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ABSTRACT 
There is growing interest in application of inclined fins to a cavity wall. As 
such, this paper focuses on the numerical investigation of laminar free 
convection flow and heat transfer in an enclosure with an inclined thin local 
thermal non-equilibrium porous fin and saturated by a nanofluid. The 
porous medium is assumed to be isotropic and homogenous, the cavity 
walls are assumed to be impermeable to the nanoparticles, and there is a 
no-slip boundary condition on the enclosure boundaries. The vertical walls 
are isothermal and the horizontal ones are adiabatic. Moreover, the influence 
of indispensable parameters regarding heat and mass transfer, such as 
Rayleigh number, Darcy number, Prandtl number, porosity, thermophoresis 
and Brownian parameters, fin length, fin position, and the fin angle on the 
average Nusselt number, are taken into account. Generally, it is found that 
the average Nusselt number is an increasing function of Ra, Pr, Da, and 
porosity (ε). Furthermore, increasing either fin position (Sp) or thermal 
conductivity ratio (η) produces corresponding decreases in average Nusselt 
number. Finally, heat transfer shows a different behavior for different values 
of fin angles and lengths. 
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1. Introduction 

Convective flow and buoyancy-induced heat transfer in a square enclosure is a classical problem which 
has received significant attention in many engineering and fundamental applications comprising solar 
thermal collector systems, nuclear reactor design, electronic component cooling, paper production, 
and geothermal systems [1–3]. In a free convection flow, the fluid movement is based on temperature 
differences and there is no need to any external forces; therefore, the risk of mechanical system failure 
and also the noise of the fan as external power supply is diminished. In recent investigations, the enhance-
ment of heat transfer through incorporation of attached fins and obstacles to the walls of enclosures has 
also received much consideration [4–9]. In this regard, Shi and Khodadadi [10] considered the Boussi-
nesq approximation in a steady laminar free convection within a differentially heated square enclosure 
due to the presence of a solid thin fin, and discovered increased performance of heat transfer when 
the thin fin, attached to the hot wall, was located in the vicinity of the insulated walls. Oosthuizen and 
Paul [11] investigated heat transfer in a rectangular enclosure filled with air in which a horizontal plate 

CONTACT Mohammad Ghalambaz m.ghalambaz@iaud.ac.ir Assistant Professor at Mechanical Engineering Department, 
Dezful Branch, Islamic Azad University, Dezful, Iran. 
Color versions of one or more of the figures in this article can be found online on at www.tandfonline.com/unht.  
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was attached to the cold wall. They discovered that when the plate was either perfectly conductive or adia-
batic, heat transfer characteristics were augmented. Nag et al. [7] studied the natural convection heat 
transfer problem in a differentially heated enclosure with an attached horizontal partition plate. The plate 
was considered as having been studied under both infinite thermal conductivity and insulated conditions. 
Whilst placing three partition lengths at three prescribed positions, the applied Rayleigh number range 
varied between 103 and 106. They concluded that, regardless of the location of the partition on the hot 
wall, in the case of a partition of extremely high thermal conductivity the calculated Nusselt number on 
the cold wall was higher than in the absence of a partition. Moreover, Bilgen [12] using the finite volume 
method studied natural convection in an enclosure with a thin fin attached on the hot wall. He concluded 
that Nusselt number was increased as Rayleigh number increased. In addition, Nusselt number was 
found to be a decreasing function of the relative thermal conductivity ratio and fin length. Furthermore, 
a laminar, steady, conjugate natural convection in a square cavity with an inclined thin fin of arbitrary 
length was numerically studied by Ben-Nakhi and Chamkha [13]. The inclined thin fin was located in the 
middle of the left vertical heated wall. They considered three different fin lengths equal to 20, 35, and 50 
percent of the heated surface, representing the influence of the angle and length of the inclined fin and the 
thermal conductivity of the thick surfaces on the temperature contours and streamlines and Nusselt 
number, and generally concluded that the presence of the fin decreased average Nusselt number in an 
unordered way. Ben-Nakhi, with the collaboration of other investigators also implemented in-depth 
investigations into heat and mass transfer, considering many conditions such as fin length, inclination, 
and a finned pipe in a cavity [14,15]. Ben Cheikh et al. [16] investigated the effect of inclination on heat 
transfer and fluid flow in a finned enclosure filled with a dielectric liquid. Chamkha et al. [17] studied the 
problem of double-diffusive convection in inclined finned triangular porous cavities in the presence of a 
heat source or sink considering various thermal and concentration boundary conditions. Varol et al. [18] 
investigated experimentally and numerically natural convection in a square cavity with an attached fin. 
They observed that heat transfer can be controlled by employing a fin inclined to the wall. In a very recent 

