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Abstract This work is dealing with the natural convection heat transfer in a square filled
with porous medium that has been extended according to the Nield and Kuznetsov model
to tridisperse porous medium. Considering impermeable walls which the horizontal ones
are insulated and vertical ones are assumed to be isothermal, the governing equations are
set as the three equations for momentum and three equations for energy for three phases of
porosity and are numerically solved utilizing finite element method. In this study isothermal
contours, streamlines and Nusselt number values are foremost criteria which are presented
for three levels of porosity. The influence of various governing parameters on the heat transfer
is investigated.

Keywords Free convection · Tridisperse porous media · Boussinesq approximation ·
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List of symbols

Latin symbols

d characteristic length scale
g gravity
H1, H2 dimensionless inter-phase heat transfer parameters.
h12, h23 inter-phase heat transfer coefficients (incorporating specific area)
k1, k2, k3 effective thermal conductivities of the 1-phase, 2-phase and 3-phase
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K effective permeability of the porous medium
Kr1, Kr2 permeability ratio
Nu local Nusselt number
P excess pressure
Ra Rayleigh number (based on properties in the 1-phase)
T1, T2, T3 volume-average temperatures of the 1-phase, 2-phase and 3-phase
T f volume average of the temperature over the fluid
Th, Tc wall temperatures
u1, u2, u3 x-velocity components in the 1-phase, 2-phase, 3-phase
v1, v2, v3 y-velocity components in the 1-phase, 2-phase, 3-phase
x, y Cartesian coordinates (x-axis is aligned vertically upward, plate is at y = 0)

Greek symbol

β1, β2 modified thermal diffusivity ratio
β volumetric thermal expansion coefficient of the fluid
γ1, γ2, γ3 modified thermal conductivities
ζ12 velocity coupling coefficient for momentum transfer between phases 1 and 2

(between macro- and meso-pores)
ζ23 velocity coupling coefficient for momentum transfer between phases 2 and 3

(between meso- and micro-pores)
θ dimensionless temperatures
μ dynamic viscosity of the fluid
ρc heat capacity per unit volume of the fluid
ρ f density of the fluid
σ1, σ2 inter-phase momentum transfer parameters
τ1, τ2 volume fractions
φ1 macro-porosity
φ2 meso-porosity
φ3 micro-porosity
ψ1, ψ2, ψ3 stream functions for the 1-phase, 2-phase, 3-phase

1 Introduction

The natural convection heat transfer in a cavity at different boundary conditions is one of the
most important classical problems (Cheng 2015). Also an enclosure heated from a side is
the most significant case in porous systems that shows many useful results at many different
applications, such as thermal energy technology, petroleum reservoir, geothermal energy
utilization, pollutant dispersion in aquifers, food industry and the insulation for building.
In this regard, the fundamental nature and the growing volume of work are sufficiently
documented in books by Nield and Bejan (2013), Pop and Ingham (2001), Vafai (2005),
Bejan et al. (2004), Ingham and Pop (2005), De Lemos (2012) and Vadasz (2008). Moreover,
the case of cavity filled with a porous medium also has many types and levels. We mention
also the papers by Sheremet and Pop (2014a, b), Sheremet andGrosan (2015) andGhalambaz
et al. (2015) on free convection in porous cavities filledwith a nanofluid. In addition, the paper
by Nield and Kuznetsov (2015) on the effect of vertical throughflow on thermal instability
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in a porous medium layer saturated by a nanofluid could be of great interest for researchers
working on nanofluid problems.

