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Abstract
Purpose – The purpose of this paper is to theoretically analysis the steady-state natural convection
flow and heat transfer of nanofluids in a square enclosure filled with a porous medium saturated with a
nanofluid considering local thermal non-equilibrium (LTNE) effects. Different local temperatures for
the solid phase of the nanoparticles, the solid phase of porous matrix and the liquid phase of the base
fluid are taken into account.
Design/methodology/approach – The Buongiorno’s model, incorporating the Brownian motion and
thermophoresis effects, is utilized to take into account the migration of nanoparticles. Using
appropriate non-dimensional variables, the governing equations are transformed into the
non-dimensional form, and the finite element method is utilized to solve the governing equations.
Findings – The results show that the increase of buoyancy ratio parameter (Nr) decreases the
magnitude of average Nusselt number. The increase of the nanoparticles-fluid interface heat transfer
parameter (Nhp) increases the average Nusselt number for nanoparticles and decreases the average
Nusselt number for the base fluid. The nanofluid and porous matrix with large values of modified
thermal capacity ratios (γp and γs) are of interest for heat transfer applications.
Originality/value – The three phases of nanoparticles, base fluid and the porous matrix are in the
LTNE. The effect of mass transfer of nanoparticles due to the Brownian motion and thermophoresis
effects are also taken into account.
Keywords Nanofluids, Free convection
Paper type Research paper

Nomenclature
Latin Symbols
C nanoparticle volume fraction

C0 ambient nanoparticle volume fraction
DB Brownian diffusion coefficient
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DT thermophoretic diffusion coefficient
g gravitational acceleration vector
hfp interface heat transfer coefficient

between the fluid/particle phases
hfs interface heat transfer coefficient

between the fluid/solid-matrix phases
K permeability of the porous medium
k effective thermal conductivity
L cavity size
Le Lewis number
Nb Brownian motion parameter
Nhp Nield number for the fluid/

nanoparticle interface (fluid/
nanoparticle interface parameter)

Nhs Nield number for the fluid/solid-
matrix interface (fluid/solid-matrix
interface parameter)

Nr buoyancy ratio parameter
Nt thermophoresis parameter
Nu local Nusselt number
Nu average Nusselt number
p pressure
Ra thermal Rayleigh–Darcy number

Ra¼ (1−C0)gKρf0βΔTL/(αfμ)
Sh local Sherwood number
Sh average Sherwood number
T dimensional temperature
Tc temperature at the right wall

Th temperature at the left wall
V Darcy velocity
x; y Cartesian coordinates
u; v the velocity components along x; y

directions

Greek symbols
α effective thermal diffusivity
β thermal expansion coefficient
γp modified particle heat capacity
γs modified porous solid-matrix thermal

conductivity
ε porosity
εp modified diffusivity ratio
θ dimensionless temperature
μ dynamic viscosity
ρ fluid density
( ρc) effective heat capacity
τ parameter defined by τ¼ ( ρc)p/( ρc)f
ϕ relative nanoparticle volume fraction
ψ dimensionless stream function
ψ dimensional stream function

Subscripts
0 the ambient property
f base fluid phase
p nanoparticle phase
s porous medium solid-matrix phase

1. Introduction
The free convection in enclosures filled with a porous medium saturated with a fluid
occurs in many industrial applications including electronic component cooling,
geothermal systems and paper production. In free convection flow there is no need of
any external work source or fan and the fluid moves due to the temperature difference
in the enclosure. Designing a system relying on a natural convection heat transfer
reduces the risk of the mechanical system failure because of the absence of any external
power supply. It also reduces the induced noise because of the fans. Because of such
advantages many of engineers and researchers are interested in analysis of the natural
convection phenomena and the systems working based on the natural convection
heat transfer.

In many natural convection applications when the thermal conductivity of the
porous medium is comparatively low or the interaction between the fluid and the
porous medium is high, it can be assumed that the temperature of the fluid and the solid
porous matrix are very close or they are in local thermal equilibrium (LTE). This
assumption simplifies the problem in such a way that the fluid and the porous matrix
can be seen as a uniform mixture. However, there are many practical cases of natural
convection in porous media with high thermal removal capacities, in which there are
significant temperature differences between the porous matrix and the fluid inside
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the pores. In these cases, the LTE assumption is no longer valid, and the local thermal
non-equilibrium (LTNE) model for the porous medium and the fluid should be taken
into account (Ingham and Pop, 2005; Baytaş and Pop, 2002).

