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The effects of nanoparticles diameter and concentration on natural convection heat transfer of a nano-
fluid around a vertical cone embedded in a Darcy porous medium is theoretically investigated utilizing
the drift-flux model. The thermal conductivity and the viscosity of the nanofluid are assumed as simul-
taneous functions of temperature and local volume fraction of nanoparticles using experimental correla-
tions. In addition, the flux of nanoparticles on the surface of the cone is assumed to be zero. An efficient
mathematical approach with a self-similar solution is utilized to theoretically analyze the boundary layer
heat and mass transfer of an Al,Os-water nanofluid. The reduced system of ordinary differential equa-
tions are general and can be solved for any arbitrary functions of thermal conductivity and viscosity.
The analysis of the nanofluid natural convection flow is accomplished for two cases of (i) T,, > T,, and
(ii) Ty < T The results show that using nanoparticles would not (would) enhance the heat transfer from
the cone for the case of a cone with a hot surface (cold surface). A decrease in the size of nanoparticles or
an increase in the volume fraction of nanoparticles causes a decline in the heat transfer rate from the cone
when the cone surface is hot. Finally, a comparison between the non-homogenous model (drift-flux
model) and the homogenous model of nanofluids is performed. The results demonstrate that the drift-
flux model tends to the homogeneous model as the size and volume fraction of nanoparticles increase.
© 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.
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1. Introduction

Natural convection flow and heat transfer over embedded
bodies in porous media has various engineering applications such
as thermal energy storage, groundwater systems, flow through
filtering media, and crude oil extraction [1]. Such versatile applica-
tions have attracted extensive research on natural convection phe-
nomena over embedded bodies within porous media.

Nanofluids are widely used in various thermal systems to boost
the heat transfer rate and the thermal efficiency. Nanofluids have
been employed in different fields of thermal engineering such as
heat exchangers, nuclear reactors, and cooling of electronic devices
[2]. Utilizing nanofluids as the working fluid may enhance the heat
transfer because of the enhancement in the thermal conductivity.
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However, other thermo-physical properties also may affect the
enhancement of heat transfer of nanofluids. Some of these factors
are the thermal conductivity, viscosity, density, heat capacity, dis-
persion and amorphous movement of nanoparticles, Brownian
motion, and thermophoresis effects.

There are two known models for theoretical study of convective
heat transfer of nanofluids: (i) homogeneous models and (ii) non-
homogeneous models. In the homogeneous models, the nanofluid
is uniform with no slip between the base fluid and nanoparticles.
In the non-homogeneous models, the slip between nanoparticles
and the base fluid is accounted for, and hence, the nanofluid would
not be a uniform mixture of nanoparticles with a base fluid. Many
researchers believe that the migration of nanoparticles within the
base fluid is the significant reason behind the heat transfer enhance-
ment of nanofluids. The migration of nanoparticles in the base fluid
would transfer energy in the base fluid. Using scale analysis, Buongi-
orno [3] discussed seven possible mechanisms for drift flux of parti-
cles during convection of nanofluids. These are inertia, Brownian
diffusion, thermophoresis, diffusion phoresis, Magnus effect, fluid
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Nomenclature

C a constant

Cp specific heat (J/kg K)

Dg Brownian diffusion coefficient (m?/s)

d, diameter of nanoparticle (m)

Dr thermophoretic diffusion coefficient (m?/s)

f rescaled nanoparticles volume fraction, nanoparticles
concentration

g gravitational acceleration vector (m/s?)

h convective heat transfer coefficient

k thermal conductivity (W/m K)

kg Boltzmann’s constant (1.3807 x 1023 J/K)

Le Lewis number

Nb Brownian motion parameter

Nr buoyancy ratio

Nt thermophoresis parameter

Nu Nusselt number

P pressure (Pa)

quw surface heat flux

Ray local Rayleigh number

r local radius of the cone

S dimensionless stream function

T temperature (K)

u, v Darcy velocity components (m/s)

x,¥) Cartesian coordinates

Greek symbols

(pc) heat capacity (J/m® K)

u viscosity (Pas)

o thermal diffusivity (m?/s)

B volumetric expansion coefficient of fluid (1/K)

€ porosity

Y cone half-angle

n dimensionless distance

0 dimensionless temperature

K permeability of porous medium (m?)

p fluid density (kg/m?)