Chen et al. (2000a) implemented a theoretical and experimental study inwhich the stagnant
thermal conductivity of bidisperse porous media considering various micro- and macro-
porosities was measured. Chen et al. (2000a) conducted an experimental study of two-phase
flow and boiling heat transfer in a channel which is packed with sintered copper bidisperse
porous medium. They found that the effective two-phase heat sink of bidispersed porous
materials is higher than monodispersed one with the same pore diameter as the micro-pore
diameter of the bidispersed porous material. Nield and Kuznetsov (2004) studied the conju-
gate problem considering forced convection in a bidispersed local thermal nonequilibrium
porous medium channel. The case of square cavity for bidisperse porous medium has been
studied by Revnic et al. (2009) that contains two levels of porosity, i.e., the macro-porosity
which relates to macro-pores and the meso-porosity in which the solid phase of the stan-
dard porous medium is replaced by another porous medium. Comparing the influences of
a modified thermal capacity ratio parameter, the fluid phase momentum transfer parameter,
permeability ratio parameter, modified thermal conductivity ratio parameter and inter-phase
heat transfer parameter H on the heat and mass transfer, it is concluded that the inter-phase
heat transfer parameter and the modified thermal conductivity ratio have much more impact
on transport phenomena with respect to other mentioned parameters (Revnic et al. 2009).
Nield andKuznetsov (2011) have considered extended bidisperse porousmedium (BDPM) to
the case of three levels of porosity or namely tridisperse porous medium (TDPM) for a heated
vertical wall embedded in tridisperse porous medium. According to Nield and Kuznetsov
research, level 1 is macro-porosity, level 2 is meso-porosity and level 3 is micro-porosity
and they found a similarity solution based on the characteristics of TDPM. They also on
the other investigation formulated a three-velocity three-temperature model for tridisperse
porous media and obtained an analytical solution (Nield and Kuznetsov 2011a). Kuznetsov
and Nield (2011) resolved the classical Rayleigh–Benard problem for the onset of convection
in a horizontal layer which is uniformly heated from bottom in a tridisperse porous medium.

The natural heat transfer in a square filled with regular porous medium with constant tem-
perature applied for vertical walls and remaining two horizontal walls at adiabatic constraint
has been studied by many authors, Bejan (1979), Baytas and Pop (2001) and the extended
case for a BDPM investigated by Revnic et al. (2009). In this paper the governing relations
considered as three continuity, three momentum (Darcy model) and three energy equations
for three levels of porosity and after simplifying and nondimensionalizing relations, the final
governing partial differential equations are numerically solved for a cavity using the finite
element method. Moreover, the effect of important parameters on the flow and tempera-
ture fields has been studied. It is worth to mention to this end that this investigation is the
first attempt to directly solve such governing partial differential equations for heat and mass
transfer in the tridisperse porous media.

2 Basic equations

Consider the steady free convection in a two-dimensional porous square cavity. A schematic
view of the physical model is shown in Fig. 1, where x̄ and ȳ are the Cartesian coordinates
and L is the size of the cavity. It is assumed that the left vertical wall is heated and maintained
at the constant temperature Th , while the right vertical wall is cooled and has the constant
temperature Tc. The horizontal walls are adiabatic

∂T f
∂y = 0, where T is the temperature.
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Fig. 1 Physical model and coordinate system

The application ofTDPMcould concern the nano-/micro-latticemeshes consisting of three
levels of porosities. The micro-lattice fabricated by Rys et al. (2014) consists of three levels
of porosities. The 3-phase of the micro-lattice of Rys et al. (2014) consists of nanometer size
structures. The 3-phase of the nanolattices reported by Meza et al. (2014) consists of 10-nm
ceramic nanostructures. For detailed thermal and hydraulic analysis of nano-/micro-lattices
such as those reported in Rys et al. (2014) and Meza et al. (2014), a TDPMmodel is required
that is subject of the present study. The porous matrices are assumed to be isotropic and
homogenous throughout the enclosure. Apart from density variation in the buoyancy force
which conforms to Boussinesq approximation, the other physical properties of the working
fluid and the porous media are considered to be constant. It is considered that there is a local
thermal equilibrium between the porous media and fluid in each scale. The conservation
equations for the total mass, Darcy momentum, thermal energy come out to be as follows.
A detailed derivation of these equations could be found in Nield and Kuznetsov (2011) and
Kuznetsov and Nield (2011).

