pr Prandtl number

Ra thermal Rayleigh number

t dimensionless time

T temperature

To initial average of the temperature in the enclosure
u dimensionless velocity magnitude
u, v dimensionless velocity vector
up moving coordinate velocity

Wi strain energy density

X,y Cartesian coordinates

Greek symbols

W Lamé parameter

o thermal diffusivity

p thermal expansion coefficient
e strain

0 dimensionless temperature
K solid-to-fluid thermal conductivity ratio
) Lamé parameters

v kinematic viscosity

o density

o stress tensor

) Poisson’s ratio

T Dimensionless time
Subscripts

c cold

f fluid

h hot

p partition

R ratio

Superscripts

* dimensional

transfer in a rectangular enclosure. Kahveci [4] has examined the
effect of the presence of a vertical partition with finite thermal con-
ductivity on the natural convective heat transfer in a square cavity.
Chamkha and Ben-Nakhi [12,29,30] and Cheikh et al. [31] have
numerically examined the effect of partial partitions (fins) on the
convective heat transfer in cavities. All of the mentioned studies
have addressed the effect of the presence of a partition on the
steady state convective heat transfer in an enclosure.

Recently, there are few studies which have addressed the
unsteady convective heat transfer in portioned enclosures. Suvash
and Gu [32], Suvash et al. [33] have studied the unsteady natural
convective heat transfer in a triangular cavity. Xu et al. [13] have
examined the unsteady natural convective heat transfer of air in
a square cavity with a highly conductive vertical partition.

In all of the studies mentioned in the literature, the partition
has been considered as rigid. However, in many of real world prob-
lems, the partition can be flexible and the fluid-structure interac-
tion (FSI) can change the shape of the partition. Consequently,
the shape of the partition can affect the flow and heat transfer in
the cavity. In the transient case, the motion of the flexible partition,
the fluid flow and the heat transfer are coupled.

To the best of authors’ knowledge, the effect of the presence of a
flexible partition in a cavity on the natural convective heat transfer
neither in the steady state nor in the unsteady state has been
addressed yet. The present study aims to examine the effect of
the presence of a perfectly conductive flexible partition on the nat-
ural convective heat transfer in a square cavity.

2. Mathematical formulation

Consider the laminar flow steady-state natural convection heat
transfer of a Newtonian fluid in a square cavity of size L (height H
and length L where L ~ H). The cavity is divided into two triangular
partitions using a diagonal thin flexible membrane of thickness t;.
The membrane is flexible with the Young’s modulus of E, Poison’s
ratio v and density p. The vertical walls of the cavity are isothermal
of temperature difference AT while the top and bottom walls are

perfectly insulated. There is a very small open boundary with the
relative pressure of zero in each partition, allowing fluid entrance
or ejection due to movement of the membrane and the change of
volume of the partitions. The size of the open boundary is 0.1% of
the height of the cavity. It is assumed that the membrane is very
thin and perfectly thermally conductive with very low thermal
capacity. Hence, the effect of temperature gradients and transient
energy storage in the plate are neglected. It is assumed that the
temperature difference between the cavity sidewalls is limited,
and hence, the thermo-physical properties are independent of tem-
perature variation and the Boussinesq approximation is applicable.
The body force due to the weight of the membrane and the buoy-
ancy forces are taken into account. A schematic representation of
the cavity, coordinate system and the physical model are depicted
in Fig. 1.

The governing equations for the geometrically nonlinear elasto-
dynamic structural displacement of the membrane can be written
as:

2 g+
d°d;
dt®
The governing equations of the conservation of mass, momen-

tum and energy in arbitrary Lagrangian-Eulerian (ALE) formula-
tion are written as:

ps—5 = Ve =F, (1)

V-u=0 (2)
8u* * . * 1 * 2 0k

+ W —-w)Vu' =—-—VP + o, Vu +pg(T-T,) (3)
ot Ps
Z—Z + W —w).VT = o V>T (4)

where &* is the stress tensor, d; is the solid displacement vector, F;
is the applied body force per unit of area, including the weight of
the membrane and the buoyancy forces acting on the flexible mem-
brane, u* is the fluid velocity vector, w* is the moving coordinate
velocity, P* is the fluid pressure and T is the fluid temperature.
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Fig. 1. A schematic representation of the cavity with a diagonal partition. (a) Physical details and (b) geometry details.

The density of the solid and fluid are respectively denoted by p; and
pr. Here, oy and o represent the thermal diffusivity and kinematic
viscosity of the fluid, respectively, g=(0,g,) is the gravitational
acceleration constant, and p is volumetric thermal expansion
coefficient.

Considering the membrane as a simple hyper-elastic material
and using the Neo-Hookean model and by taking into account
the nonlinear geometry effects, the stress tensor ¢ is written as

o =] 'FSF' (5)

where F = (I + Vd;) and J = det(F) and S = dW;/d¢ in which W is the
strain energy density function and ¢ is the strain, which they are
defined as:

W, =240t - 3) -y Ing) + 5(0nQ)’ ©®

&= %(Vd; +vd, +vd'vd;) (7)

where I, is the first invariant of the right Cauchy-Green deforma-
tion tensor. The coefficients of 1 and Z are Lamé parameters evalu-
ated as y;=E/(2(1+v)) and A=Ev/[(1+ v)(1 —2v)]. It should be
noted that the utilized model of Neo-Hookean is usable for model-
ing materials such as plastics and rubber-like membranes [34].

Here, it is assumed that the membrane is isotropic and uniform.
The no-slip boundary condition between the fluid and walls is
assumed. It is also assumed that the walls and the membrane are
impermeable. The left wall is at the constant temperature of T,
and the right wall is at the constant temperature of T, while the
top and bottom walls are insulated. The boundary conditions for
the fluid-solid interaction at the plate surfaces are continuity of
kinematic forces and dynamic movements. Considering the regular
no-slip boundary condition for the fluid at the solid interface
results in:

%dts =w and 6" -n=(—P'I+ pu(Vu' + VuT)) - n (8)

For the energy equation, the energy balance for the highly con-
ductive plate gives:
T" =T 9)
where the + and — indicate the upside and downside of the plate.