Recently, new-engineered fluids containing nanoparticles, namely, nanofluids, are
developed to enhance the thermal conductivity of the working fluid (see Abu-Nada and
Chamkha, 2010; Basak and Chamkha, 2012; Nasrin et al., 2012, 2014; Chamkha and
Abu-Nada, 2012). Experiments indicate that the presence of nanoparticles in the base
fluid results in augmentation of the thermal conductivity. The increase in the thermal
conductivity of a fluid increases the thermal diffusivity, and hence, it could results in
heat transfer enhancement in convective heat transfer systems. Therefore, the
nanofluids are potential candidates for convective heat transfer enhancement in
applications with high demand of the thermal energy removal. There are also
applications in which the presence of nanoparticles induces other desired effects
beyond the heat transfer enhancement. For example, the presence of zinc oxide or
titanium dioxide nanoparticles in water shows inherent antibacterial effects (Zhang
et al., 2008; Hirota et al., 2010). The presence of ceramic oxide (Choi et al., 2008) or
diamond nanoparticles (Saidur et al., 2011) enhance the dielectric properties of the base
fluid, which is of interest in electrical power transformers.

The experiments indicate that the presence of nanoparticles in a fluid affects the
other thermo-physical properties such as dynamic viscosity and heat capacity of the
resulting fluid (Khanafer and Vafai, 2011). This is while the convective heat transfer of
nanofluids is affected by the thermal conductivity, the dynamic viscosity and other
thermo-physical properties as well as the fluid flow characteristics or mass transfer
mechanisms. Therefore, the analysis of convective heat transfer of nanofluids,
considering changes in thermo-physical properties and heat transfer mechanisms is
highly demanded for engineering applications of nanofluids. Buongiorno (2006)
analyzed the nanoparticles mass transfer in nanofluids using scale analysis and found
that the Brownian motion and thermophoresis are two dominant particle transfer
mechanisms in nanofluids. The Brownian motion force tends to uniform nanoparticles
in the fluid. The thermophoresis force originates from the temperature gradient in the
base fluid. When the size of a particle is very fine (in the order of nanometer), the
particle receives more momentum impacts from the fluid molecules in hot side than that
of the cold side; hence, the particle tends to move in a direction opposite to the
temperature gradient (the particle moves from hot to cold). Therefore, there are mass
transfer mechanisms in nanofluids because of the Brownian motion and
thermophoresis forces. The migrated nanoparticles carry energy and transfer it to
the surrounding medium. When the thermal conductivity of the base fluid is very low,
the quiescent fluid around the nanoparticle cannot adequately absorb the heat from the
nanoparticle, and hence, the nanoparticles and the base fluid could be in local
thermal non-equilibrium.

The natural convection heat transfer of a regular fluid in an enclosure using LTE
model has been well studied by previous fundamental researches. For example, Baytaş
and Pop (1999, 2001) studied the natural convection of a regular fluid in enclosures
using LTE model. Choi et al. (1998) have considered the non-Darcy effects in natural
convection of regular fluids in enclosures filled with a porous medium. Varol
et al. (2008) conducted a numerical study to analysis the effect of the shape of the
enclosure on the natural convective heat transfer of nanofluids.

The LTNE natural convection of a regular fluid in an enclosure has been
investigated by Baytaş and Pop (2002). The heat transfer of nanofluid in porous media
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using LTE was formulated by Nield and Kuznetsov (2009a, b) considering the
Buongiorno’s (2006) mathematical model. They (Nield and Kuznetsov, 2009a) analyzed
the heat and mass transfer of nanofluids over a flat plate embedded in a Darcy porous
medium using a similarity solution approach. Nield and Kuznetsov (2009b) have
utilized the Buongiorno’s mathematical model to analysis the linear stability of
nanofluids between two infinite plates using LTE model. Later, Bhadauria and
Agarwal (2011) have developed the model of Nield and Kuznetsov (2009b) to study the
natural convection instability of nanofluids between two infinity plates using the
LTNE model. Very recently, Sheremet and Pop (2014, 2015) utilized the Buongiorno’s
model developed by Nield and Kuznetsov (2009a, b) to analysis the natural convection
heat transfer of nanofluids in an enclosure.

The present study aims to analysis the natural convection flow and heat transfer of
nanofluids using the LTNE model considering the Buongiorno’s model. In the present
study, the three phases of nanoparticles, base fluid and the porous matrix are in the
LTNE. The effect of mass transfer of nanoparticles due to the Brownian motion and
thermophoresis effects are also taken into account.

2. Basic equations
Consider the steady free convection in a two-dimensional porous square cavity filled
with a water-based nanofluid. It is assumed that nanoparticles are suspended in the
nanofluid using either surfactant or surface charge technology. This prevents
nanoparticles from agglomeration and deposition on the porous matrix (Kuznetsov and
Nield, 2010, 2013; Nield and Kuznetsov, 2009a, 2014). A schematic view of the geometry
of the problem under investigation is shown in Figure 1, where x and y are the Cartesian
coordinates and L is the size of the cavity.

It is assumed that the left vertical wall is heated and maintained at the constant
temperatureTh, while the right vertical wall is cooled and has the constant temperature Tc.
The horizontal walls are adiabatic @T=@y

� � ¼ 0, where T is the temperature.
The Darcy-Boussinesq approximation and the LTNE between the fluid and solid-matrix
and fluid and particle phase have been considered, thus heat flow has been described
using three temperature model.