Continuum equations are:

∂u1
∂x

+ ∂v1

∂y
= 0, (1a)

∂u2
∂x

+ ∂v2

∂y
= 0, (1b)

∂u3
∂x

+ ∂v3

∂y
= 0. (1c)

Momentum equations are:

∂ p

∂x
= − μ

K1
u1 − ζ12(u1 − u2), (2a)
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∂ p

∂x
= − μ

K2
u2 − ζ12(u2 − u1) − ζ23(u2 − u3), (2b)

∂ p

∂x
= − μ

K3
u3 − ζ23(u3 − u2), (2c)

∂ p

∂ y
= − μ

K1
v1 − ζ12(v1 − v2) + ρFgβ(TF − T∞), (3a)

∂ p

∂ y
= − μ

K2
v2 − ζ12(v2 − v1) − ζ23(v2 − v3) + ρFgβ(TF − T∞), (3b)

∂ p

∂ y
= − μ

K3
v3 − ζ23(v3 − v2) + ρFgβ(TF − T∞), (3c)

and the energy equations are:

φ1(ρc)1V̄1.∇̄T1 = φ1k1∇̄2T1 + h12(T2 − T1), (4a)

(1 − φ1)φ2(ρc)2V̄2.∇̄T2 = (1 − φ1)φ2k2∇̄2T2 + h12(T2 − T1) + h23(T3 − T2), (4b)

(1 − φ1)(1 − φ2)(ρc)3V̄3.∇̄T3 = (1 − φ1)(1 − φ2)k3∇̄2T3 + h23(T2 − T3), (4c)

where the volume average of the temperature over the fluid is:

TF = φ1T1 + (1 − φ1)φ2T2 + (1 − φ1)(1 − φ2)φ3T3
φ1 + (1 − φ1)φ2 + (1 − φ1)(1 − φ2)φ3

, (5)

We introduce now the following dimensionless variables as:

(x, y) = d(x, y) p = k1μ

(ρc)1K1
p, (6)

(u1, v1) = φ1k1
(ρc)1d

(u1, v1), (u2, v2) = (1 − φ1)φ2k2
(ρc)2d

(u2, v2),

(u3, v3) = (1 − φ1)(1 − φ2)k3
(ρc)3d

(u3, v3), (7)

T1 = (Tw − T∞)θ1 + T∞, T2 = (Tw − T∞)θ2 + T∞, T3 = (Tw − T∞)θ3 + T∞.

(8)

Also dimensionless parameters are:

σ1 = ζ12K1

μ
, σ2 = ζ23K1

μ
,

β1 = (1 − φ1)φ2k2/(ρc)2
φ1k1/(ρc)1

, β2 = (1 − φ1)(1 − φ2)k3/(ρc)3
φ1k1/(ρc)1

Kr1 = K2

K1
, Kr2 = K3

K1
, (9)
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Further, we introduced the stream function for three phases as:

u1 = ∂ψ1

∂y
, v1 = −∂ψ1

∂x

u2 = ∂ψ2

∂y
, v2 = −∂ψ2

∂x

u3 = ∂ψ3

∂y
, v3 = −∂ψ3

∂x
(10)

and Rayleigh number based on properties in 1-phase:

Ra = ρFgβ(Tw − T∞)K1d

μφ1k1/(ρc)1
. (11)

Eliminating the pressure from Eqs. 2 and 3 and substituting Eqs. (6–10) in Eqs. (1–4) we
have:

(1 + σ1)∇2ψ1 − β1σ1∇2ψ2 = −Ra
∂θF

∂x
, (12a)

−σ1∇2ψ1 + β1

(
1

Kr1
+ σ1 + σ2

)
∇2ψ2 − β2σ2∇2ψ3 = −Ra

∂θF

∂x
, (12b)

−β1σ2∇2ψ2 + β2

(
1

Kr2
+ σ2

)
∇2ψ3 = −Ra

∂θF

∂x
, (12c)

and the thermal equations become:

φ1
∂ψ1

∂y

∂θ1

∂x
− φ1

∂ψ1

∂x

∂θ1

∂y
= ∇2θ1 + H1(θ2 − θ1), (13a)