13 nanoparticles volume fraction

] stream function

Subscripts

00 ambient

eff effective property between porous medium and nano-
fluid

f the base fluid

nf nanofluid

p nanoparticles

S porous medium

w wall

drainage, and gravity. However, only the thermophoresis and the
Brownian diffusion effects were found to be important [3,4].

Nield and Kuznetsov [5] have extended the work of Buongiorno
[3] to the heat transfer of nanofluids in porous media. They have
analyzed the natural convection flow of nanofluids over an isother-
mal flat plate taking into account the Brownian motion and ther-
mophoresis effects. They [5] found that the reduced Nusselt
number is a decreasing function of the Brownian motion and ther-
mophoresis parameters. Yih [6] numerically explored the effect of
uniform lateral mass flux on natural convection around a cone
embedded in a saturated porous medium using a similarity solu-
tion. Recently, Rashad et al. [7] have extended work of Yih [6] to
the natural convection flow of nanofluids. They [7] have analyzed
the heat transfer associated via migration of nanoparticles. They
found that as the thermophoresis, Brownian motion and buoyancy
ratio parameters increase, the reduced Nusselt number decreases.
Natural convective boundary layer flow of a nanofluid over a hor-
izontal plate embedded in a saturated porous medium has been
examined by Gorla and Chamkha [8]. Chamkha et al. [9] presented
a non-similar solution for natural convective boundary layer flow
over a sphere embedded in a nanofluid-saturated porous medium.
Rana et al. [10] analyzed the boundary layer heat transfer of nano-
fluids over an inclined plate embedded in a porous medium. In a
recent work, Noghrehabadi et al. [11] have investigated non-Darcy
flow and natural convection of nanofluids over a vertical cone
embedded in a porous medium. They [11] have reported that the
reduced Nusselt number decreases with an increase in the non-
Darcy parameter. Noghrehabadi et al. [12] have studied natural
convection heat and mass transfer of nanofluids over a vertical
plate embedded in a porous medium by applying surface heat
and nanoparticle fluxes as boundary conditions. Furthermore,
Noghrehabadi and Behseresht [13] analyzed the flow and heat
transfer of nanofluid over a cone placed in porous media. Consider-
ing the viscosity and thermal conductivity of nanofluids as a linear
function of local volume fraction of nanoparticles, they studied the
effect of variable properties on the flow and heat transfer of a
nanofluid. The important outcome has shown that the reduced
Nusselt number would increase with increase of viscosity parame-

ter and decrease with an increase of thermal conductivity param-
eter [13]. In addition, Gorla et al. [14] have recently studied the
nanofluid flow boundary layer for the natural convection over a
non-dimensional vertical cone in a porous medium.

In the mentioned works [7-12], the effects of temperature and
local volume concentration of nanoparticles on the thermal con-
ductivity and viscosity of nanofluids were neglected. However,
experiments demonstrate that the thermal conductivity and the
dynamic viscosity of nanofluids strongly depend on both of the vol-
ume fraction of nanoparticles and temperature [4,15,16]. Indeed,
although the effect of temperature on the thermal conductivity
and the dynamic viscosity of conventional pure fluids can be
neglected for small temperature differences, these effects cannot
be neglected for nanofluids owing to the presence of nanoparticles
[15]. Therefore, in the present study, experimental correlations as
simultaneous functions of temperature and local volume fraction
of nanoparticles are adopted to include the local effect of temper-
ature and volume fraction of nanoparticles on the thermal conduc-
tivity and the dynamic viscosity of an Al,Osz-water nanofluid.

Previous studies [7-12] have approximated the volume fraction
of nanoparticles on the surface to be constant, but this constant is
unknown and no effort was made to calculate it. Accomplishing a
case study, however, requires the exact value of nanoparticles vol-
ume fraction on the surface. Furthermore, an approximation of
constant value of nanoparticles volume fraction on the surface gen-
erally implies a non-zero value of particles mass flux at the surface.
This is an unrealistic assumption since the particles cannot cross
the surface. Hence, assuming a zero particle mass flux through
the surface as a boundary condition makes a more physical sense.