The plate at the corners is assumed to be clamped with % =0.
The constant pressure point, the same as those utilized in previous
studies regarding to natural convection heat transfer studies inside

solid enclosures, induces a significant computational error as it is
not possible to maintain the pressure at such a point constant with-
out leaking some mass from the point. Indeed, the presence of
opening boundaries is crucial for the present study. Otherwise, a
variable pressure constraint inside each enclosure is required to
keep the continuation equations satisfied. As many of enclosures
are not fixed and can leak a small amount of mass from some small
holes. We have utilized the open boundaries of I and II to allow
mass balance in the cavity in a rational way. Thus, at the right
and left walls, the open boundaries (indicated by II and I depicted
in Fig. 1) are as follows:

[-p+puvVu|ln=0 (10)

where the gauge pressure outside the cavity is considered zero. As
the size of the open boundaries is very small, the possible tensions
between the fluid inside the cavity and the fluid outside the cavity
are neglected for convenience.

For the initial conditions, it is assumed that the triangular
enclosure connected to the hot and cold walls are respectively at
uniform temperatures of T, and T.. The membrane is at rest with-
out any tension with the temperature of (T, + T.)/2 and the fluid in
both enclosures is quiescent (i.e. u*=0). Now, using the following
non-dimensional parameters:

d; o* to X, y*
a-F oG =Ty - (1)
gy < 2 _
oo WL WL, L2 C oy T-To
O o pfOCf Th—TC
(11b)

The governing equations (1)-(4) are written in the following
non-dimensional form

1 d*d

o dr; —E.Vo =EF, (12)
V-u=0 (13)
ou 5

o+ (@ —w).Vu=—VP+Prv’u+PrRad (14)
%+ (u—w).Vo = V39 (15)

by using the following non-dimensional parameters:



306 E. Jamesahar et al./International Journal of Heat and Mass Transfer 100 (2016) 303-319

T, — T :
Ra:M7 Pr:v—f7 Erzi27
Vp 0l Of Pros
(0r — ps)Lg p
Fo=" g™ =) (16)

In the above equation, Ra and Pr are the Rayleigh and Prandtl
numbers, respectively. E; and F, are the flexibility and body force
parameters, and py is the density ratio parameter. Here, g, is in
the y direction, denoting the gravity acceleration constant. The
positive direction of g, is shown in Fig. 1. It should be noted that
F, which denotes the non-dimensional body force is positive when
the density of the membrane is lower than the density of the fluid
inside the cavity. In this case, the body force is positive and tends
to move the membrane upward. The non-dimensional thickness of
the membrane is also t, = t*y/L. The boundary conditions are also
written in the following non-dimensional forms:

0 = 0 at the cold wall, 6 = 1 at the hot wall, 80/6n = 0 at top and
bottom walls

0" = 0~ for the membrane (17)
The solid-fluid interaction boundary conditions are also written

as:

ad; T

E:uandEf-a-n:(fPIJrPr(quLVu ))-n (18)

The non-dimensional initial temperature sat the cold and hot
enclosures are respectively as 0 = 0 and 0 = 1, the plate is also at
0 = 0.5. The non-dimensional initial velocity is u = 0.

At the open boundaries of II and [, the following non-
dimensional relation is also considered:

[-P+PrVuln=0 (19)

In the present study, the parameter of interest is the Nusselt
number, which shows the heat transfer from the wall. The local
Nusselt number is written as:

Nu;=hy/kf atx=0 (20)

where h is the local convective heat transfer coefficient at the wall.
Using energy balance at the wall gives h(T, — T.) = —k; 2T where
invoking the non-dimensional parameters results in:

00
Nuj= > atx=0 (21)

The average Nusselt number at the wall is also introduced as:

1
Nu:/ Nu,dy (22)
0

As a practical case study, the fluid in the partition is adopted as
liquid water. The constructive material of the membrane adopted
as polyethylene (LPDE). The thermophysical properties and the
corresponding dimensionless parameters for the fluid and mem-
brane and the governing equations are summarized in Table 1.

Based on the results of Table 1, the default values of the non-
dimensional parameters for non-dimensional study of the problem

Table 1

are considered as Ra=1.0E7, Pr=6.0, E; =1.4E16 and F, = 1.6E-2
in this paper otherwise the value of the non-dimensional parame-
ter will be stated.

3. Numerical method and validation
3.1. Numerical method

The system of partial differential equations (PEDs), Egs. (10)-
(13), subject to the described boundary conditions, is transformed
into the weak form and solved numerically in the moving grid sys-
tem of ALE using the Galerkin finite element method [35]. A non-
uniform unstructured grid associated with boundary layer grids
is utilized. A schematic view of the utilized grid is depicted in
Fig. 3. The quality of the gird is also monitored at each time step
during the deformation of the membrane to maintain it high. A
re-meshing procedure is commenced to enhance the quality of
the utilized grid. In this regard, when the maximum element dis-
tortion reaches above 20, the solver is stopped temporarily, and
the solution data are stored in the memory. Then, a new mesh is
generated in the system geometry including the deformed fin.
Finally, the solution is interpolated back in the new mesh and
the computations are continued. The re-meshing procedure is
required only for large oscillating fin frequencies of about
A ~ 0.1. The Bi-quadratic functions and the three-point Gaussian
quadrature was utilized for evaluating the residuals. Then, the
Newton-Raphson method was employed to solve the residual
equations iteratively. The computations were terminated when
the error became below 107> in each time step. An automatic time
step procedure is also utilized to avoid divergence of the solution
and maintain the solution accurate. The details of discretization
of the governing equations and the numeric procedure can be
found in Donea and Huerta [35] and Zienkiewicz et al. [36].

The solution procedure was successfully validated against the
study of Deng and Tang [5], Anandalakshmi and Tanmay [6], Vahl
Davis [7], Shi and Khodadahi [8], Sathiyamoorthy and Chamkha [9],
Nag et al. [10] Kaminski and Prakash [11], Chamkha and Ben-Nakhi
[12], Kahveci [4], Xu et al. [13], Nishimura [14] and Kiittler and
Wall [15]. Details of some of the comparisons will be described
in the next section.