(1 − φ1)φ2
∂ψ2

∂y

∂θ2

∂x
− (1 − φ1)φ2

∂ψ1

∂x

∂θ1

∂y
= ∇2θ2 + γ1H1(θ1 − θ2) + γ2H2(θ3 − θ2),

(13b)

(1 − φ1)(1 − φ2)
∂ψ3

∂y

∂θ3

∂x
− (1 − φ1)(1 − φ2)

∂ψ3

∂x

∂θ3

∂y
= ∇2θ3 + γ3H2(θ2 − θ3),

(13c)

where

γ1 = φ1k1
(1 − φ1)φ2k2

, γ2 = (1 − φ2)k1
φ2k2

, γ3 = k1
k3

, (14)

H1 = h12d2

φ1k1
, H2 = h23d2

(1 − φ1)(1 − φ2)k1
, (15)

θF = φ1θ1 + (1 − φ1)φ2θ2 + (1 − φ1)(1 − φ2)φ3θ3

φ1 + (1 − φ1)φ2 + (1 − φ1)(1 − φ2)φ3
, (16)

and shorthand volume fractions are introduced as

τ1 = φ1

φ1 + (1 − φ1)φ2 + (1 − φ1)(1 − φ2)φ3
,

τ2 = (1 − φ1)φ2

φ1 + (1 − φ1)φ2 + (1 − φ1)(1 − φ2)φ3
. (17)
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Using shorthand volume fraction (Eq. 17) Eqs. (12a–12c) become,

(1 + σ1)∇2ψ1 − β1σ1∇2ψ2 = −Ra

(
τ1

∂θ1

∂x
+ τ2

∂θ2

∂x
+ (1 − τ1 − τ2)

∂θ3

∂x

)
, (18a)

−σ1∇2ψ1 + β1

(
1

Kr1
+ σ1 + σ2

)
∇2ψ2 − β2σ2∇2ψ3

= −Ra

(
τ1

∂θ1

∂x
+ τ2

∂θ2

∂x
+ (1 − τ1 − τ2)

∂θ3

∂x

)
, (18b)

−β1σ2∇2ψ2 + β2

(
1

Kr2
+ σ2

)
∇2ψ3 = −Ra

(
τ1

∂θ1

∂x
+ τ2

∂θ2

∂x
+ (1 − τ1 − τ2)

∂θ3

∂x

)
.

(18c)

The corresponding boundary conditions for these equations are given by,

ψ1 = 0, ψ2 = 0, ψ3 = 0, θ1 = 1, θ2 = 1, θ3 = 1 at x = 0, (19)

ψ1 = 0, ψ2 = 0, ψ3 = 0, θ1 = 0, θ2 = 0, θ3 = 0 at x = 1, (20)

ψ1 = 0, ψ2 = 0, ψ3 = 0,
∂θ1

∂y
= 0,

∂θ2

∂y
= 0,

∂θ3

∂y
= 0 at y = 0 and y = 1.

(21)

In addition, physical quantities of interest are the local Nusselt number Nu1 of the 1-phase,
Nu2 of the 2-phase and Nu3 of the 3-phase at the hot wall which are defined as follows,

Nu1 = Lqw1

k1(Tw − T0)
, Nu2 = Lqw2

k2(Tw − T0)
, Nu3 = Lqw3

k3(Tw − T0)
, (22)

here q1, q2 and q3 are the heat fluxes of the 1-, 2- and 3-phases at the hot wall and are given
by,

qw1 = −k1

(
∂T1
∂x

)
x=0

, qw2 = −k2

(
∂T2
∂x

)
x=0

, qw3 = −k3

(
∂T3
∂x

)
x=0

. (23)

Applying dimensionless variables (Eq. 8), we obtain from Eqs. 22 and 23,

Nu1 = −
(

∂θ1

∂x

)
x=0

, Nu2 = −
(

∂θ2

∂x

)
x=0

, Nu3 = −
(

∂θ3

∂x

)
x=0

. (24)

It is worth noting that, despite previous investigations, in this study the parameters H1, H2,
associated with dimensionless inter-phase heat transfer and γ1, γ2 and γ3 denoting the mod-
ified thermal conductivity ratios are considered in Eqs. (13a–c).