Nomenclature 

Latin symbols 
C dimensional nanoparticle volume fraction 
C0 dimensional ambient nanoparticle volume fraction 
Da Darcy number 
DB Brownian diffusion coefficient 
DT thermophoretic diffusion coefficient 
g gravitational acceleration vector 
hfs interface heat transfer coefficient between the 

fluid/solid matrix phases 
K permeability of the porous medium 
k thermal conductivity 
L cavity size 
L1 distance between bottom of fin and bottom of 

cavity 
L2 distance between top of fin and bottom of cavity 
Le Lewis number 
Lp fin length 
Nb Brownian motion parameter 
Nhs Nield number for the fluid/solid matrix interface 

(fluid/solid matrix interface parameter) 
Nr buoyancy ratio parameter 
Nt thermophoresis parameter 
Nu average Nusselt number 
p pressure 
Pr Prandtl number 
Ra thermal Rayleigh number 
Sp fin position 

Sh average Sherwood number 
Ss a special dimensionless coordinate along the walls 

with its origin at X ¼ 0 and Y ¼ 1 (defined in [10]) 
T nanofluid temperature 
Tc temperature at the right wall 
Th temperature at the left wall 
x, y Cartesian coordinates 
u, v the velocity components along x, y directions 

Greek symbols 
α effective thermal diffusivity 
β thermal expansion coefficient 
γs modified porous solid matrix thermal conductivity 
ε porosity 
θ non-dimensional temperature 
μ dynamic viscosity 
ρ fluid density 
(ρc) effective heat capacity 
η parameter defined by η ¼ ks/knf 

ϕ relative nanoparticle volume fraction 
ψ fin angle 
ζ non-dimensional parameter defined in Eq. (14) 

Subscripts 
0 the ambient property 
nf nanofluid phase 
p porous medium 
s solid matrix phase in porous medium   
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work, Khanafer et al. [9] considering a porous fin applied to the hot wall studied laminar natural con-
vection heat transfer in a differentially heated square cavity. Considering the many pertinent parameters 
such as Darcy number, Rayleigh number, fin inclination length, and angle and the position of the fin, they 
indicated that to achieve optimal heat transfer, the porous fin should be placed either in the vicinity of the 
bottom surface or the middle of the vertical hot wall at an angle of 900. 

In several natural convection applications, when the interaction between the fluid and the porous 
media is sufficient, the temperature of the solid porous matrix and fluid is much the same. i.e., they 
are in local thermal equilibrium (LTE). On the other hand, there are many industrial cases in which 
the temperature difference between the fluid and solid phases was significant, and the local thermal 
non-equilibrium (LTNE) assumption for the fluid and porous matrix should be taken into account 
[19–21]. Moreover, in order to enhance the thermal conductivity of the working fluid and conse-
quently heat transfer between the fluid and solid phases, an engineered fluid including nanoparticles, 
namely nanofluid, has recently been developed. Furthermore, several investigations have been 
conducted to evaluate the natural heat transfer of nanofluids [22–26]. Buongiorno [27] studied the 
mass transfer of nanoparticles in nanofluids employing a scale analysis and demonstrated that 
thermophoresis and Brownian motion are two influential particle transfer mechanisms involved in 
nanofluids. The thermophoretic force derives from the temperature gradient in the base fluid; the 
Brownian motion force tends to create uniform nanoparticles in the fluid. 