It is clear that as the Rayleigh number increases, the velocity
gradients and the buoyancy forces in the vicinity of the walls and
solid surfaces increase. Therefore, as the Rayleigh number rises, a
finer grid size is needed to capture the higher field gradients. Thus,
the grid check was performed for the highest Rayleigh number
(Ra ~ 107), which was adopted in the present study. Different grid
sizes in cases of 1-4 are selected. The results for non-dimensional
velocity of fluid at point A with the geometrical coordinates of
x =0.4845, y = 0.4845 next to the membrane and the average Nus-
selt number at different time steps are reported in Table 2 when
Ra=1.0047 x 107 and Pr = 5.48. As seen, the grid size of Case 3 pro-
vides acceptable results. The effect of the grid size on the temper-
ature time series for point A is plotted in Fig. 2. This figure also
confirms that the Grid size of Case 3 could provide accurate results.

Physical and thermal properties of materials for the case study when L=1m, T, — T.=1K and t, = 2.4E-5.

Material Physical properties Unit Thermal properties Unit Dimensionless parameters
Fluid pr=996.59 kg/m* o=1.4627e-7 m?/s Ra = 1.005E7
k=0.609 W/m.K Pr=5.476
1n=0.852e-3 Pa.s C,=4179 J/kg.K E.=1.407E16
B=1.2E-7 1/K F,=1.646E-2
Membrane E=3E5 Pa k=1000 J/kg.K
ps=1500 kg/m3 C,=100 W/m.K
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Table 2

Non-dimensional velocity magnitude of fluid (U) and average Nusselt (Nu) for the
steady state solution when Pr=548 and Ra=1.0048 x 10’ (the case of rigid
membrane).

Cases Domain elements Velocity (U)’ Average Nusselt
Case 1 3736 485.67 8.65
Case 2 13,048 473.54 8.92
Case 3 16,970 475.01 8.93
Case 4 25,156 475.08 8.93
CU=ViET R
0.35
03F - Case2 o
0.25F
L [E-1.407%10"
02f |5
L [F=0
N = 7
©0.15F Ra=1.0048x10
- | Pr=5.47
0.1F
0.05 :
I 4
B /
O e
kit The schematic position of point A
0050l vl il vl
10°  10°  10*  10°  10% 10" 10°

T

Fig. 2. Time series for the temperature at point A (x = 0.4845, y = 0.4845) calculated
in different grids.

Hence, in the further calculations the grid size of Case 3 was
selected. A view of the utilized grid is illustrated in Fig. 3.

3.2. Validation

As a first case for validation, the results of the present study are
compared with the steady-state results of the natural convection in
a simple rigid square cavity available in the literature. In this case,
the regular cavity without a partition is considered while the top

v SO
S R

(a)

and bottom walls of the cavity are insulated and the sidewalls
are isothermal and subject to a temperature difference. As the open
boundary in the cavity of the present study is very small, the pres-
ence of such small open boundaries near the top corners (i.e. I and
I depicted in Fig. 1) did not affect the solution. Indeed, these open
boundaries act as pressure reference points for the regular cavity.
The steady-state results in the present study are obtained using a
transient solution of the problem after elapsing of long times when
the solution reaches its steady-state situation. The comparisons
between the results of the present study and the results reported
by Deng and Tang [5], Anandalakshmi and Tanmay [6], Vahl Davis
[7], Shi and Khodadahi [8], Sathiyamoorthy and Chamkha [9], Nag
et al. [10] are shown in Table 3. As seen, there is excellent agree-
ment with the results of the present study and the previous
studies.

As a second case for validation, conjugate natural convection in
a square cavity is investigated. For this purpose, results of the pre-
sent study are compared with the results addressed by Kaminski
and Prakash [11]. In the study of Kaminski and Prakash, the steady
state conjugate natural convection in a square cavity is studied
when the top and bottom walls of the cavity are insulated and
the sidewalls are at different constant temperatures of T. and Tj.
Kaminski and Prakash considered a finite thickness and finite ther-
mal conductivity for one of the side walls of the cavity while the
other three walls are taken to be of zero thickness. In the study
of Kaminski and Prakash, the dimensionless parameter of thermal
conductivity ratio (k) is defined as the ratio of the solid to the fluid
thermal conductivities coefficients (ks/ks). The comparison between
the results of the present study and the results reported by Kamin-
shi and Prakash for the average Nusselt number at various Grashof
numbers (Gr = Ra x Pr) is shown in Table 4. As seen, there is excel-
lent agreement between the results of the present study and the
results reported by Kaminski and Prakash.

In the next step, a comparison between the results of the pre-
sent study and those reported by Ben-Nakhi and Chamkha [12] is
performed in Fig. 4. Ben-Nakhi and Chamkha has studied the con-
jugate natural convection in a square cavity with an inclined thin
fin at the hot wall. The fin is attached to the left hot thin wall while
the other walls are thick with finite thermal conductivity. The left
wall is assumed to be heated while the external sides of other three
walls are assumed to be cold. In Fig. 4, a comparison between the
results of the present study and the contour maps of the isotherms
(0) and streamlines (i) reported by Ben-Nakhi and Chamkha is

(b)

Fig. 3. The schematic of the utilized grid for Case 3 (a): general view; (b): a close view of the membrane.
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Table 3
Comparing reported Nusselt number on hot wall at present study with other for
square cavity (Pr=0.7) in various Rayleigh number.

Table 5
Comparing the valves of Ay,,, reported in Ben-Nakhi and Chamkha [12] and evaluated
results in the present study when Pr = 0.707, Ra = 10°, & = 105° and Ly=0.35.

Ra 10° 10* 10° 10° K Ben-Nakhi and Chamkha [12] Present study
Deng and Tang [5] 1.1180 2.2540 4.5570 - 1 11.38 11.30
Anandalakshmi and Tanmay [6] 1.1179 2.2482 4.5640 - 13.10 13.10

Vahl Davis [7] - 2.2430 4.5190 8.8800 10 13.30 13.20

Shi and Khodadahi [8] - 2.2470 4.5320 8.8930 o 13.34 13.30
Sathiyamoorthy and Chamkha [9] - 2.2530 4.5840 8.9210 .