The conservation equations for the total mass, momentum, thermal energy in the
fluid phase, thermal energy in the particle phase, thermal energy in the solid-matrix
phase, and nanoparticles, come out to be as below. A detailed derivation of these

L

Th Tc

L0

g

y

�T /�y =0

�T /�y =0

x
Figure 1.
Physical model and
coordinate system
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equations has been dealt by Buongiorno (2006), Tzou (2008a, b), Nield and Kuznetsov
(2009a), and Kuznetsov and Nield (2010):

rUV ¼ 0 (1)

m
K
V ¼ �rpþ Crpþ 1�Cð Þrf 0 1�b Tf�Tc

� �� �� �
g (2)

1
e
VUrTf ¼

kf
r cð Þf

r2Tf þt DBrCUrTf þ
DT

Tc
rTf UrTf

� �

þ hfp Tp�Tf
� �þhf s Ts�Tf

� �� �
e 1�C0ð Þ rcð Þf

(3)

1
e
VUrTp ¼

kp
rcð Þp

r2Tpþ
hfp

eC0 rcð Þp
Tf�Tp
� �

(4)

0 ¼ ks
rcð Þs

r2Tsþ
hf s

1�eð Þ rcð Þs
Tf�Ts
� �

(5)

1
e
VUrC ¼ DBr2CþDT

Tc
r2Tf (6)

In these equations, both Brownian transport and thermophoresis coefficients are taken
to be time-independent, in tune with the recent studies that neglect the effect of thermal
transport attributed to the small size of the nanoparticles (as per recent arguments by
Keblinski and Cahill, 2005). Further, thermophoresis and Brownian transport
coefficients are assumed to be temperature-independent due to the fact that the
temperature ranges under consideration are not far away from the critical value, and
the volume averages over a representative elementary volume.

Equations (1)-(6) for the problem under consideration can be written in dimensional
Cartesian coordinates x; y taking into account the slow flow and dilute nanoparticle
concentration as:

@u
@x

þ@v
@y

¼ 0 (7)

@p
@x

¼ �m
K
u (8)

@p
@y

¼ �m
K
v� C rp�rf 0

� �þrf 0 1�b Tf�Tc
� �

1�C0ð Þ� �� �
g (9)

1
e

u
@Tf

@x
þv

@Tf

@y

� �
¼ af

@2Tf

@x2
þ@2Tf

@y2

� �
þt

(
DB

@C
@x

@Tf

@x
þ@C

@y
@Tf

@y

� �

þ DT

Tc

� �
@Tf

@x

� �2

þ @Tf

@y

� �2
" #)
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þ hf p Tp�Tf
� �þhf s Ts�Tf

� �� �
e 1�C0ð Þ rcð Þf

(10)

1
e

u
@Tp

@x
þv

@Tp

@y

� �
¼ ap

@2Tp

@x2
þ@2Tp

@y2

� �
þ hfp
eC0 rcð Þp

Tf�Tp
� �

(11)

0 ¼ as
@2Ts

@x2
þ@2Ts

@y2

� �
þ hf s

1�eð Þ rcð Þs
Tf�Ts
� �

(12)

1
e

u
@C
@x

þv
@C
@y

� �
¼ DB

@2C

@x2
þ@2C

@y2

� �
þ DT

Tc

� �
@2Tf

@x2
þ@2Tf

@y2

� �
(13)

where u; v are the velocity components along x; y directions, respectively.
Introducing a stream function ψ defined by:

u ¼ @ψ

@y
; v ¼ �@ψ

@x
; (14)

so that Equation (7) is satisfied identically. We are then left with the following
equations:

@2ψ

@x2
þ@2ψ

@y2
¼ � 1�C0ð Þrf 0gKb

m
@Tf

@x
þrp�rf 0

m
gK

@C
@x

; (15)

1
e

@ψ

@y
@Tf

@x
�@ψ

@x
@Tf

@y

� �
¼ af

@2Tf

@x2
þ@2Tf

@y2

� �
þt

(
DB

@C
@x

@Tf

@x
þ@C

@y
@Tf

@y

� �

þ DT

Tc

� �
@Tf

@x

� �2

þ @Tf

@y

� �2
" #)

þ hf p Tp�Tf
� �þhf s Ts�Tf

� �� �
e 1�C0ð Þ rcð Þf

(16)

1
e

@ψ

@y
@Tp

@x
�@ψ

@x
@Tp

@y

� �
¼ ap

@2Tp

@x2
þ@2Tp

@y2

� �
þ hf p
eC0 rcð Þp

Tf�Tp
� �

(17)

0 ¼ as
@2Ts

@x2
þ@2Ts

@y2

� �
þ hf s

1�eð Þ rcð Þs
Tf�Ts
� �

(18)

1
e

@ψ

@y
@C
@x

�@ψ

@x
@C
@y

� �
¼ DB

@2C

@x2
þ@2C

@y2

� �
þ DT

Tc

� �
@2Tf

@x2
þ@2Tf

@y2

� �
(19)