Despite the fact that many researches on natural convection in a cavity have been accomplished, 
the application of a local thermal non-equilibrium inclined porous fin in a cavity filled with a nano-
fluid, considering the Buongiorno model, has received almost no attention. As a consequence, the 
present study aims to analyze the influence of several pertinent parameters such as fin position, incli-
nation angle, Rayleigh number, Brownian and thermophoresis parameters, and thermal conductivity 
ratio on heat transfer characteristics in a square enclosure. 

2. Mathematical formulation 

Consider a two-dimensional steady, incompressible natural convection flow in a square cavity 
saturated by a local thermal non-equilibrium nanofluid in the presence of a porous fin connected 
to the hot vertical wall. The right vertical wall is assumed to have a constant temperature Tc and 
the left vertical wall has a constant temperature Th. Moreover, the horizontal top and bottom 
walls are insulated, i.e., ∂T/∂y ¼ 0. Due to the no-slip boundary condition, the velocity magnitude 
on the walls is equal to zero. Further, it is presumed that the enclosure walls are impermeable to 
the nanoparticles; therefore the mass flux of nanoparticles is zero at the cavity walls. In addition, 
the nanoparticles are suspended in the nanofluid utilizing a surface charge technology or a surfactant. 
Indeed, this prevents the nanoparticles from agglomerating on the porous matrix, or agglutination 
together [28, 29]. The enclosure walls are considered to be rigid, non-conducting, and impermeable. 
Moreover, the porous matrix is assumed to be isotropic and homogenous throughout the enclosure. 
Apart from density variation in the buoyancy force which conforms to Boussinesq approximation, the 
other physical properties of the nanofluid and porous medium are considered to be constant. It is 
considered that there is a local thermal equilibrium between the base fluid and the nanoparticles, 
and local thermal non-equilibrium between the porous matrix and the nanofluid. A schematic 
diagram of the physical domain is represented in Figure 1. 

The governing equations comprising the balance laws of momentum and energy, and the 
conservation of nanoparticles are represented for the fluid and porous domains here in canonical 
forms as derived by several researchers [27, 30–33]: 

Free fluid: 

qu
qx
þ
qv
qy
¼ 0 ð1Þ
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qnf u
qu
qx
þ v

qu
qy

� �

¼ �
qp
qx
þ mnf

q2u
qx2 þ

q2u
qy2

� �

ð2Þ

qnf u
qv
qx
þ v

qv
qy

� �

¼ �
qp
qy
þ mnf

q2v
qx2 þ

q2v
qy2

� �

þ

� qp;0 � qf ;0

� �
C � C0ð Þ þ 1 � C0ð Þqf ;0b Tnf � Tc

� �h i
g

ð3Þ

u
qTnf

qx
þ v

qTnf

qy
¼

1
qcð Þnf

q

qx
knf ;1

qTnf

qx

� �

þ
q

qy
knf ;1

qTnf

qy

� �� �

þ

s DB
qu

qx
qTnf

qx
þ
qu

qy
qTnf

qy

� �

þ
DT

T1
qTnf

qx

� �2

þ
qTnf

qy

� �2
" #" # ð4Þ

u
qC
qx
þ v

qC
qy
¼ DB

q2C
qx2 þ

q2C
qy2

� �

þ
DT

T1
q2Tnf

qx2 þ
q2Tnf

qy2

 !

ð5Þ

Porous fin: 

qu
qx
þ
qv
qy
¼ 0 ð6Þ

qnf ; eff u
qu
qx
þ v

qu
qy

� �

¼ �
qp
qx
þ mnf ; eff

q2u
qx2 þ

q2u
qy2

� �

�
mnf ; eff

K
u ð7Þ

qnf ; eff u
qv
qx
þ v

qv
qy

� �

¼ �
qp
qy
þ mnf ; eff

q2v
qx2 þ

q2v
qy2

� �

�
mnf ; eff

K
vþ

� qp;0 � qf ;0

� �
C � C0ð Þ þ 1 � C0ð Þqf ;0b Tnf � Tc

� �h i
g

ð8Þ

Figure 1. A schematic view of the physical model.  
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1
e

u
qTnf

qx
þ v

qTnf

qy

� �

¼ af
q2Tnf

qx2 þ
q2Tnf

qy2

 !