Nag et al. [10] - 22400 45100 8.8200 1o = ks/ky

Present study 1.1178 2.2450 4.5237 8.8663

Table 4

Comparing the average Nusselt number reported in Kaminski and Prakash [11] and

present study when Pr=0.7.

Gr K Kaminski and Prakash [11] Present study
103 1 0.87 0.87
5 1.02 1.02
10 1.04 1.04
00 1.06 1.06
10° 1 2.08 2.08
5 3.42 3.40
10 3.72 3.70
00 4.08 4.06
108 1 2.87 2.86
5 5.89 5.85
10 6.81 6.80
oo 7.99 7.99
107 1 3.53 3.51
5 9.08 9.02
10 11.39 11.30
S 15.09 15.08
e =kfky

depicted. In Fig. 4, ¢ is the angle between the fin and the vertical
direction, Ly is the dimensionless length of the fin and x is ratio
of the solid to fluid thermal conductivities coefficients (ks/ky). In
addition, a detailed comparison between the values of the stream-
lines obtained in the present study, using the finite element
method, and the results reported by Ben-Nakhi and Chamkha,

Streamlines

Isotherms

obtained using the finite volume method, is shown in Table 5. This
table and Fig. 4 show excellent agreement between the results of
the present study and the previous study available in the literature.

Kahveci [4] has examined the natural convection heat transfer
in a cavity with horizontal adiabatic walls and isothermal sidewalls
subject to a temperature difference. The author has considered a
solid partition with finite thickness and thermal conductivity
inside the cavity, dividing the cavity into two sub cavities. In the
study of Kahveci r,, is the dimensionless thickness of the partition,
and ry = k¢/k; is the ratio of the thermal conductivities of the parti-
tion (ks) and the fluid (k;). The dimensionless horizontal distance of
the center of the partition (x;) from the left wall is denoted by x, =
xp/L In Fig. 5, the local Nusselt number at various Rayleigh numbers
reported by Kahveci is compared with the study results of the pre-
sent study when r,, =0.1, r,=0.01 and x,=0.5 on the hot wall
according to the vertical distance have been recorded.

As an unsteady case, a comparison between the results of the
present study and those reported by Xu et al. [13] is performed
in Fig. 6. Xu et al. have considered the problem of the partitioned
cavity, studied by Kahveci [4], and developed the problem to the
unsteady case. Xu et al. has assumed a very thin and thermal con-
ductive solid partition inside the cavity and hence neglected the
effect of conductive heat transfer in the partition.

It is should be noticed that the introduction of the non-
dimensional parameters in the study of Xu et al. is different than
those utilized in the present study. In the study of Xu et al., the
non-dimensional time was introduced as T =toRa'/?/H*> and
x=x*/H. Therefore we have followed the notation and non-
dimensional form of the governing equations in the study of Xu

Streamlines Isotherms

(a)

(b)

Fig. 4. Comparing contour of isotherm and streamlines when Pr=0.707, Ra = 10°, £ = 105° and Ly=0.35: (a) Ben-Nakhi and Chamkha [12]; (b) present study.
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10

- ——— Kahveci [4]
: Present study

Nu

Fig. 5. Comparing value of local Nusselt number along the hot wall for various
Rayleigh numbers at r,, = 0.1, r, = 0.01 and x,, = 0.5 with present study.

0
Xuetal. [13]
01k . Present study
0.2F

D
-0.3
-0.4
-0.5 ) IR | L wu-l7 L 5
10" 10° - 10" 102 102478
taRa™
t=——
H?

Fig. 6. Comparison of the temperatures histories between the results of present
study and the results reported by Xu et al. [13] at the point (x = 0.0083, y = 0.375) at
Ra=9.2 x 10® and Pr=6.63.

et al. for the sake of comparisons. Here, a comparison between the
reported temperature history vs. time for a point at the non-
dimensional location of (0.0083, 0.375) in the vicinity of the parti-
tion is performed. The results for different grid sizes are plotted in
Fig. 6. This figure indicates that the time history of the present
study and the results of Xu et al. are in very good agreement.

As a comparison with experimental results for the cavity with
solid partitions, the experimental results reported by Nishimura
et al. [14] have been considered. Nishimura et al. have experimen-
tally examined the natural convection heat transfer in a rectangu-
lar cavity divided into sub cavities by multiple partitions. The ratio
of height (H) to length of the cavity (L) was four. The top and bot-
tom walls of the cavity was well insulated while the side walls are
at constant temperature of T, and T.. Nishimura et al. have consid-
ered a cavity without a partition (N =0), and cavities containing

one (N=1) and two (N =2) rigid partitions. They measured the
average Nusselt number at sidewalls and reported the results for
different values of Rayleigh numbers. A comparison between the
experimental results measured by Nishimura et al. and the numer-
ical results of the present study is reported in Fig. 7. As seen, there
is a very good agreement between the numerical and experimental
results.

As a final validation, the results of the present study are com-
pared with the results of Kiittler and Wall [15] for the case of
unsteady flow interaction between the fluid and the flexible solid
wall (FSI). Kiittler and Wall have considered the lid-driven square
cavity with a flexible bottom wall. The size of the cavity is unity
(i.e. L=1) and the lid (top wall) is driven by a prescribed periodical
velocity of u, = (1 — cos(2nt/5)) m/s. A schematic view of the prob-
lem is depicted in Fig. 8. The kinematic viscosity and the density of
the fluid was adopted as v=0.01m?/s and p;=1.0 kg/m>. The
thickness of the bottom flexible wall was adopted as 0.002 while
the Young’'s modulus and density of the flexible wall was
E =250 N/m? and p, = 500 kg/m? It should be noted that in the study
of Kiittler and Wall, the possible effect of the buoyancy forces and heat
transfer as well as the effect of the weight of the flexible wall were
neglected. We have also neglected these effects in the present study
for the sake of comparison. In Fig. 9, the shape of the flexible wall
after 7.5 s is compared with the results addressed by Kiittler and
Wall. As seen, there is good agreement between the results of the
present study and the results reported by Kiittler and Wall.