Introducing the following dimensionless variables:

x ¼ x=L; y ¼ y=L; ψ ¼ ψ=af ; f ¼ C=C0;

yf ¼ Tf�Tc
� �

=DT ; yp ¼ Tp�Tc
� �

=DT; ys ¼ Ts�Tcð Þ=DT (20)

where ΔT¼Th−Tc, and substituting (20) into Equations (15)-(19), we obtain:
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@2ψ

@x2
þ@2ψ

@y2
¼ �Ra

@yf
@x

þRaUNr
@f
@x

(21)

@c
@y

@yf
@x

�@c
@x

@yf
@y

¼ e
@2yf
@x2

þ@2yf
@y2

� �

þNb
@f
@x

@yf
@x

þ@f
@y

@yf
@y

� �
þNt

@yf
@x

� �2

þ @yf
@y

� �2
" #

þNhp yp�yf
� �þNhs ys�yf

� �
(22)

@c
@y

@yp
@x

�@c
@x

@yp
@y

¼ ep
@2yp
@x2

þ@2yp
@y2

� �
þNhpUgp yf�yp

� �
(23)

0 ¼ @2ys
@x2

þ@2ys
@y2

þNhsUgs yf�ys
� �

(24)

@c
@y

@f
@x

�@c
@x

@f
@y

¼ 1
Le

@2f
@x2

þ@2f
@y2

� �
þ Nt
LeUNb

@2yf
@x2

þ@2yf
@y2

� �
(25)

The corresponding boundary conditions for these equations are given by:

c ¼ 0; yf ¼ yp ¼ ys ¼ 1; Nb
@f
@x

þNt
@yf
@x

¼ 0 on x ¼ 0

c ¼ 0; yf ¼ yp ¼ ys ¼ 0; Nb
@f
@x

þNt
@yf
@x

¼ 0 on x ¼ 1

c ¼ 0;
@yf
@y

¼ @yp
@y

¼ @ys
@y

¼ 0;
@f
@y

¼ 0 on y ¼ 0 and y ¼ 1 (26)

here the nine parameters Nr, Nb, Nt, Nhp, Nhs, εp, γp, γs, and Le denote a buoyancy ratio
parameter, a Brownian motion parameter, a thermophoresis parameter, the interface
heat transfer parameters called as Nield numbers (Vadász, 2008), a modified thermal
diffusivity ratio, modified thermal capacity ratios and Lewis number, respectively,
which are defined as:

Nr ¼ rp�rf 0
� �

C0

rf 0bDT 1�C0ð Þ; Nb ¼ tDBC0e
af

; Nt ¼ tDTeDT
af Tc

; Nhp ¼ hfpL
2

kf 1�C0ð Þ;

Nhs ¼ hf sL
2

kf 1�C0ð Þ; ep ¼
ape
af

; gp ¼
1�C0ð Þ rcð Þf
C0 rcð Þp

; gs ¼
kf 1�C0ð Þ
ks 1�eð Þ ; Le ¼ af

DBe

(27)

The physical quantities of interest are the local Nusselt numbers Nuf, Nup, Nus, the
local Sherwood number Sh and the average Nusselt numbers Nuf ; Nup ; Nus and
Sherwood number Sh.
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The local Nusselt and Sherwood numbers are defined as:

Nuf ¼ � @yf
@x

� �
x¼0

; Nup ¼ � @yp
@x

� �
x¼0

;

Nus ¼ � @ys
@x

� �
x¼0

; Sh ¼ � @f
@x

� �
x¼0

(28)

The average Nusselt and Sherwood numbers are defined as:

Nuf ¼
Z 1

0
Nuf dy; Nup ¼

Z 1

0
Nup dy;

Nus ¼
Z 1

0
Nus dy; Sh ¼

Z 1

0
Sh dy (29)

It should be noted here that for an analysis of Sherwood numbers it is possible to study
only Nusselt numbers because at the left and right vertical walls we have @f=@x ¼
� Nt=Nb
� �

@yf =@x
� �

taking into account boundary conditions for ϕ (Equation (26)).
Therefore the further analysis concerning integral parameters will be about only
average Nusselt number because Sh ¼ � Nt=Nb

� �
Nuf and Sh ¼ � Nt=Nb

� �
Nuf .

In the present study the average Nusselt number for the base fluid phase is reported
as average Nuf ¼ εNuf and for the nanoparticles phase as average Nup ¼ εpNup to
explicitly show the non-dimensional heat transfer rare of the corresponding phase.

3. Numerical method and validation
The set of partial differential Equations (21)-(25) subject to the boundary conditions (26)
were transformed to weak form and solved using the finite element method (Rao, 2005;
Wriggers, 2008). The Lagrange shape function and quadratic elements were utilized in
the finite element method (Rao, 2005). The governing equations were fully coupled using
damped Newton method (Wriggers, 2008). The solution for the corresponding linear
algebraic equations was obtained using a parallel sparse direct solver (Amestoy et al.,
2000). The computations are terminated when the residuals for the stream function get
bellow 10−8. The present model, in the form of an in-house computational fluid dynamics
code, has been validated successfully against the works of Mansour et al. (2010),
Chamkha and Ismael (2013), Costa (2004), Chamkha et al. (2010) and Baytaş and Pop
(2002) for steady-state natural convection in an enclosure filled with porous media.