þ s DB
qC
qx
qTnf

qx
þ
qC
qy
qTnf

qy

� ��

þ
DT

Tc

� �
qTnf

qx

� �2

þ
qTnf

qy

� �2
" #)

þ
hfs Ts � Tnf
� �

e q cð Þnf

ð9Þ

0 ¼ as
q2Ts

qx2 þ
q2Ts

qy2

� �

þ
hfs

1 � eð Þ qcð Þs
Tnf � Ts
� �

ð11Þ

1
e

u
qC
qx
þ v

qC
qy

� �

¼ DB
q2C
qx2 þ

q2C
qy2

� �

þ
DT

Tc

� �
q2Tnf

qx2 þ
q2Tnf

qy2

 !

ð12Þ

where τ ¼ (ρc)p/(ρc)nf. 

3. Nanofluid–porous interface boundary conditions 

Several investigations on the appropriate fluid–porous interface boundary conditions for fluid flow 
and heat transfer phenomena have been accomplished [34]. In the present work, the continuities 
of velocity and stress are taken into account. Further, it is assumed that heat transfer between the 
nanofluid and solid matrix at the interface is sufficiently high; consequently, their temperatures are 
equal as follows [34]: 

ufree fluid ¼ uporous; vfree fluid ¼ vporous

mnf
qu
qn

�
�
�
�
free fluid

¼ mnf ; eff
qu
qn

�
�
�
�

porous
; mnf

qv
qn

�
�
�
�

free fluid
¼ mnf ; eff

qv
qn

�
�
�
�

porous

Tnf
�
�

free fluid ¼ Tnf

�
�
�

porous
¼ Tsjporous

knf
qTnf

qn

�
�
�
�

free fluid
¼ knf ;eff

qTnf

qn

�
�
�
�
porous

þ ks;eff
qTs

qn

�
�
�
�

porous
¼ qi

Cfree fluid ¼ Cporous ;
qC
qn

�
�
�
�

free fluid
¼
qC
qn

�
�
�
�

porous

ð13Þ

where qi is total interfacial heat flux, which depicts the heat energy transferred through the porous fin. 
In addition, the effective thermal conductivity of the nanofluid and the solid matrix can be introduced 
by knf,eff ¼ εknf, ks, eff ¼ (1-ε)ks. It is worth mentioning that due to employing a nanofluid in the cavity, 
interfacial heat transfer between the solid and fluid phases is sufficiently high; therefore, considering 
the solid and fluid temperatures at the interface to be equal is reasonable [35]. 

4. Dimensionless equations 

In order to non-dimensionalize Eqs. (1)–(13), the dimensional variables are scaled utilizing the 
ensuing parameters: 

X ¼
x
L
;Y ¼

y
L
;U ¼

uL
anf

;V ¼
vL
anf

; P ¼
pL2

qnf anf 2 ;Pr ¼
nnf

anf
;Da ¼

K
L2 ;g¼

ks

knf
;

f1¼
mnf

mnf ;eff
; f2¼

qnf

qnf ;eff
;/ ¼

C
C0
;Ra ¼

1 � C0ð Þqf ;0gbDTL3

anfmnf   
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hnf ¼ Tnf � Tc
� ��

Th � Tcð Þ; hs ¼ Ts � Tcð Þ
�

Th � Tcð Þ;Nr ¼
qp;0 � qf ;0

� �
C0

qf ;0bDT 1 � C0ð Þ
; Nb ¼

sDBC0

af
;

Nt ¼
sDTDT
anf Tc

;Nhs ¼
hfsL2

knf
; cs ¼

knf

ks 1 � eð Þ
; Le ¼

anf

DB

ð14Þ

Consequently, by substituting Eq. (14) into Eqs. (1)–(13), the governing equations and boundary 
conditions are turned to dimensionless form as: 

Free fluid: 

qU
qX
þ
qV
qY
¼ 0 ð15Þ

U
qU
qX
þ V

qU
qY
¼ �

qP
qX
þ Pr

q2U
qX2 þ

q2U
qY2

� �

ð16Þ

U
qV
qX
þ V

qV
qY
¼ �

qP
qY
þ Pr

q2V
qX2 þ

q2V
qY2

� �

� Ra:Pr :Nr / � 1ð Þ þ Ra:Pr :hnf ð17Þ

U
qhnf

qX
þ V

qhnf

qY
¼

q2hnf

qX2 þ
q2hnf

qY2

 !