4. Results and discussion

In order to report the results, the default values of the non-
dimensional parameters such as Ra=107, Pr=6, E. = 1.4E16 and
F,=+16E—2 are used otherwise the value of the non-
dimensional parameters will be stated. In a real world application,
the membrane at the initial condition is bended due to its own
weight. However, in the present study, in order to allow for possi-
ble comparisons with problems using fixed membranes, the initial
state of the membrane is assumed to be a straight line. Although
this assumption can affect the initial state of the solution, it does
not, however, significantly affect the final solution and the steady
shape of the membrane.

Figs. 10 and 11 depict the velocity and temperature contours for
the time spans. In Fig. 10, the non-dimensional velocities are
divided by 100 then plotted for convenience. Therefore, the non-
dimensional velocities of Fig. 10 are scaled to 100. As seen, at first,
the partition is a straight line at rest. Starting the heat transfer
from the hot side to cold side induces a natural convection flow
and heat transfer due to buoyancy forces resulting in displacement
of the membrane and consequently, the grids inside the cavity. At
the early stages, the flow starts from the regions next to the mem-
brane where the temperature differences and the buoyancy forces
are strong, while the other regions are almost unaffected. Thus, in
this stage, the membrane is under the direct influence of the flow
patterns at the right and left regions next to the membrane. In this
situation, the shape of the membrane is in agreement with the nat-
ure of the circulation of the fluid in the cavity and different stages
of the flow transitions. The different stages of flow transitions for a
partitioned cavity have been reported by Xu et al. [13] and a time
history of temperature variation was depicted in Fig. 6. However, it
should be noted that the shape of the membrane in the present
study is not only under the influence of the flow patterns but also
its elastic nature. Hence, it goes through continuous changes to
ultimately reach a final shape. In this case (i.e. the steady state
shape), the membrane is positioned toward the cold region. This
is due to the position of the open boundary of II in the hot region,
which is placed next to the membrane. Attention to the position of
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Fig. 7. Comparing the average Nusselt number evaluated in the present study and the experimental results reported by Nishimura et al. [14] and the Churchill’s relation [37]
for a rectangular enclosure with various of partitions (N) as a function of Rayleigh number when H/L =4 and Pr=6.
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Fig. 8. Driven cavity with flexible bottom (Kiittler and Wall [15]).

the open boundaries next to the top regions of the cavity shows
that at the hot region, the zero pressure area, the open boundary,
Kiittler and Wall [15] is plqced at the end of the hot boundary layer next to the hgt wall.
This is where the hot jet formed from the bottom of the cavity next
to the hot wall reaches the top of the cavity. In contrast, the open
boundary at the cold side is placed at the beginning of the cold
boundary layer, where the cold fluid next to the cold wall starts
to get cold and moves downward. Therefore, the flow and pressure
patterns in the cavity are indeed not symmetric.

> 05 Fig. 10 shows that the velocity is zero at the beginning and then
the flow gets stronger and stronger. At the time step of t =103,
next to the open boundaries, various levels of velocity contours
can be observed, which indicate the velocity gradient of the fluid
in the vicinity of these boundaries. The entrance or ventilation of
: fluid from the open boundaries induces a secondary flow in the
domain. However, this secondary flow is very weak as the size of

—w—n=s—= Present study

I = the open boundaries is very small. When the partition tends to

o le= = | ) i move upward, the flow tends to enter the cavity at the hot side
0 0.5 1 in a direction opposed to the circulation of the flow circulation.
X At the same time, a similar situation is held true at the cold side

Fig. 9. The shape of the flexible wall after 7.5s is compared with the results Wh?re the membrane tends to .rEduce the volume of .the cold
addressed by Kiittler and Wall [15]. region and the flow tends to exit from the corresponding open



E. Jamesahar et al./International Journal of Heat and Mass Transfer 100 (2016) 303-319 311
S T.0i 3] 2 73
5 10> 13— —— 3
>
08 w L3
9791082 v N i =
12.45 B e
o *
X %, 0 756 :
12.45 56 )
3 57010 3 A
-
N . N 2
e 0, o E i
] -39 255 %, i2.45 [y > s0 2
N\ 0 s
./9 l 4
2 ||
7, 12.45 I
e, I .
%
1.05 %
-8 423 4
(a) 1=10 (b) =10 © 1=10
A 4.08 0.99 4.51 o.x}
¢ 7.9
7.16 2! -
. B - = % N h
N G 6.22 ’ /‘e\, o)
\ O ERSS S\ *
N % N&% 733 %0; nig B
g 51\ 2, 3 213 %
7164 V6> v X Sy 25 3
7 02 3 343
X, N 3.43 NN/ AR
B x R 11.35 e o oom >
N . 716 > % 63 X do MR 5
5, 2% % )" 22, . > - 54
2 X NS i
h e 203 Al
4.08 % o
2 3 451 5 2]
%\ :
% 7.16 1.10
0.99 0.83
4.57 21
-3.6 -3.25 -3
(d) =10 () =10 #) =10
085 1> 0.66 1.6 > 079 127
= 9, -1‘-\3,\)) 127
I a O 0.79
2y % \ PN \ 235 I
u 0.86 \ H‘ 52 v A % @2, ~ &
- A © Ik 25 w3 I
i % = juf A& 2 <0 I
"N 3 g <25 5 2 vl
% 8, o D’ A 3 &, |
b.20 G N 5 2N Y gl i) S\7 : il
A i . | N =
- N N < 10 o [
0.86 %y 2 A o I %) |z
N 2 i bl R \
> = 0.31 i
% | = .
& 22, | 2 = AN
e- ] © 0.79 - el 8
g ¥ ‘o S 127 \
A = 1.69 Ny 175
: -2.5 : -2 -1
(i) t=10 (G) t=10 (k) T=10

Fig. 10. Counter of fluid velocity at various dimensionless times for E; = 10'%, F, =0, Ra = 107 and Pr = 6; (the velocities are scaled to 100).

boundary. In this situation, the induced secondary flow would be
in a direction opposed to the direction of the flow circulation.

In this case, the membrane starts to move upward and form its
final shape. At the final stages when the flow reaches the steady
state situation, two distinct counter-clock wise flows in the cavity
are obvious.