In this paper, a zero particle flux through the cone surface is uti-
lized as a new auxiliary boundary condition. Furthermore, using
similarity variables, the governing partial differential equations
are converted into a set of ordinary differential equations. A case
study for an Al,Os-water nanofluid, as a typical nanofluid, is con-
ducted. The experimental correlations in the literature are then
used to evaluate the local values of the dynamic viscosity and
the thermal conductivity. Moreover, the nanoparticles volume
fraction at the cone surface is also evaluated.
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Fig. 1. Physical model and coordinate system.

2. Mathematical analysis

Fig. 1 illustrates a two-dimensional, incompressible, laminar
and steady natural convection boundary layer flow of a nanofluid
around a vertical cone within a saturated porous medium. The
coordinate system is chosen such that the x-axis is coincident with
the flow direction over the cone surface. The temperature of the
cone surface can be higher or lower than the ambient temperature.

As mentioned earlier, the nanoparticles within the base fluid are
subject to forces including thermophoresis and Brownian motion
forces. The thermophoresis acts against the temperature gradient,
meaning that the particles tend to move from hot regions to cold
ones [3]. The Brownian motion tends to move the particles from high
concentration areas to low concentration areas. Considering the case
in which the temperature at the cone surface is higher than the
ambient temperature, the nanoparticles are expected to move away
from the surface of cone. In contrast, the Brownian motion force
tends to make the concentration of nanoparticles uniform. This
would create a concentration boundary layer of nanoparticles over
the surface of the cone. For the case, in which the temperature at
the surface of the cone is lower than that of the ambient tempera-
ture, the temperature gradient has a tendency to move nanoparti-
cles into the surface due to the thermophoresis effect. In contrast,
the Brownian motion effect tends to uniform the nanoparticles.
Hence, in this case, there is also a concentration boundary layer over
the cone. However, the concentration of nanoparticles at the surface
of the cone is higher than that of the ambient temperature.

There are three distinct boundary layers namely: (i) hydrody-
namic, (ii) thermal and (iii) nanoparticles concentration over the
cone, however, only one of the boundary layer is symbolically plot-
ted in Fig. 1. It is assumed that the cone surface is isothermal, and
the nanoparticle volume fraction (¢) at the cone surface (y = 0) is
¢w. The constant value of ¢,,, however, is unknown and needs to
be evaluated later. T,, and ¢., denote the ambient temperature
and nanoparticles volume fraction, respectively. The flow within
the porous medium with porosity ¢ and permeability x is assumed
to be a Darcy flow. The porous medium is also assumed homoge-
neous, and in local thermal equilibrium with the nanofluid.

Following the reference work of Buongiorno [3] and by employ-
ing the Oberbeck-Boussinesq approximation and applying the

standard boundary layer approximations [11,17], the following
four equations embody basic steady-state balance laws of total
mass, momentum, thermal energy, and nanoparticles for nanofl-
uids in the Cartesian coordinate system of x and y as follows:

o(ru) O(rv)
ox oy 0 (1)
~(po-p;.)(6— 9] cos
or |, oT\ _ 0 (kegns(¢,T) OT
1 (15 + v3y) =R (S )
d¢p dT Dy (9T\*
+&(pc), |:D38_y@+i<@> } 3)
1[0 0] . P (Dr\OT
v vy ~Doy (7)o @

Based on the problem description, the boundary conditions at
the cone surface are:

T:TWs ¢:¢w>

The boundary conditions far away from the cone surface (ambi-
ent space) are:

T—>Too’

v=0, aty =0 (5)

U— Uy,

¢ — b,

where the subscripts oo and w indicate the properties outside the
boundary layer and at the cone surface, respectively. The subscripts
P, nf and f denote properties corresponding to the nanoparticles,
nanofluid and the base fluid, respectively. The subscript eff denotes
the effective properties of the porous medium and the nanofluid.
Here, kefns is the effective thermal conductivity of the porous med-
ium and the nanofluid.