þ Nb
q/

qX
qhnf

qX
þ
q/

qY
qhnf

qY

� �

þ Nt
qhnf

qX

� �2

þ
qhnf

qY

� �2
" # ð18Þ

U
q/

qX
þ V

q/

qY
¼

1
Le

q2/

qX2 þ
q2/

qY2

� �

þ
Nt

Le � Nb
q2hnf

qX2 þ
q2hnf

qY2

 !

ð19Þ

Porous fin: 

qU
qX
þ
qV
qY
¼ 0 ð20Þ

U
qU
qX
þ V

qU
qY
¼ �

qP
qX
þ

f2
n1

Pr
q2U
qX2 þ

q2U
qY2

� �

�
f2
f1

Pr
Da

U ð21Þ

U
qV
qX
þ V

qV
qY
¼ �

qP
qY
þ

f2
n1

Pr
q2V
qX2 þ

q2V
qY2

� �

�
f2
n1

Pr
Da

V � f2Ra:Pr :Nr / � 1ð Þ þ f2Ra:Pr :hnf

ð22Þ

U
qhnf

qX
þ V

qhnf

qY
¼ e

q2hnf

qX2 þ
q2hnf

qY2

 !

þ Nb� e
q/

qX
qhnf

qX
þ
q/

qY
qhnf

qY

� �

þ

Nt � e
qhnf

qX

� �2

þ
qhnf

qY

� �2
" #

þ Nhs hs � hnf
� �

ð23Þ

0 ¼
q2hs

qX2 þ
q2hs

qY2 þ Nhs � cs hnf � hs
� �

ð24Þ

U
q/

qX
þ V

q/

qY
¼

e

Le
q2/

qX2 þ
q2/

qY2

� �

þ
Nt � e

Le � Nb
q2hnf

qX2 þ
q2hnf

qY2

 !

ð25Þ
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and the dimensionless interfacial boundary conditions become: 

Ufree fluid ¼ Uporous ; Vfree fluid ¼ Vporous

mnf
qU
qN

�
�
�
�

free fluid
¼ mnf ; eff

qU
qN

�
�
�
�

porous
; mnf

qV
qN

�
�
�
�

free fluid
¼ mnf ; eff

qV
qN

�
�
�
�
porous

hnf
�
�
free fluid ¼ hnf

�
�
�

porous
¼ hsjporous

qhnf

qN

�
�
�
�

free fluid
¼ e

qhnf

qN

�
�
�
�

porous
þ 1 � eð Þg

qhs

qN

�
�
�
�
porous

¼
qiL

knf DT
¼ Qi

/free fluid ¼ /porous ;
q/

qN

�
�
�
�

free fluid
¼
q/

qN

�
�
�
�

porous

ð26Þ

Further, the dimensionless boundary condition on the vertical and horizontal walls becomes: 

U 0;Yð Þ ¼ V 0;Yð Þ ¼ 0; hnf 0;Yð Þ¼hs 0;Yð Þ ¼ 1; Nb
q/ 0;Yð Þ

qX
þ Nt

qhnf 0;Yð Þ

qX
¼ 0

U 1;Yð Þ ¼ V 1;Yð Þ ¼ 0; hnf 1;Yð Þ¼hs 1;Yð Þ ¼ 0; Nb
q/ 1;Yð Þ

qX
þ Nt

qhnf 1;Yð Þ

qX
¼ 0

U X; 0ð Þ ¼ V X; 0ð Þ ¼ 0;
qhnf X; 0ð Þ

qY
¼
qhs X; 0ð Þ

qY
¼ 0;

q/ X; 0ð Þ

qY
¼ 0

U X; 1ð Þ ¼ V X; 1ð Þ ¼ 0;
qhnf X; 1ð Þ

qY
¼
qhs X; 1ð Þ

qY
¼ 0;

q/ X; 1ð Þ

qY
¼ 0

ð27Þ

Of paramount physical importance in this type of problem is the value of average Nusselt number 
(Nu) and average Sherwood number (Sh), which can be defined as follows: 