3 Numerical method and validation

The set of partial differential equations (Eqs. 13 and 18) subject to the boundary conditions
Eqs. 19, 20, 21 has been solved employing finite element method. Utilizing Galerkin finite
element method (Reddy 1993), the set of governing partial differential equations transformed
to the weak form and solved numerically. A nonuniformed mesh is utilized. The mesh points
are clustered near the walls to increase the accuracy of the solution and capture gradients
near the walls. A view of the utilized mesh structure of size 25×25 with the element ratio 20
is depicted in Fig. 2. This size of the mesh is selected to clearly illustrate the mesh structure.
As seen, the mesh points are clustered near the walls. The largest element size is in the
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Fig. 2 A view of the utilized
mesh with the size of 25× 25 and
the element ratio 20

Table 1 Grid check by evaluated Nusselt number in different Ra for regular porous medium using a uniform
grid

Ra Grid size

50 × 50 100 × 100 200 × 200 230 × 230 300 × 300 400 × 400

10 1.0800 1.0791 1.0791 1.0800 1.0791 1.0791

100 3.1144 3.1121 3.1115 3.1115 3.1114 3.1114

1000 14.1740 13.6490 13.6550 13.6660 13.6730 13.7950

10,000 66.5830 56.6330 51.4370 50.9280 50.6300 49.6040

middle of the cavity with the nondimensional size of 0.13, while the smallest element sizes
are in the corners with the size of 0.0065. The Lagrange shape functions with quadratic shape
functions are utilized for discretization of the momentum equations. A linear discretization
is utilized for heat equations. Fourth-order elements are utilized for calculation of the fluxes
at the walls. A fourth-order integration based on the Gaussian quadrature is also utilized to
calculate the heat flux (Nusselt number) at the boundaries.

Moreover, the Newton–Raphson method was applied to solve the discretized equations.
The detailed solution can be found in the previous studies (Reddy 1993; Basak et al. 2006).
The iteration process terminates when the changes in the dependent variables between two
subsequent iterations are satisfied by establishing the following criterion:

∑ ∣∣∣κn+1
i, j − κn

i, j

∣∣∣
∑ ∣∣∣κn+1

i, j

∣∣∣ ≤ 10−8, (25)

here κn
i, j denotes the dependent variables at iteration n.

Tables 1 and 2 show the evaluated mean Nusselt numbers of regular porous medium for
different grid sizes. Table 1 shows the results for a regular uniform grid, and Table 2 shows
the results for a nonuniform grid clustered near the walls. Table 2 demonstrates that the grid
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Table 2 Grid check by evaluated Nusselt number in different Ra for regular porous medium using a nonuni-
form grid and element ratio 20

Ra Grid size

50 × 50 100 × 100 200 × 200 230 × 230 300 × 300 400 × 400

10 1.0800 1.0791 1.0791 1.0800 1.0791 1.0791

100 3.1121 3.1115 3.1114 3.1114 3.1114 3.1114

1000 13.6540 13.6440 13.6420 13.6420 13.6410 13.6410

10,000 49.7950 48.8480 48.5700 48.5540 48.5280 48.5100

Table 3 Comparison of Nusselt
number calculated using the
nonuniform grid (230 × 230 grid
points and element ratio 20) with
the results from the open
literature

Authors Ra

10 100 1000 10,000

Bejan (1979) 4.200 15.800 50.8

Beckermann et al. (1986) 3.113 48.9

Gross et al. (1986) 3.141 13.448 42.583

Moya et al. (1987) 1.065 2.801

Manole and Lage (1992) 3.118 13.637 48.117

Baytas and Pop (1999) 1.079 3.160 14.060 48.330

Sheremet and Pop (2014b) 1.071 3.104 13.839 49.253

Present results 1.080 3.111 13.642 48.554

size of 230× 230 with element ratio 20 provides accurate results within almost two digits of
accuracy for Nusselt number expect for the case of Ra = 10,000. Since all results of this paper
are at Ra = 1000, all of the calculations have been executed using the grid size of 230× 230.