If the thermal boundary layer is thin, r can be approximated by
the local radius of the cone [11]. The set of equations introduced in
Eq. (2), are simplified using cross-differentiation, and the

aty — oo (6)
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continuity equation, Eq. (1), will also be satisfied by introducing a
stream function, (y/):

1oy 1oy
Trayt T T @

Here, the local Rayleigh number, Ra,, and the similarity variable, 7,
are defined by:
(1 = d.)pp Prgcos p(Tw — T )X

Ra, =
Hing o Oteff.nf o0

(8)

n= %Rai (9)

The dimensionless similarity quantities S, 6, and f are intro-
duced as:
S= w -, f: ¢7(/)‘x7 H:TT*TTOQ (]O)
eff nfoo * T+ Ra§ w ¢oc w— 1l

The local radius of the cone is related to the x coordinate by,
r=xsiny (11)

Applying Egs. (9) and (10) onto Egs. (1)-(4), the following three
ordinary differential equations are obtained (see Appendix A):

0 0\ ,
ICEA P FL AL S—0+Ap-Nr-f'=0 (12)
:u“nf,oc nf 00
ke f,0) g | (keff wlf, 9)> 0 + 250+ Ap-Nb-f0 +Nt- 07 — 0
kejff‘nf‘oo kejff.nf.oc 2
(13)
1" 3 / Nt /o
f+§'Le's'f+A¢-Nb9 =0 (14)
subject to the following dimensionless boundary conditions:
at the cone surface: n=0: S=0, 60=1, f=1 (15a)
and far away from the cone: §# —oc0: S'=0, 0
=0, f=0 (15b)

where the non-dimensional physical parameters; buoyancy ratio,
Brownian motion, thermophoresis and the Lewis number are,
respectively defined as follows:

(o 1)

Nr = 16a
P T 9o (162)
s D
Nb = _&pe)Ds (16b)
(PC)fOlefr.nf o
> Dr(T,, — T,
Nt — &(pc),Dr( ) (160)
(pc)faeff,ﬂf.ooToc
_ O‘eff.nfao
Le =20 (16d)

where AT=T,, — T, and A¢ = ¢, — ¢.. Here, ¢, and consequently
A¢ are unknown parameters as yet. It is interesting that integrating
Eq. (12) yields:

<—“”f(f’0))s’—o+A¢.Nr-fc

17a
lu“nf,oo ( )

where C is a constant which originates from the integration. Using
the boundary conditions of Eq. (15b), C turns out to be zero. Solving

Eq. (17a) with the boundary conditions Eq. (15a), reveals that the
non-dimensional surface velocity at the cone surface is a function
of the boundary ratio parameter (Nr) and the concentration differ-
ence (A¢):

S0)=1-A¢-Nr (17b)
The local Nusselt number (Nuy) is defined as:
h-x quX
Nuy = = > 18
* keff.nf.x kejf.nf.oc(Tw - Too) ( )

where q,, is the surface heat flux.
Using the similarity variables, Eq. (10), the reduced Nusselt
number (Nu,) is obtained as follows:

Nuy = NuyRay? = —,’:effﬂe/w) (19)
eff .nf.00
It was assumed that the concentration at the cone surface is ¢,
and thus, the value A¢ is unknown. This raises the necessity of a
new boundary condition in order to determine the value of Ag.
The surface of the cone is assumed impermeable, and thus, the
mass flux from the cone surface can be set to zero as:
B % + %TO g—; =0 (20)
As the concentration difference increases (the increase of the
magnitude of |A¢|), the Brownian motion force at the surface gets
stronger. When the Brownian force is equal to the thermophoresis
force, the nanoparticles would not tend to cross the surface.
Indeed, for this nanofluid phenomenon, we have a situation in
which the flux of nanoparticles at the surface is zero and the con-
centration of nanoparticles at the surface is also constant. The rea-
son for such an effect is the fact that the concentration of
nanoparticles is adjusted at the surface by the boundary layer char-
acteristics (and not by the external applied force). Using the simi-
larity variables, Eq. (20) is transformed to the following auxiliary
boundary condition:

Nt

10+ 543" (@ =0 1)
Therefore, the reduced Sherwood number, Eq. (21), shows the
mass transfer from the surface is identically zero.
In practice, the enhancement of heat transfer due to the pres-
ence of nanoparticles in the base fluid is of interest. Therefore, an

enhancement ratio parameter is introduced as:

1
hog  KegrnywOi (O)RGG

he — , 1 (22)
4 kEfff-wgbf(O)Ralzyf X

which represents the ratio of convective heat transfer of nanofluids
to the convective heat transfer of the base fluid.