Considering the previous studies, the value of Nb and Nt are small in the order
of 10−6. The Lewis number is large of the order of 103 and higher, and Nr is higher than
unity. The interface heat transfer parameters, Nield numbers (Nhp and Nhs), are higher
than unity (Bhadauria and Agarwal, 2011). The modified thermal diffusivity ratio
(εp) is about unity and higher, and the modified thermal capacity ratios (γp and γs,) are
order of 10. Here, the results are present for the following typical combination of
non-dimensional parameters Ra¼ 100; Nr¼ 10.0; Nb¼ 10‒6; Nt¼ 10‒6; Le¼ 1,000;
ε¼ 0.5; εp¼ 1.0; Nhp¼ 10.0; Nhs¼ 10.0; γp¼ 10.0 and γs¼ 10.0.

Table I shows the evaluated Nusselt numbers of various phases for different
combinations of the dimensionless interface heat transfer parameters and different grid
sizes. Table I shows that the grid size of 150×150 provides accurate results. Hence, all
of the calculations were executed using the grid size of 150×150.
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Neglecting the effect of nanoparticles (Nr¼Nb¼Nt¼Nhp¼ 0), the present study
reduces to the study of LTNE in a porous medium saturated with a pure fluid which
was analyzed in the work of Baytaş and Pop (2002). In this case, dividing both sides of
Equation (22) by ε, the non-dimensional form of the present study is equivalent with the
study of Baytaş and Pop (2002). In this case, a comparison between the computed
values of the average Nusselt number and those reported by Baytaş and Pop (2002) is
performed in Figure 2. Table II also shows the evaluated values of the average Nusselt

Nhp¼Nhs¼ 0 Nhp¼Nhs¼ 10
Grid size Nuf Nus Nup Nuf Nus Nup

50× 50 2.4733 1.0000 2.7015 2.3083 2.3105 3.3942
100× 100 2.4723 1.0000 2.7001 2.3071 2.3120 3.3938
150× 150 2.4720 1.00000 2.6998 2.3069 2.3122 3.3937
200× 200 2.4719 1.00000 2.6997 2.3068 2.3123 3.3936
Notes: Ra¼ 100; Nr¼ 10.0; Nb¼ 10‒6; Nt¼ 10‒6; Le¼ 1,000; ε¼ 0.5; εp¼ 1.0; γp¼ 10.0 and γs¼ 10.0

Table I.
Grid

independency test

15

A
ve

ra
ge

 N
u

12

9

6

3

0
0 1,000 2,000 3,000

Fluid

Solid

Baytas and Pop (2002)

4,000 5,000

Nhs

�s=1.0

γs=10.0

Figure 2.
Comparison with the
results of Baytaş and
Pop (2002) for ε¼ 0.9

and neglecting
nanoparticles

Baytaş and Pop (2002) Present study
γs¼ 1 γs¼ 10 γs¼ 50 γs¼ 1 γs¼ 10 γs¼ 50

Nhs Nuf Nus Nuf Nus Nuf Nus Nuf Nus Nuf Nus Nuf Nus

5 14.36 1.26 14.44 2.59 14.64 4.63 14.21 1.26 14.38 2.62 14.46 4.69
10 14.14 1.48 14.51 3.35 14.63 5.76 14.00 1.48 14.34 3.39 14.45 5.83
50 13.43 2.51 14.4 5.70 14.6 8.69 13.36 2.54 14.24 5.77 14.42 8.74
100 13.1 3.18 14.34 6.89 14.58 9.95 13.06 3.23 14.18 6.97 14.41 9.94
500 12.24 5.11 14.16 9.71 14.54 12.42 12.25 5.22 14.03 9.73 14.38 12.20
Notes: Ra¼ 1,000; Nr¼Nb¼Nt¼Nhp¼ 0

Table II.
Comparison of the
average Nusselt

number of the hot
wall using

LTNE model
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number of the hot wall for Ra¼ 1000 and compares the results with the data reported
by Baytaş and Pop (2002). As seen, there is a good agreement between the results of the
present study and the results of Baytaş and Pop (2002).