Nu ¼ �
ZL1

0

qhnf

qX

�
�
�
�

X¼0
dY �

ZL2

L1

e
qhnf

qX

�
�
�
�

X¼0
dY �

Z1

L2

qhnf

qX

�
�
�
�
X¼0

dY ð28Þ

Sh ¼ �
ZL1

0

q/

qX

�
�
�
�

X¼0
dY �

ZL2

L1

e
q/

qX

�
�
�
�

X¼0
dY �

Z1

L2

q/

qX

�
�
�
�

X¼0
dY ð29Þ

It should be noted here that for analysis of Sherwood number it is feasible to study only Nusselt 
number since at the left and right vertical walls we have q/

qX ¼ �
Nt
Nb

qhnf
qX considering boundary 

conditions for ϕ [Eq. (27)]. Hence, the additional examination regarding integral parameters will 
include only average Nusselt number according to Sh ¼ � Nt

Nb
Nu. 

5. Method of solution and validation 

In order to solve Eqs. (15)–(25) subject to the boundary conditions Eqs. (26)–(27), the finite element 
method, which is widely employed in solving industrial and environmental fluid mechanics problems, 
is utilized [36]. Therefore, the aforementioned governing partial differential equations were trans-
formed to a weak form and solved numerically applying the Galerkin finite element method [36]. 
Further, the Newton–Raphson method was used to solve the discretized equations for the fluid 
and porous regions. The detailed solution can be found in previous studies [36–38]. Moreover, the 
computational domain comprises grid points in which the discretized equations are implemented. 
The non-uniform grid has been used in both the x- and y- directions in which the grid points are 
clustered near the walls and the porous fin. The iteration process terminates when the residuals 
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for the dependent variables between two iterations are satisfied by establishing this criterion: 

P
jnþ1

i;j � jn
i;j

�
�
�

�
�
�

P
jnþ1

i;j

�
�
�

�
�
�
� 10� 8 ð28Þ

where jn
i;j denotes the dependent variables at iteration n. It is worth mentioning that to ensure grid 

independent results, the problem for different grid sizes was solved and finally the non-uniform mesh 
of 150 � 150 was adopted to solve Eqs. (15)–(25). 

The present model, in the form of an in-house computational fluid dynamics (CFD) code, has been 
validated successfully against the work conducted by Shi and Khodadadi [10] in which a steady 
laminar natural convection in a cavity with an inclined solid fin was studied. In that study [10], 
the enclosure wall was assumed to be differentially heated, the fin was made of highly conductive 
materials, and the temperature of the fin was maintained at the same temperature as the attached 
wall. The computed value of local Nusselt number on the left and right walls is shown in Figure 2. 
According to Figure 2, the average Nusselt values of the left and right walls computed in the present 
study are in excellent agreement with the results reported in the literature. 

6. Results and discussion 

In essence, the presence of a porous fin attached to the enclosure wall affects both flow and heat 
transfer regimes, and consequently the streamlines, isotherms, and distribution of nanoparticle 
concentration would be altered relative to a simple cavity with no attached fin (see Figure 3). 

According to Figure 3, it is obvious that the inclined porous fin influences the isotherms, concen-
trations, and streamlines in the enclosure, particularly near the fin. Therefore, variation of fin position 
(S), angle (Ψ), and length (Lp) affects the flow and heat transfer regimes and consequently, the Nusselt 
number. The variation of isotherms, concentration contours, and streamlines for the different afore-
mentioned parameters, regarding a porous fin, is not presented for the sake of brevity and instead the 

Figure 2. Comprising the variation of local Nusselt number with left (Nul) and right (Nur) walls of the cavity, Ra ¼ 104, Lp ¼ 0.5, 
Sp ¼ 0.5.  
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Figure 3. A comparison between isotherms (left), concentrations (middle), and streamlines (right) of two cavities; with attached 
fin (a–c) and without attached fin (d–f); Ra ¼ 104, Pr ¼ 0.1, Le ¼ 103, Da ¼ 10� 4, ε ¼ 0.9, Nb ¼ 2.5 � 10� 4, Nt ¼ 10� 4, Nr ¼ 5, Nhs ¼ 5, 
Ψ ¼ 45°, Lp ¼ Sp ¼ 0.5.  