The ratio of the heat transfer coefficient evaluated using a drift-
flux model (dynamic) to the homogeneous model (static) shows
the effect of concentration gradient on the heat transfer. Therefore,
the enhancement ratio of the dynamic model to the static model is
introduced as follows:

Ky pynamic 07 pynamic (0)

_ / 23
l<w.5tatic0bf,sruric(0) =

hDynamic

hStutic

In order to calculate the thermo-physical properties of the
nanofluid and their derivatives in Egs. (12) and (13) and finally
solve the three coupled Eqgs. (12)-(14), the dynamic viscosity and
the effective thermal conductivity of the nanofluid and the porous
medium as functions of the non-dimensional temperature and the
non-dimensional concentration of nanoparticles are required.
Recently, Khanafer and Vafai [15] have reviewed the experimental
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works on the thermo-physical properties of nanofluids. They have
proposed correlations for the dynamic viscosity and the thermal
conductivity of Al,0s-water nanofluids as function of the temper-
ature, volume fraction of nanoparticles and the size of nanoparti-
cles using curve fitting of the available experimental data. The
correlations for the dynamic viscosity and the thermal conductiv-
ity of Al,Os-water nanofluids, reported by Khanafer and Vafai
[15], are as follows:

of A¢ which is a part of the solution process will also be deter-
mined. As A¢ is determined, the concentration at the surface can
simply be evaluated using the definition of A¢ as ¢, = Ad + ...
As seen, the value of A¢ and ¢, are scalar values, and hence, ¢,,
is also a scalar value, which means that the concentration of nano-
particles at the surface is a constant value, adjusted by the bound-
ary layer characteristics (notice that A¢ was adjusted in the
solution procedure to satisfy the boundary condition in Eq. (20)).

~0.4491 + 2887 1 0.574¢ x 10° — 0.1634¢* x 10* + 23.053;’—2 x 10* ,
0) = x 10”
o1 0) +0.0132¢° x 10° — 2354.735 % x 107 + 23.4983—2 x 10% — 3.01853—2 x 10° (24)
P P

for: 0.01 <¢<0.09, 20<T(C)< 70,

0.7383
09843 +0398(¢ x 10°) " d, % (4

~3.95174 x 10° + 34.034% x 10* + 325095 x 10°
for: 0.0 < ¢ <0.10, 20<T(°C) < 70,

)0.0235

knf = kf

11 nm < d, < 150 nm
(25)

where
[ =2.414x 107 x 10715, T(°C) (26)

The correlations of the dynamic viscosity and the thermal con-
ductivity can be written as a functions of f and 6 using T= (T, -
~T)0+T, and ¢ =(¢pw— P )f + do. The effective thermal
conductivity of the porous medium and the nanofluid is evaluated
using the weighted geometric mean of ks and k,;, defined as [18]:

Kefrnp = kg *Kiye (27)

where ks, kyrand ¢ are the thermal conductivity of the porous med-
ium, the thermal conductivity of the nanofluid, and the porosity of
the porous medium, respectively. This relation provides a good esti-
mate so long as ks and ks are not too different from each other.
Moreover, the terms of du(f, 0)/dy and dkegf, 0)/dy and other
thermo-physical relations are reported in the Appendix B.

3. Numerical method of solution

The system of Eqs. (12)-(14) with the boundary conditions (15)
and (21) is numerically solved using a finite-difference solver [17].
A collocation method with automatic grid adaptation is utilized to
control the convergence and error of the solution. The solver is the
same as that in Shampine et al. [17]. A maximum relative error of
10-1%is used as the stopping criteria for the iterations. The concen-
tration equation, Eq. (14), is a second order equation, containing
the unknown parameter A¢. There are also three boundary condi-
tions for this equation in Egs. (15a), (15b) and (20). Therefore, the
set of governing equations, involving the unknown parameter Ag,
are solved subject to the boundary conditions simultaneously. A
sensible criterion for making the numerical approach accurate is
to choose an appropriate finite value of 7. Therefore, in order to
estimate the relevant value of #., the solution process has been
commenced with an initial value of #.,=5, and then Egs. (12)-
(14) are solved subject to the boundary conditions (15) and (21).
In order to check and correct the value of #., until further changes
in 77, did not lead to any changes in the values of the results, the
solution process is orderly repeated. The choice of #7,,4x=10
ensured that all numerical solutions approach to the asymptotic
values at the free stream conditions correctly. It is worth noticing
that, when the governing equations are solved, the unknown value