4. Results and discussion
Figures 3-5 show the contours of the isotherms, concentration of nanoparticles and the
nanofluid streamlines for a typical case of LTNE heat natural convection of nanofluids.
As seen, there is a significance difference between isotherms of the base fluid, solid
matrix and nanoparticles. This difference between the isotherms of three phases is
small near isothermal walls where the buoyancy effects and fluid flow are strong.
In contrast, the observed difference, between the isotherms of various phases, becomes
essential one in the vicinity of the adiabatic horizontal walls where the fluid flow is
weak. Figure 4 indicates that the concentration of nanoparticles near the hot vertical
wall is low due to the thermophoresis effect. The thermophoresis force acts on the
nanoparticles in direction opposite to the temperature gradient, which tends to move
nanoparticles from hot to cold. As seen, the concentration of nanoparticles near the cold
wall is high. In addition, the weakest concentration of nanoparticles can be seen in the
upper left corner of the enclosure (II). Attention to Figure 3 indicates that the
temperature gradient near the bottom left corner (I) of the enclosure is higher than that
of the corner (II) as the isotherms are denser close to the corner (I). Hence, in the vicinity
of the left wall (hot wall), moving from the bottom to top would decrease the strength of
the temperature gradients. As the thermophoresis is a direct function of temperature
gradient, the intensity of the thermophoresis force would also follow the strength of the
temperature gradient. When the nanofluid starts to move upward from the bottom of
the hot wall, the thermophoresis tends to push away the nanoparticles in direction
away from the hot wall. Hence, the concentration of nanoparticles tends to decrease

1

0.8

0.8

0.
9

0.7

0.6
0.4

0.
1

0.2

0.3

0.
1

0.
6

0.
7

0.
4
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2

0.
3

0.6

Y

0.4
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0
–0.5

0.
8

–0.25 0

X

0.25 0.5

Figure 3.
Isotherms inside the
cavity: the solid red
lines correspond to
the base fluid θf; the
long dashed green
lines correspond to
the porous matrix
θs and the small
dashed blue lines
correspond to the
nanoparticles θp
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towards upward. Then, the flow of nanofluid moves along the horizontal adiabatic top
wall until it reaches to the cold wall at right. Thus, the weakest concentration of
nanoparticles can be seen in the corner (II) and near the top horizontal adiabatic wall.
When the flow of the nanofluid, containing weak concentration of nanoparticles,
reaches the cold wall, the temperature gradients get strong again and induce
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thermophoresis forces toward the cold wall. Hence, the concentration of nanoparticles
increases next to the cold wall, and the strongest concentration of nanoparticles can be
seen at the bottom right corner (IV). Figure 4 also shows that the concentration
boundary layer of nanoparticles is a thin layer, and the concentration in most parts of
the enclosure’s core is uniform. The thin concentration boundary layer of nanoparticles
is due to the value of Lewis number in nanofluids. The Lewis number shows the ratio of
the thermal diffusivity to the nanoparticles diffusion coefficient in nanofluids. For
nanofluids, the thermal diffusivity is much higher than the nanoparticles diffusion
coefficient, and hence, the Lewis number is a large value. In the theory of the boundary
layer, the Lewis number indicates the comparative ratio of the thickness of the thermal
boundary layer to the thickness of the concentration boundary layer. The thickness of
the thermal boundary layer is mostly affected by the hydrodynamic boundary layer
and the buoyancy forces; hence, the thickness of the thermal boundary layer is almost
fixed. Therefore, as the consequent of the large values of the Lewis number, the
concentration boundary layer is very thin. Figure 5 shows the streamlines of the
nanofluid in the enclosure. As seen, the streamlines illustrate the flow circulation of
nanofluid inside the cavity. The streamlines are close together near the isothermal
walls where the temperature gradients and buoyancy forces are strong. Hence, the
velocity near the vertical walls is high and near the core is low.

Figure 6 shows the effect of the buoyancy ratio parameter (Nr) on the isotherms.
When nanoparticles migrate from a place into another one, the areas containing high
volume fraction of nanoparticles are heavier than that of containing weak
concentration of nanoparticles. Hence, the concentration difference would induce the
buoyancy force because of the nanoparticles mass transfer. The buoyancy ratio
parameter indicates the ratio of buoyancy force due to the mass transfer of
nanoparticles to the buoyancy force due to the heat transfer. The increase of Nr

1

0.8

II

I
IV

III

0.6

Y

0.4

0.2

0
–0.5 –0.25 0

X

0.25 0.5

Figure 6.
The streamlines for
the nanofluid for
Nr¼ 0 (green lines
marked with arrows)
and Nr¼ 30 (clean
red lines)

682

HFF
26,3/4



intensifies the effect of induced buoyancy force due to the mass transfer (migration of
nanoparticles). Thus, as seen in Figure 6, the effect of buoyancy ratio parameter (Nr)
only near the corners of (II) and (IV) is significant. These places correspond to the
weakest and strongest concentration of nanoparticle in the enclosure. The difference
between the streamlines in the core of the enclosure, where the mass transfer
mechanism are negligible, is also negligible.

Figure 7 shows the effect of Nhs on the isotherms of the porous matrix. Nhs is the
interface heat transfer parameter between the fluid phase and the solid phase.
Decreasing Nhs, the effect of fluid phase on the solid matrix reduces, and hence, for low
values of Nhs the solid matrix would act as an isolated solid interface in which the
temperature would change linearly from hot to cold. Figure 7 also indicates that the
isotherms would better follow the non-linear behaviors of the fluid for high values of
Nhs (dashed green lines). It is also clear that the variation of the interface heat transfer
parameter between the fluid phase and the solid phase would significantly affect the
isotherms. The effect of Nhs on the concentration and fluid phase isotherms was not
significant, and hence, they have not been plotted here for the sake of brevity.