Figure 4. The effect of varying porous fin angle on average Nusselt number for different values of Nb and Nt; Ra ¼ 104, Pr ¼ 10, 
Le ¼ 103, Nr ¼ 5, Da ¼ 10� 2, η ¼ 5, ε ¼ 0.3, Nhs ¼ 5, ζ1 ¼ ζ2 ¼ 0.5, Lp ¼ Sp ¼ 0.5.  
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impact of such variation on average Nusselt number Nu, which is extremely important in heat and 
mass transfer phenomena, has been investigated. 

The variation of average Nusselt number of the left vertical wall with the angle of porous fin for 
different Brownian and thermophoresis parameters (Nb and Nt) is depicted in Figure 4. As seen in 
Figure 4, the value of the average Nusselt number, in the cases for which the porous fin angle is 
between 50 and 90, is larger than in the others. In fact, when Ψ is lower than 90, the porous fin affects 
the main circulation formed in the middle of the cavity and causes an increase in Nusselt number 
particularly when Lp ¼ 0.5. Furthermore, in the cases for which Ψ > 90, the value of Nu drops 
noticeably. Moreover, the impact of varying the parameters Nb and Nt on average Nusselt number 

Figure 5. The effect of varying porosity on average Nusselt number for different Da; Ra ¼ 103, Pr ¼ 10, Le ¼ 103, η ¼ 0.8, Nhs ¼ 5, 
Ψ ¼ 90°, ζ1 ¼ ζ2 ¼ 0.5, Nb ¼ 2.5 � 10� 4, Nt ¼ 10� 4, Nr ¼ 5, Lp ¼ Sp ¼ 0.5.  

Figure 6. The effect of Ra and Pr numbers on average Nusselt number for different positions and length of the porous fin; 
Da ¼ 10� 3, Le ¼ 103, η ¼ 0.8, Nhs ¼ 5, Ψ ¼ 90°, ζ1 ¼ ζ2 ¼ 0.5, Nb ¼ 2.5 � 10� 4, Nt ¼ 10� 4, Nr ¼ 5, ε ¼ 0.3.  
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is dependent on the angle of the porous fin. As an illustration, the value of Nu is an increasing 
function of Nt at Ψ ¼ 60 and a decreasing function of Nt at Ψ ¼ 80. 

It is worth mentioning that the alteration of certain non-dimensional parameters such as Le, ζ1, ζ2, 
and Nhs had no significant effect on heat transfer in this study. Therefore, the effect of these 
parameters on heat transfer has not been shown, for brevity. 

The effect of Darcy number on average Nusselt number for different porosity values is presented in 
Figure 5. 

In accordance with Figure 5, when Darcy number is low (Da < 4 � 10� 5), the variation of Da has 
no significant effect on average Nusselt number and it practically remains constant. Nevertheless, 

Figure 7. The influence of Lp (a) and Sp (b) on the average Nusselt number for different Rayleigh numbers; Da ¼ 10� 3, Pr ¼ 10, 
Le ¼ 103, η ¼ 0.8, Nhs ¼ 5, Ψ ¼ 90°, ζ1 ¼ ζ2 ¼ 0.5, Nb ¼ 2.5 � 10� 4, Nt ¼ 10� 4, Nr ¼ 5, ε ¼ 0.3: a) Sp ¼ 0.5 and b) Lp ¼ 0.5.  
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average Nusselt number rises as the value of Darcy number becomes greater than 4 � 10� 5 and the 
slope of this increasing function drops considerably as Da becomes larger than 2 � 10� 3. In addition, 
the higher the porosity, the higher the average Nusselt number. In essence, according to Eq. (23), 
porosity plays the role of the coefficient for conductivity, thermophoresis, and Brownian phenomena 
in this study and as a result, any augmentation of ε will increase heat transfer. 