13 nm < d, <131 nm

In order to check the accuracy of the solution, the value of Nur is
compared with the reported values by Yih [6] and Cheng et al. [19].
Neglecting the effects of the nanofluid parameters, Nb = Nt = Nr = 0,
and assuming constant values of the thermo-physical properties,
the present study reduces to the works of Yih [6] and Cheng
et al. [19]. Excellent agreement between the present results and
those of Yih [6] and Cheng et al. [19] exists as the value of —0'(0)
is calculated as 0.7686 in the work of Yih [6] and 0.7685 in the
work of Cheng et al. [19] whereas in the present study, this value
is computed as 0.76859.

4. Results and discussion

Recently, Behseresht et al. [20] investigated the values of nano-
fluid parameters (Thermophoresis, Brownian motion, Buoyancy
ratio and Lewis number). They presented the practical ranges of
nanofluid thermo-physical properties. In the present paper, the
realistic values of nanofluid parameters obtained by Behseresht
et al. [20] have been adopted. The following values are adopted
for a case study when the cone surface is hot and the ambient
space is cold: T, =30 °C, AT =20 °C, d, = 30 nm. The following val-
ues are also adopted for a case study when the cone surface is cold
and the ambient space is hot: T, =50 °C, AT=-20°C, d, =30 nm.
It is worth noticing that the case of a cone with a hot surface is
more practical than that of a cold surface, as in most practical
cases, the heat should be removed from the hot surface into the
ambient space. However, there are also few cases in which there
is a reaction or heat absorbing process inside the cone in which
the cone should be heated from the ambient space. Hence, the
main focus of the study is to analysis the cone with the hot surface.
However, in some cases, a cone with a cold surface is also studied.

The porosity of the porous medium is fixed as £¢=0.5 and the
thermal conductivity of the porous medium is assumed equal to
the thermal conductivity of the base fluid (ks = k;~ 0.6065) for
convenience. The details of the thermo-physical models are given
in Appendix B. The thermal conductivity of water is computed
using Eq. (B.1). The thermo-physical properties of water as well
as Al,03 nanoparticles are assumed as shown in Table 1. In the fol-
lowing text, all the results are reported for the mentioned thermo-
physical properties and assumptions unless otherwise stated.

In order to check the correctness of the solution, the results are
compared with the results of Runge-Kutta-Fehlberg method. In