Fig. 11 shows that at the beginning there are two distinct hot
and cold regions inside the cavity. As time starts elapsing, the heat
transfer commences very close to the membrane. In this region, the
dominant mechanism of heat transfer is diffusion as there is no slip
flow at the surface of the membrane. Then, the flow velocity starts
getting stronger and consequently the advection mechanism inside
the cavity gets stronger. In this situation, most parts of the cavity
have seen the effect of heat transfer. In addition, at the time step
of T=107", the entrance of fresh hot fluid at the open boundary
is commencing to develop. Next to the open boundaries various
levels of velocity contours can be observed, which indicates the
velocity gradient of the fluid in the vicinity of these boundaries.
As the membrane continues its transient oscillatory movements,
the entrance or ventilation of flow from open boundaries also
induces a secondary flow and heat distribution inside the cavity.

The results of the dimensionless maximum stress correspond-
ing to time steps of Fig. 10 have been reported in Table 6. It is inter-
esting to observe that at the early stages of the commencement of
natural convection heat transfer, the membrane goes through its
highest maximum stress, then the maximum stress of the mem-

brane reduces for a while and finally rises again until the mem-
brane reaches its steady state condition. At the steady state
condition, the maximum observed stress is ¢ =3.89 x 10'? while
at the time step of T=10"% it is about ¢ = 4.89 x 10'2.

Fig. 12 shows the final form (steady form) of the membrane for
three cases of: (I): the density of membrane is lower than the den-
sity of the fluid (F,=1.64 x 1072), (Il): the density of the mem-
brane is about the density of the fluid (F,=0) and (III): the
density of membrane is higher than the density of the fluid (F, =
—1.64 x 1072).The initial state of the partition is also depicted for
the sake of a simple comparison. As seen, the heavy membrane
deflects downward while the light membrane moves upward.
The membrane with the density about the density of the fluid (neg-
ligible buoyancy and gravity forces) moves slightly upward. As
mentioned, this is due to the effect of the open boundaries on
the distribution of the flow and pressure gradient in the cavity.
In the hot triangular sub cavity, the hot fluid moves upward along
the vertical wall until it reaches to the open boundary, and then
interacts with the membrane and gets cooler, resulting in the flow
of the fluid along the membrane. In the cold sub-cavity, the cold
fluid tends to move downward along the vertical cold wall until
it reaches to the membrane and gets warmer and starts moving
upward along the membrane. As both of the open boundaries are
placed close to the top of the cavity, the system of flow and pres-
sure distribution in the cavity is not symmetric, and consequently,
the membrane moves upward due to close interaction with the
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Table 6

The maximum dimensionless von Mises stress (¢) in membrane during the

dimensionless time (7).

o (von Mises stress) x 10'?

10-8 0.00774
10423 2.11
104 4.89
1036 1.83
1032 1.39
1073 137
10°2° 2.14
1072 2.49
107! 3.89

open boundary in the hot sub-cavity and the counter-clock wise
circulation of the flow.

The problem has been also solved for a cavity with constant
pressure point constraints of relative pressure of zero instead of
open boundaries. When the natural convection flow reaches its
steady state solution, it is expected that the error of the constant
pressure point assumption converges to zero. This is because of
the fact that the membrane is still, and hence, there is no change
in the volume of the partition. Thus, both of the mass balance
and the constant point pressure constraint could be hold true in
this situation, the same as an enclosure with a solid partition.
The following figure compares the results of these two models at
the steady state solution. In Fig. 13, the steady state shape of the
membrane is plotted for two cases of the cavity with open bound-
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Fig. 12. Effect of buoyancy parameter (F,) on the steady state shape of the
membrane at E; = 1.4 x 10'%, Ra = 10’and Pr=6.

aries and cavity with pressure point constraints when the body
force of F, is zero. As seen, in the case of cavity with a pressure
point constraint the shape of the membrane is symmetric respect
to the center of the cavity.
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Fig. 14(a)-(c) illustrates the corresponding steady streamlines
and isotherms of the membranes depicted in Fig. 12. As seen, the
weight parameter of the membrane is the dominant effect for
the final shape of the membrane. When the weight of the mem-
brane is equal to the buoyancy forces acting from the fluid to the
membrane (i.e. the density of the membrane and the fluid are
equal), the membrane tends to move upward due to the velocity
and pressure distributions inside the cavity as discussed earlier.
The positive weight parameter indicates that the density of the
membrane is lower than the density of the fluid and hence, again
the membrane would move further upward. In contrast, the nega-
tive value of the weight parameter indicates that the density of the
membrane is higher than the density of the fluid, and hence, the
membrane moves downward against the nature of the interaction
between the solid and fluid structure. The streamlines in all figures
confirm the circulation of the fluid inside the cavity. The streamli-
nes are close together in the vicinity of the membrane and walls
indicating that the velocity gradients are high at these regions.
Ultimately, it is clear that there is no streamline going through
the open boundaries which shows zero mass transfer from the
open boundaries. This is in very good agreement with the physics
of the incompressible fluid flow as there is only one open cavity at
each enclosure and the membrane is quiescent.

Similar to the streamlines, the isotherms are very close together
next to the membrane which shows high temperature gradient and
heat transfer rate at this region. However, in contrast with the
streamlines, the isotherms are only close together near the top left
and bottom right corners of the cavity. From the isotherms, it is
clear that all of the membrane is almost isothermal with a non-
dimensional temperature of about 0.5, i.e. a temperature about
mean temperature of the hot and cold walls, and only few iso-
therms cross the membrane near the corners. However, when
the partition moves upward, its temperature smoothly rises and
when it moves downward its temperature decreases and tends to
the temperature of the cold regions in the bottom cold enclosure.

Fig. 15(a)-(d) illustrates the isotherms and streamlines for var-
ious values of the Rayleigh number for the steady-state solution
when the density of the partition is about the density of the fluid
F, =0. The streamlines for low values of the Rayleigh number, i.e.
Ra=10* and Ra =10 are almost uniform and confirm a smooth
flow circulation in the cavity. In these cases, the flow is very weak
and consequently, the pressure distributions are weak and hence,

the membrane is almost a straight line. For the case of Ra=10%
the isotherms show almost a liner distribution in the cavity which
indicates that the diffusion heat transfer is the dominant mecha-
nism of heat transfer. As the Rayleigh number increases, the advec-
tion mechanism also gets important and as a result, for Ra = 10° the
isotherms start to smoothly follow the streamlines patterns in the
cavity. For higher values of the Rayleigh number this effect
increases. For a very high value of the Rayleigh number
(Ra=107) the isotherms completely follow the streamlines. It is
also clear that the increase of the Rayleigh number increases the
strength of the fluid-solid interaction forces, which results in the
increase of the membrane deflection.