Figures 8-10 show the average Nusselt number of the solid, base fluid and
nanoparticles phases, respectively. In these figures, the effect of the buoyancy ratio
parameter on the average Nusselt numbers for selected values of the solid-fluid
interface heat transfer parameter (Nhs) is illustrated. As seen, the increase of the
buoyancy ratio parameter (Nr) leads to the decrease in the magnitude of the average
Nusselt number. The observed decrease in the base fluid (Figure 9) and nanoparticles
(Figure 10) phases is more significant in comparison with that of the porous solid
matrix (Figure 8). The increase of the buoyancy ratio parameter intensifies the induced
buoyancy mass transfer effects. As it was seen in Figure 6, these effects are solely
important in a small layer close to the vertical isothermal walls. Therefore, the increase

1

0.8

0.6

Y

0.4

0.2

0
–0.5 –0.25 0

X

0.25 0.5

Figure 7.
Isotherms for the

porous matrix
temperature θs for
Nhs¼ 5 (solid red

lines) and Nhs¼ 10
(the long dashed

green lines)

683

Free
convection in

a square
porous cavity

http://www.emeraldinsight.com/action/showImage?doi=10.1108/HFF-04-2015-0133&iName=master.img-006.jpg&w=211&h=210


of the buoyancy ratio parameter boosts the vertical velocity of the fluid in the vicinity
of the vertical walls, which results in the decrease of temperature gradient (average
Nusselt number). The variation of the buoyancy ratio parameter induces direct
significant changes in the buoyancy forces next to the vertical walls which results in
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smooth indirect variation of average Nusselt number (temperature gradient) of the base
fluid. The variation of the base fluid would consequently affect the temperature gradient of
the solid porous medium. However, as seen in Figure 8, this indirect effect is not much
significant. Figure 9 indicates that the increase of the solid-fluid interface heat transfer
parameter decreases the average Nusselt number for the base fluid phase. In contrast,
Figure 8 indicates that the increase of Nhs increases the average Nusselt number for the
phase of the solid porous matrix. This is because of the fact that the increase ofNhs boosts
the interaction between the fluid and solid matrix, and consequently tends to reduce the
temperature differences between these two phases.

The changes in temperature behavior of nanoparticles are mainly the results of
the interaction between nanoparticles and the base fluid. Therefore, the temperature
behavior of nanoparticles tends to follow the temperature behavior of the base fluid
through interaction with the base fluid. Thus, as seen in Figure 10, the increase of
Nhs decreases the average Nusselt number for the nanoparticles phase. This is the
same trend of behavior as occurred for the base fluid, but the variation of Nusselt
number for the nanoparticles phase is smoother than that for the base fluid. This is
because of the fact that the variation of Nhs directly affects the temperature of the
solid porous matrix and the base fluid phases, but the fluctuations of Nhs would
indirectly change the temperature behavior of the nanoparticles through the
variation of base fluid temperature.

Figures 11-13 illustrate the effect of the nanoparticles-fluid interface heat
transfer parameter (Nhp) on the average Nusselt number of the three phases of the
solid porous matrix, base fluid and nanoparticles for various values of the solid-
fluid interface heat transfer parameter (Nhs). The nanoparticles-fluid interface heat
transfer parameter (Nhp) indicates the strength of thermal interaction between
nanoparticles and the base fluid. As this parameter increases, the interaction
between these phases increases.
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Figure 11 reveals that the effect of variation of Nhp on the average Nusselt number is
not significant for the solid phase of the porous matrix. This is because the fluctuations
of Nhp would indirectly affect the temperature behavior of the solid porous phase
through the variation of base fluid temperature. This figure in agreement with Figure 8
shows that the increase of Nhs increases the average Nusselt number of the solid
porous matrix.
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Figures 12 and 13 depict that the increase of Nhp tends to reduce the temperature
gradient (average Nusselt number) for the base fluid phase and raise the average
Nusselt number for the nanoparticles. This is because of the fact that the increase of the
interaction between base fluid and nanoparticles tends to reduce the temperature
differences between the phases. However, as the heat capacity and volume fraction of
nanoparticles are lower than those of the base fluid, the changes in temperature
gradient (i.e. reduced Nusselt number) in both sides is not equal. In addition, as it was
seen in previous figures, the variation of the solid-fluid interface heat transfer
parameter (Nhs) also plays an important role in surface temperature gradients of the
phases (i.e. Nusselt numbers).