Table 1

Thermo-physical properties of base fluid [4,13], Al,O3 nanoparticles [13].
Physical properties p (kg/m?) Cp B (K K (W/m K)
Water 997.1 4179 21 x107° 0.613
Al,03 nanoparticles 3970 765 0.85 x 107> 40
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Table 2
The non-dimensional parameters and the calculated values of S'(0), ¢'(0), f(0) and A¢ when T, =30 °C, AT=20°C, and ¢=0.5.
B d, 5(0) 0(0) f(0) Ag Nr Nb Nt Le
2% 20 1.618986 -0.76814 -123.815 —0.00091 683.615 6.51E-05 9.50E-06 11263.05
30 1.743823 -0.76799 —~154.521 -0.00109 683.615 4.40E—-05 9.63E—06 16667.92
40 1.845441 —0.76787 —~181.236 —0.00124 683.615 3.33E-05 9.71E-06 22025.6
50 1.932532 -0.76777 —205.363 -0.00136 683.615 2.68E-05 9.78E—06 27349.94
60 2.009486 -0.76769 —227.626 -0.00148 683.615 2.24E-05 9.83E-06 32648.78
70 2.078876 —0.76763 —248.461 —0.00158 683.615 1.93E-05 9.87E—06 37927.16
80 2.142359 -0.76757 —268.154 -0.00167 683.615 1.70E-05 9.91E-06 43188.52
90 2201074 -0.76751 —286.906 -0.00176 683.615 1.51E-05 9.94E—06 48435.4
100 2255843 —0.76746 —~304.863 -0.00184 683.615 1.37E-05 9.96E—06 53669.72
4% 20 2.071674 ~0.76685 —137.996 -0.00162 660.6773 6.35E-05 1.85E-05 11598.91
30 2.280157 —0.76648 -173.2 —0.00194 660.6773 433E-05 1.90E—05 17014.81
40 2.448719 -0.76621 —203.992 -0.00219 660.6773 3.30E-05 1.92E-05 22352.1
50 2.592532 —0.766 —231.899 -0.00241 660.6773 2.67E-05 1.95E-05 27633.34
60 2719186 —0.76582 —257.719 —0.0026 660.6773 2.24E-05 1.96E-05 32871.4
70 2.8331 —0.76568 —281.934 —0.00277 660.6773 1.94E—05 1.98E—05 38074.58
80 2.937103 -0.76555 —304.859 -0.00293 660.6773 1.70E-05 1.99E-05 43248.67
90 3.033132 —0.76543 -326.719 —0.00308 660.6773 1.52E-05 2.00E-05 48397.88
100 3.122577 —0.76533 —347.678 —0.00321 660.6773 1.38E—05 2.01E-05 53525.44
the case of T, = 30 °C, AT =20 °C, dp =30 nm, and ¢ = 0.5, the non- L] IPSe—— =
dimensional parameters and the calculated values of §'(0), ¢'(0), -
f(0) and A¢, are reported in Table 2. Based on the results of this |
table, the governing boundary value differential Eqgs. (12)-(14) 025
can be seen as an initial-value ordinary differential equation with- L .’
out any unknown parameter. Therefore, according to the results of [
Table 2, the governing equations were solved using the Runge- . 02
Kutta-Fehlberg method with variable size steps and error control & |
[21]. The maximum truncation error was fixed as 1 x 1071, The 1 i
average number of required steps was about 24,000. The results ' o0i5f .
of the Runge-Kutta-Fehlberg method revealed that the asymptotic R
boundary conditions were correctly satisfied. The results of the -
Runge-Kutta-Fehlberg method were found to be in excellent P
agreement with the results of the finite-difference method. It is P
worth noticing that the Lewis number for nanofluids is very small, (a)
and hence, the thickness of the concentration boundary layer is 0.05 L1 L1 L L
much lower than the thickness of thermal boundary layer. In addi- 1 2 3 4 5
tion, there is an unknown parameter, A¢, in the differential equa- ., (%)
tions. Thus, the convergence of the present boundary value
problem requires good initial guesses or the utilizing of continua- 0.3 -
tion methods. Hence, the results of Table 2 can be utilized as initial | Cone with cold surface
guesses for future studies. i P
Fig. 2a and b shows the effect of the nanoparticles volume frac- 025} )
tion and diameter on the concentration difference, (A¢), for two [
cases of a cone with a hot surface and cone with a cold surface, - rd
respectively. In these figures, three cases of nanoparticles diame- —~ o2k
ters, i.e. 30, 60 and 90 nm have been adopted. As seen in Fig. 23, 2 i
the magnitude of the nanoparticles concentration difference (A¢) 'g' :
increases by increasing the nanoparticles volume fraction and ' o5k
nanoparticles diameter. According to the results of Table 2, as the - e
nanoparticles size increases, the values of thermophoresis param- I
eter, Brownian motion parameter and the temperature gradient at ai & e L7 d =30 nm
the cone surface remains approximately constant whereas the | VA d,=60nm
nanoparticles concentration gradient at the cone surface increases 0 e d, =90 nm
significantly. Therefore, considering Eq. (21), the magnitude of the s P : [ s ‘(l")
concentration difference (|A¢|) increases as the concentration gra- G024 2 3 4 5
dient of the nanoparticles at the surface of the cone increases. ¢Oo (%)