In Fig. 16(a) and (b), the effect of the non-dimensional elastic
modulus on the shape of the membrane for maximum displace-
ment and steady-state situations is illustrated. The case of mem-
brane maximum displacement is considered a case in which a
point of the membrane goes through maximum displacement from
its initial position among all of the time steps. Indeed, the case of
maximum displacement is a global case corresponding to the max-
imum displacement of the membrane among all of the movements
of the membrane. For example, in the case of E; = 10'> the maxi-
mum displacement of the membrane occurs at 7=10"*!7 From
the shape of the membrane, it is also clear that the place of maxi-
mum deflection of the membrane is at the ' length from the corners.

Fig. 17 depicts the dimensionless time history of the discharges
or intake of fluid through the open boundaries. In Fig. 17, the
dimensionless flow rates for the boundaries of left and right
are compared from the beginning of heat transfer, i.e. 7 =0, until
the steady-state condition, i.e. T = 0.1. The dimensionless flow rate
is calculated as Q = [, udL. At the left wall, the flow enters and exits
from the right wall. Here, both flow rates are plotted as positive for
the sake of comparison. As seen, the inlet and outlet flow rates are
coincident which confirms the incompressibility of the flow and
mass conservation in the ALE system and the cavity. As the natural
convection gets stronger and the membrane moves upward
monastically, after a while the deflection of the membrane grows,
and then, the elastic effect of the membrane gets stronger and the
flow transients occur. This is where the membrane goes through
some sine-wave-like deflections and finally reaches its final steady
shape. At the steady-state situation, the shape of the membrane
remains constant, and hence, the flow rates are zero.

Fig. 18 shows the dimensionless temperature history for point A
located at the coordinates of (0.25, 0.75) in both material (fixed
with the geometry) and spatial (moving with the grid) coordinate
systems. The material coordinate system is fixed with the coordi-
nate of the geometry and does not go through any displacement.
In contrast, the spatial coordinate system is based on the grid
points and goes through movements with the motion of the grid.
Hence, it can be said that the spatial coordinate in Fig. 18 is a mate-
rial point on the flexible membrane. Indeed, the results of the tem-
perature history for point A in the material coordinate system
shows the temperature of point A as fixed in the space (point A will
always be motionless. Therefore, for point A in the material coordi-
nate system, the membrane could be above of this point or below it
during time, as the membrane is in motion). The temperature his-
tory for point A in the spatial coordinate system shows the temper-
ature of the point A if it moves with the grid. Hence, the membrane
will never cross this point in the spatial coordinate system as it
always moves with the grids associated with the motion of the
membrane. Fig. 18 shows that the temperature of point A in mate-
rial coordinate system goes through sudden temperature varia-
tions as the boundary layer associated with the membrane
repeatedly crosses this point. In contrast, the temperature history
of point A shows a smooth temperature variation as it moves with
in the boundary layer of the temperature in the vicinity of the
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Fig. 14. Isothermal and streamlines of the steady state solution for various weight parameter of the membrane (F,) when Ra =107, Pr=6 and E. = 1.4 x 10'6.

membrane. Indeed, this point shows the variation of temperature
of a sensor attached next to the membrane which moves with
the membrane.

Fig. 19 shows the maximum non-dimensional stress in the
membrane as a function of the modulus of elasticity and the
Rayleigh number. Starting from the initial condition and by elaps-
ing of time, the membrane goes through different deflections until
it reaches a steady state situation and gets still. Considering the
time history of the membrane, the maximum stress is the maxi-
mum observed stress in time history of the membrane deflection.
The maximum stress may not necessarily occur at the steady state

condition. The maximum deflection, is the maximum displacement
of the membrane from its original (initial) position.

Fig. 19(a) interestingly shows that the increase of the non-
dimensional modulus increases the non-dimensional tension in
the membrane. Indeed, as the membrane gets stiffer, it becomes
more resistant to the fluid force and results in higher values of ten-
sions. Fig. 19(b) also indicates that the increase of the Rayleigh
number increases the induced maximum tension in the mem-
brane. Indeed, the increase of the Rayleigh number increases the
motion of the fluid and consequently, boosts the fluid-structure
interactions.
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Fig. 20 depicts the local heat transfer on the hot and cold walls
for various time steps. Fig. 20 shows the maximum local Nusselt
number at the hot wall occurs next to the bottom part of the hot
wall (i.e. y =0) where the cold fluid starts to reach the hot wall.

In contrast, the maximum local Nusselt number occurs close to
the top part of the cold wall (i.e. y = 1) where the hot fluid reaches
the wall. The behavior of the local Nusselt number at both walls is
almost the same. However, the maximum Nusselt number at
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10 the local Nusselt number at the right and left walls is not exactly
i E=1 o symmetric.
i 3 F =0 Fig. 21 shows the average Nusselt number at the hot wall as a
Vo function of non-dimensional time for various values of the
Ra=10 R . ..
Pt Rayleigh number for two cases of flexible membrane and rigid par-
L tition F, = 0 and Pr = 6. As seen in both cases, at the early stages of
o 5 the heat transfer, the average Nusselt number at the hot wall is
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Fig. 17. Compare the discharge passing through the open boundaries at E, = 104,
F,=0,Ra=10" and Pr=6.
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Fig. 18. Comparing time series of temperature in both material and spatial
coordinates for the point (0.25, 0.75) at E. =10'4, F, =0, Ra= 10" and Pr=6.