In the first validation of the present study, neglecting the effect of tridisperse porous
medium by setting the parameters as ( φ1 = 1, φ2,3 = H1,2 = σ1,2 = 0) and considering
steady-state problem, is reduced to the study of a regular porous medium (monodisperse
porous medium) saturated with a pure fluid which was analyzed by several investigators. In
this case, a comparison between the computed value of the Nusselt number and those given
by multifarious authors from open literature is performed in Table 3.

Figure 3 also shows another validation of the average Nusselt number at the hot
wall setting the parameters: τ1 = 0.625, τ2 = 0.375, σ1 = 1, σ2 = 0, K1 = 0.1,
K2 = 0.0001, Kr1 = 0.001, Kr2 = 0+ (in which 0+ = 10−15), Ra = 1000,
β1 = 10, β2 = 0+, γ1 = 1, γ2 = 0, γ3 = 0, φ1 = 0.5, φ2 = 0.6, φ3 = 0, and con-
sidering the applied difference temperature to be 1◦. Comparing the results with the data
reported by Revnic et al. (2009), it is obvious that there is a good agreement between the
results of the present study and the previous ones.

4 Results and discussion

The governing equations (Eqs. 13 and 18) consist of sixteen parameters that can be adjusted
and investigated the effect of each one on the fluid flow and heat transfer, but in this paper
according to other similar studies we set constant some parameters and check the effect of
the other ones. The magnitude of the governing parameters is set as follows: fluid volume

123



M. Ghalambaz et al.

Fig. 3 Comparison of the average Nusselt number of the hot wall for BDPM between this work and Revnic
et al. (2009)

fraction φ = 0.4 so that τ1 = 0.510 and τ2 = 0.306, modified thermal conductivity ratio
γ = 1, modified thermal diffusivity ratio β = 10, inter-phase momentum transfer σ = 1,
permeability ratio Kr = 0.001, dimensionless inter-phase heat transfer parameter H = 50,
the Raleigh number Ra = 1000 and the applied difference temperature is 1 degree where
φ1 = φ2 = φ3 = φ, β1 = β2 = β, γ1 = γ2 = γ3 = γ, σ1 = σ2 = σ, Kr1 = Kr , Kr2 =
K 2
r , H1 = H2 = H similar to the Revnic et al. (2009) and Nield and Kuznetsov (2011) which

we call these above values the base condition. It is worth mentioning that, except the specific
parameter that would be investigated, we adopt the above-mentioned values constant.

The results for the flowand temperature fields are representedwith streamlines and isother-
mal contours of 1-, 2- and 3-phases for the base parameters in Fig. 4. As it can be seen, the
streamline contours for three phases have the same shape as it is shown by Revnic et al.
(2009) for BDPM, but the temperature fields are different in three phases.

The effect of different parameters on the heat transfer is shown in Figs. 5, 6, 7, 8 and
9. Figure 5 shows the Nusselt number for three phases at different values of β. The results
show that decreasing β from 100 to 0.1 does not have a significant impact on the amount
of Nusselt numbers. Moreover, it is shown that increasing dimensionless inter-phase heat
transfer parameter (H) leads to decrease in 1-phase Nusselt number and increase in 2-phase
and 3-phase Nusselt numbers. In addition, it could be seen that when the value of parameter
H is high, the further increase of H does not show any noticeable influence on the heat
transfer.

The effect of permeability ratio Kr on the Nusselt number at wide range of inter-phase
heat transfer parameter H is depicted in Fig. 6. In accordance with Fig. 6, by increasing Kr

from 0.001 to 1, the values of Nusselt numbers for three phases increase. Furthermore, it
seems that rate of convergence of Nusselt numbers of 2-phase and 3-phase in high values of
parameter H is altered by variation of permeability ratio. Figure 7 illustrates the variation of
Nusselt number for different inter-phase momentum transfer parameter σ. It is shown that
the heat flux increases as σ dwindles from 1 to 0.0001
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Fig. 4 Streamlines and isotherm contours for the default combination of parameters

Fig. 5 Nusselt number as a function of β

Fig. 6 Nusselt number as a function of Kr

Figure 8 presents the effect of variation of modified thermal conductivity ratio, i.e., γ , on
the Nusselt number. According to Fig. 8, the Nusselt number is an increasing function of the
parameter γ . Moreover, as it is shown, for small magnitudes of γ , i.e., γ = 0.01, increasing
H above 1000 does not have significant effect on the heat transfer and the Nusselt numbers
have almost the same value for three phases.