Figures 14-16 illustrate the average Nusselt number of three phases of the solid
porous matrix, base fluid and nanoparticles as a function of modified thermal capacity
ratio of nanoparticle phase (γP) for various values of the modified thermal capacity ratio
of the solid matrix of the porous medium phase (γs). These figures depict that the
increase of the modified thermal capacity ratio of nanoparticle phase (γP) increases the
average Nusselt number of all phases when the modified thermal capacity ratio of the
porous solid matrix (γs) is comparatively high. The increase of γs would also increase
the average Nusselt number for the solid porous matrix and the base fluid, but it
induces two different trends of results for the nanoparticle phase. When γP is
comparatively small (γPo2), the increase of γs decreases the average Nusselt number
of nanoparticles, but when γP is comparatively large, the increase of γs increases the
average Nusselt number for the nanoparticles phase. Attention to the governing
Equations (21)-(25) indicates that variation of γp can reduce or boost the effect of Nhp in
the heat transfer of nanoparticles phase. Similarly, the variation of γs can reduce or
intensify the effect of Nhs in the phase of the porous solid matrix. Hence, when the
magnitude of γs is large the temperature of the solid matrix is strongly under influence
of the variation of the base fluid phase. In addition, when the magnitude of γp is high the
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temperature of nanoparticles is under the strong influence of the base fluid phase.
Therefore, in the case of the large values of γp and γs, the temperatures (as well as the
Nusselt numbers) should follow the behavior of the base fluid. Figure 15 reveals that
the variation of γp can smoothly change the magnitude of the average Nusselt number
of the base fluid. However, it induces strong effects on the magnitude of the Nusselt
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number of the nanoparticles phase. Figure 14 indicates that the variation of γp does not
show significant effects on the variation of the Nusselt number of the solid
porous matrix. This is because of the fact that the variation of γp would indirectly
change the temperature gradients of the base fluid through the variation of
nanoparticles temperatures. Then, the smooth variation of the base fluid temperature
would change the temperatures of the solid matrix of the porous medium. Figure 14
shows that the variation of γs induces significant changes in the magnitude of the
average Nusselt number of the solid-matrix phase. As the magnitude of γs increases,
the effect of interaction between solid-base fluid phases (i.e. Nhs) intensifies in the solid
porous matrix side. In Figure 8, it was observed that the increase of Nhs tends to
increase the average Nusselt number of the solid matrix of porous medium. Here,
the increase of γs (γs¼ 10) has intensified this effect and increased the reduced
Nusselt number.

As mentioned, Figure 15 shows that the increase of γs increases the reduced
Nusselt number for the base fluid. Indeed, the increase of γs indirectly affects
the Nusselt number of the base fluid through the variation of the temperature
of the solid porous matrix. When γp is large any changes in temperature of
the fluid would be boosted for nanoparticles, and the temperature of the base fluid
dominantly changes the temperature of nanoparticles. Hence, as seen in Figure 16,
the increase of γs raises the magnitude of the average Nusselt number for
large values of γp. Indeed, this trend of results follows the trend of results of
Figure 15. In contrast, when γp is small, the variation of the temperature of
the base fluid could be neglected, and the changes in temperature of nanoparticles
would be the results of the diffusive term as well as the velocity of the
base fluid. It is clear that the diffusive term is not under influence of γs. Therefore,
the changes in the average Nusselt number of nanoparticles correspond to velocity
(advection) terms for the case of small values of γp. Figure 15 indicates as γs
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increases the average Nusselt number for the base fluid (Figure 15), and
consequently, the velocity increases. The increment of the velocity reduces
the temperature gradient of nanoparticles. Hence, as seen in Figure 16, the
increase of γs reduces the magnitude of the average Nusselt number for small
values of γp.

5. Conclusion
The natural convective flow and heat transfer of nanofluids in a square enclosure
filled with a homogenous porous medium saturated with a nanofluid is theoretically
analyzed. The nanofluid and porous medium are considered in LTNE. The
nanoparticles in the nanofluid are also subject to drift flux due to the Brownian
motion and thermophoresis forces. The governing equations in non-dimensional
form were solved using a finite element code. The results for the heat transfer of
nanofluids were reported in the form of the Nusselt number graphs for three
phases of solid porous matrix, base fluid and nanoparticles. The main outcomes of the
results of the present study can be summarized as follows:

(1) The increase of buoyancy ratio parameter (Nr) decreases the magnitude of
average Nusselt number.

(2) The increase of the nanoparticles-fluid interface heat transfer parameter
(Nhp) increases the average Nusselt number for nanoparticles and
decreases the average Nusselt number for the base fluid. Similarly, the
increase of the solid-fluid interface heat transfer parameter (Nhs) increases
the average Nusselt number for the porous matrix and the nanoparticles
and decreases the average Nusselt number for the base fluid. The effect
of variation of Nhp on the average Nusselt number of the porous matrix is not
significant.

(3) The increase of the modified thermal capacity ratio of nanoparticle phase (γP)
increases the average Nusselt number of all phases when the modified thermal
capacity ratio of the porous solid matrix (γs) is comparatively high. Therefore,
nanofluids with large values of modified thermal capacity ratio are of interest
for heat transfer applications.

(4) The increase of the modified thermal capacity ratio of the porous solid matrix
(γs) raises the average Nusselt number for all phases when the modified
thermal capacity ratio nanoparticle phase (γP) is comparatively high. In
practical cases, the values of γP are large, and hence, in heat transfer
applications, the mixtures of nanofluids and porous matrix with high values
of γs are of interest.
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