7 =102 for the cold wall is higher than that of the hot wall. This is
because of the upward motion of the membrane, which smoothly
reduces the size of the cold enclosure and reduces the distance
between the membrane and the cold wall. Indeed, the motion of
the membrane toward the cold enclosure deteriorates the symme-
try of the cavity, flow and heat transfer, and hence, the behavior of

low. There are slight differences between the magnitude of the
reduced Nusselt number (NuRa~'#) for the cases of Ra=107 and
Ra=10° at T = 1078, This is because of the fact that the temperature
in the hot enclosure next to the hot wall is uniform and equals to
the temperature of the hot wall at the beginning of heat transfer
and the dominant regime of heat transfer is conduction. The
observed difference is because of the difference in magnitude of
Rayleigh number. After a while, the fluid next to the membrane
gets colder as a result of the interaction with the cold fluid in the
cold enclosure through the thermal conductive membrane. The
cold fluid due to diffusive and advective heat transfer mechanisms
tends to change the temperature distribution in the hot enclosure.
As the temperature gradient develops in the enclosure, the buoy-
ancy force boosts and the advective heat transfer mechanism gets
stronger. Finally, the stream of cold fluid starts form the membrane
and reaches to the hot wall. The cold fluid starts to remove heat
from the hot wall and gets hot again. In this process and as the
velocity of the fluid inside the enclosure boosts, the average Nus-
selt number at the hot wall increases. There are some local peaks
for the average Nusselt number which are the result of the tran-
sient stages, which were discussed in the temperature time series
in Fig. 6 and in details by Xu et al. [13]. After elapsing a long time,
the fluid and heat transfer reach to a steady situation and then the
heat transfer from the hot wall and the Nusselt number reaches to
its constant steady value. This figure also shows that the increase
of the Rayleigh number increases the average Nusselt number.
Following the study of Xu et al. [13], the steady state time scale
for the case of a cavity divided by a rigid partition can be evaluated
as: 77~ 0.5 x Ra~'* which gives t;=0.028 for the case of Ra =10°
and ;= 0.009 for the case of Ra=10". The trend and the order of
magnitude of the steady state time scale of the partitioned cavity
are in good agreement with the results of Fig. 21. A comparison
between the results of the flexible membrane and the rigid parti-
tion shows that the presence of a flexible membrane could results
in the increase of 7 (the required non-dimensional steady state
time) when the Rayleigh number is high, i.e. Ra = 10”. The presence
of a flexible membrane can also decrease t; when the Rayleigh
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Fig. 19. The stress in the membrane (a) as a function of elastic modulus when F, = 0, Ra = 107 and Pr = 6; (b) as a function of Rayleigh number when E. = 1.4 x 10'6, F, = 0 and
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Fig. 21. The average Nusselt number over dimensionless time for hot wall F, =0
and Pr=6; E. =10'* in the case of flexible membrane.

number is low, i.e. Ra = 10°. When the Rayleigh number is small,
the strength of motion of the fluid is low and the motion of the

Table 7
The Nusselt numbers and the streamline on the wall hot at various Rayleigh numbers
(Pr=6and E; = 1.4 x 10'°).

Ra 10* 10° 10° 107
Cavity with a Rigid Ay 1.1489 6.0235 14.049 24.442
partition partition Nu 1.1827 23189 4.6931 9.0217
Flexible Ay 1.1541 63971 15.546 25.460
partition Nu 1.1828 2.3489 4.7457 9.2619
Closed cavity Without Ay 5.1734 11.063 19.827 35.755
partition Nu 2.2556 4.5237 8.8663 17.6989
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Fig. 22. The average Nusselt number of the hot wall as a function of non-
dimensional partition module Ez in the steady state condition.

membrane, releasing from the initial condition, can enhance
the flow movement, and hence, the required steady state time
decreases. In contrast, when the Rayleigh number is high, the
fluid motion is strong, and consequently, the membrane goes
through various movements. Hence, it requires more time to
reach a steady state condition. Thus, the required steady state
time for high values of the Rayleigh number could be higher than
that of a rigid partition.
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A comparison between the average Nusselt number at the hot
wall (Nu) and the streamline difference (Ay) corresponding to a
cavity with fixed and flexible membrane is shown in Table 7 for
various values of the Rayleigh number at the steady-state solution.
In Table 7, Ay is defined as Y/ ;nax — W min Where the subscripts max
and min indicate the maximum and minimum values of the
streamline function in the cavity, respectively. In the case of simple
cavity, the results are reported for a cavity with the pressure point
constraint. As seen, when the membrane is flexible, the heat trans-
fer and flow strength are smoothly higher.

Fig. 22 shows the effect of the partition elasticity on the steady
state average Nusselt number of the cavity at the hot wall. As seen,
when the membrane is very flexible, i.e. ET ~ 10'3, a significant
enhancement in the average Nusselt number can be seen. This is
due to the fact that for a very flexible membrane, the fluid struc-
ture interaction can effectively change the shape of the membrane
in a way in agreement to flow patterns. However, as the rigidity of
the membrane increases, the average Nusselt number tends to con-
verge to the corresponding average Nusselt number of the rigid
partition.

5. Conclusion

The natural convective heat transfer in a partitioned cavity,
divided to two sub-cavities by a flexible membrane, was success-
fully modeled using ALE formulation. The interaction between
the fluid and membrane was taken into account using the balance
of forces and the continuity of fluid and solid at the interface of the
membrane. The effects of the weight of the membrane and the
buoyancy forces acting on the membrane were also taken into
account. The governing system of equations was formulated and
solved using the finite-element method. Different aspects of the
governing equations were validated against several benchmark
studies available in the literature and found in very good agree-
ment. It was found that the effects of the weight of the membrane
and the buoyancy forces, i.e. F,, on the final shape of the membrane
are very important and cannot be neglected. The interaction of the
fluid and membrane would change the shape of membrane. The
change in the shape of the membrane would consequently affect
the heat transfer. It was also found that the heat transfer with a
flexible membrane is smoothly higher that of a rigid membrane.

As mentioned, the initial state of the membrane is assumed to
be a straight line in the present study. In future studies, the mem-
brane can be released to freely bend, then, the convection heat
transfer can be commenced. In addition, in the present study, the
membrane was assumed to be highly thermally conductive; how-
ever, the finite thermal conductivity of the membrane could also
affect the convective heat transfer in the cavity. This situation
could be the subject of future studies.
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