123



M. Ghalambaz et al.

Fig. 7 Nusselt number as a function of σ

Fig. 8 Nusselt number as a function of γ

Fig. 9 Nusselt number as a function of Kr and β

Figure 9 shows an exception condition so that when Kr is high value and β is low,
independent of the value of σ , the Nusselt number values of 2- and 3-phases are more than
1-phase. This fact is also shown in Table 4 (see cases 3, 12 and 21). For instance, in case
3, Nu3 > Nu2 > Nu1 with the values 28.52282, 22.18428 and 6.248895, respectively.
Moreover, in this condition, the value of Nusselt numbers of three phases has significant
difference with each other compared to the other conditions.

5 Conclusion

Considering the Darcy model, an internal natural convection in a square cavity filled with
tridisperse porous medium under steady-state condition has been studied. It is assumed that
the porous matrices are isotropic and homogenous throughout the enclosure. Furthermore,
the horizontal and vertical boundaries are assumed to be constant temperature and adiabatic,
respectively. The effect of governing parameters such as modified thermal conductivity ratio
γ , modified thermal diffusivity ratio β, inter-phase momentum transfer parameter σ , perme-
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Table 4 Numerical results of base condition for different values of σ, β, Kr1

Case σ B Kr1 −θ1x −θ2x −θ3X

1 0.0001 0.1 0.0001 6.779025 2.056071 1.435738

2 0.0001 0.1 0.01 6.942712 2.214437 1.485519

3 0.0001 0.1 1 6.248895 22.18428 28.52282

4 0.0001 1 0.0001 6.77749 2.054835 1.435339

5 0.0001 1 0.01 6.794532 2.068695 1.439944

6 0.0001 1 1 7.81639 5.658928 7.214223

7 0.0001 10 0.0001 6.777337 2.054711 1.435299

8 0.0001 10 0.01 6.779051 2.056077 1.435755

9 0.0001 10 1 7.127155 2.309401 1.771319

10 0.01 0.1 0.0001 6.732038 2.051333 1.434187

11 0.01 0.1 0.01 6.897831 2.211975 1.484711

12 0.01 0.1 1 6.248895 22.18428 28.52282

13 0.01 1 0.0001 6.730486 2.05008 1.433781

14 0.01 1 0.01 6.748181 2.064165 1.438466

15 0.01 1 1 7.81639 5.658928 7.214223

16 0.01 10 0.0001 6.730331 2.049955 1.433741

17 0.01 10 0.01 6.732534 2.051387 1.434219

18 0.01 10 1 7.127155 2.309401 1.771319

19 1 0.1 0.0001 4.050102 1.720922 1.31881

20 1 0.1 0.01 4.341496 2.026506 1.421906

21 1 0.1 1 6.248895 22.18428 28.52282

22 1 1 0.0001 4.047649 1.718753 1.318014

23 1 1 0.01 4.120125 1.749857 1.329533

24 1 1 1 7.81639 5.658928 7.214223

25 1 10 0.0001 4.047404 1.718537 1.317934

26 1 10 0.01 4.095945 1.727847 1.321396

27 1 10 1 7.127155 2.309401 1.771319

ability ratio Kr and dimensionless inter-phase heat transfer parameter H on three phases of
porosity for TDPM cavity has been numerically studied. As it is seen, apart from the excep-
tional case which is discussed in Fig. 8, when the value of H is high, there is no noticeable
difference between Nusselt numbers of three phases of porosity and in all reviewed cases
there is no significant difference for Nusselt value between 2- and 3-phases. In addition, the
Nusselt numbers are an increasing function of γ and Kr and a decreasing function of σ .
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