The average Nusselt number for various values of Rayleigh number, Prandtl number, Lp, and Sp is 
shown in Figure 6. 

As shown in Figure 6, increase in Ra causes the average Nusselt number to increase drastically. In 
fact, any increase in Rayleigh number is responsible for the dominance of convective heat transfer 
with respect to conduction and consequently, for increase in Nu. Moreover, it is shown that the aver-
age Nusselt number is an augmenting function of Prandtl number. In fact, for high values of Pr, the 
viscous diffusion rate becomes greater than the thermal diffusion rate and consequently convection is 
very effective in transferring energy in comparison to pure conduction; hence the average Nusselt 
number is high in such cases. Further, variation of the length and position of the porous fin influences 
the value of Nu. Therefore, for further investigation, the value of average Nusselt number for different 
Sp and Lp parameters is demonstrated in Figure 7. 

As shown in Figure 7, the impact of varying the position of the porous fin on average Nusselt 
number is noticeably greater than that of fin length. It is shown that in contrast to low values of 
Ra, for high values of Rayleigh number, as the parameter Lp rises Nusselt number increases. More-
over, average Nusselt number is a decreasing function of fin position. It can be deduced that when 
the flow circulation in the cavity is clockwise and reaches the left vertical boundary, the presence 
of the porous fin causes enhancement in heat transfer; and therefore, the lower the fin position, 
the more the temperature gradient in the left vertical wall increases and markedly affects average 
Nusselt number. In other words, when the porous fin is attached to the top of the left vertical wall 
(Sp ¼ 0.75), the non-dimensional temperature gradient through the left boundary does not increase 
to where nanofluid flow reaches the fin and consequently, the average temperature gradient (Nu) 
becomes lower than in the other two cases. 

Finally, the effect of variation of the thermal conductivity ratio (η) on the average Nusselt number 
Nu for different Rayleigh numbers is shown in Figure 8. 

Figure 8. The impact of thermal conductivity ratio (η) on average Nusselt number for different Rayleigh numbers; Pr ¼ 10, 
Lp ¼ Sp ¼ 0.5, Da ¼ 10� 3, Le ¼ 103, Nhs ¼ 5, Ψ ¼ 90°, ζ1 ¼ ζ2 ¼ 0.5, Nb ¼ 2.5 � 10� 4, Nt ¼ 10� 4, Nr ¼ 5, ε ¼ 0.3.  

12 H. ZARGARTALEBI ET AL. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 1
3:

47
 1

3 
Ju

ly
 2

01
6 



Following the variations in Figure 8, it is shown that the average Nusselt number is a decreasing 
function of the thermal conductivity ratio. Moreover, it seems that the influence of the variation of 
the parameter η on the average Nusselt number Nu is more noticeable for high values of the Rayleigh 
number compared with lower ones. 

7. Conclusion 

Considering a local non-equilibrium thin porous fin attached to an enclosure wall, a laminar natural 
convection of nanofluid is investigated. It is assumed that the cavity walls are non-conducting and 
impermeable to the nanoparticles and the porous medium is isotropic and homogenous. Moreover, 
the vertical walls are assumed to be isothermal and the horizontal ones are assumed adiabatic. The 
effects of varying many crucial parameters such as Rayleigh number, Darcy number, Prandtl number, 
porosity, fin position, fin angle, and fin length on the heat transfer are studied. It is shown that the 
average Nusselt number of the left vertical wall is an increasing function of Rayleigh number and for 
low values of Darcy number it remains constant and then gradually increases by augmentation of Da. 
Furthermore, the greater the increase in porosity and Prandtl number, the higher the average Nusselt 
number Nu. In addition, the value of average Nusselt number strongly depends on the fin angle in 
which firstly, for low angles it is high, then suddenly drops by increasing Ψ. Eventually, it is shown 
that, in contrast to the fin position in which the heat transfer ascends by the reduction of Sp, the beha-
vior of Nu due to variation in fin length depends on Rayleigh number. Eventually, any increase in the 
thermal conductivity ratio parameter η leads to a decrease in the value of Nu. 
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