Moreover, it is clear that the values of A¢ are negative, and hence,
the volume fraction of the nanoparticles in the vicinity of the cone
surface is lower than the volume fraction of the nanoparticles out-
side the boundary layer. Indeed, the thermophoresis force moves
the nanoparticles from the hot areas in the vicinity of the cone to
the low temperature areas. However, it should be noticed that
the concentration difference (A¢) is very low (about 0.33% volume
fraction of nanoparticles). Fig. 2b shows that the concentration

Fig. 2. The effects of nanoparticles volume fraction and diameter on the concen-
tration difference (A¢) ((a) the cone with hot surface and (b) the cone with cold
surface).

difference (A¢) adopts positive values. The positive values of the
concentration difference are because of the thermophoresis effect.
The thermophoresis effect tends to collect the nanoparticles on the
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Fig. 3. The effects of nanoparticles volume fraction and diameter on the dynamic
viscosity.
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Fig. 4. The effects of nanoparticles volume fraction and diameter on the thermal
conductivity.

surface, and hence, the concentration of nanoparticles at the sur-
face is higher than that of the ambient space. A comparison
between the results of Fig. 2a and b depicts that the magnitude
of the concentration difference (|A¢|) for the case of a cone with
a hot surface is smoothly higher than that of a cone with a cold sur-
face. As the results of A¢ are plotted in Fig. 2 for any value of ¢,
the volume fractions of nanoparticles at the surface (¢,,) can be
easily evaluated as ¢, = Ap + ¢oc.

The effects of the ambient volume fraction (¢..) and the nano-
particles diameter on the dynamic viscosity and the thermal con-
ductivity of Al,O3-water nanofluid, evaluated using the dynamic
model, and the static model as well as for the base fluid, are
depicted in Figs. 3 and 4, respectively. The results are obtained
for the case in which the surface of the cone is hot. In the dynamic
model, the simultaneous effect of the local volume fraction of
nanoparticles and the local temperature is taken into account. In
the static model, the effect of local temperature is solely taken into
account. In the model of pure water, only the effect of temperature
is taken into account. Therefore, the properties of pure water are a
straight line against the ambient volume fraction of nanoparticles.
As seen, an augmentation of the nanoparticles size reduces the
thermal conductivity and the dynamic viscosity of the nanofluid.

In contrast, an increase in the ambient volume fraction of nanopar-
ticles, ¢.., raises the thermal conductivity and the dynamic viscos-
ity of the nanofluid. Moreover, the dynamic viscosity of the
nanofluid in the vicinity of the cone surface, where the tempera-
ture is high, is lower than the dynamic viscosity at the ambient free
stream where the temperature is low. The thermal conductivity of
the nanofluid near the cone surface, where the temperature is high,
is higher than the thermal conductivity of the ambient free stream
where the temperature is low. In Fig. 3, it is clear that as the size of
nanoparticles increases, its effect on the variation of dynamic vis-
cosity is decreased. For example, there is a large difference
between the dynamic viscosity of a nanofluid with 30 nm nanopar-
ticles and the dynamic viscosity of a nanofluid with 60 nm parti-
cles, but the difference between those of 60 nm and 90 nm is
comparatively negligible. The outcomes show that the tempera-
ture and the size of nanoparticles are two important factors for
the variation of the dynamic viscosity of a nanofluid. In addition,
it is observed that up to a 3% nanoparticles volume fraction, the
curves are significantly ascending. However, as the nanoparticles
concentration increases, the ascending trend suppresses. More-
over, the dynamic viscosity and the thermal conductivity of both
the dynamic and static models in the vicinity of the cone surface
are compared in Figs. 3 and 4, respectively. In the static model,
the nanofluid is homogenous, and thus, the concentration of nano-
particles near the cone surface is the same as the concentration of
ambient free stream. Hence, in the case of the static model, the dif-
ference between the thermo-physical properties near the cone sur-
face and the ambient free stream is solely due to the temperature
difference between the cone surface and ambient free stream (AT).
In the dynamic model, the concentration of nanoparticles near the
cone surface is different from the ambient concentration (A¢ < 0).
Thus, the reason for the difference between the thermo-physical
properties of the nanofluid near the cone surface and the ambient
free stream is the simultaneous effects of the temperature differ-
ence (AT) and the nanoparticles concentration difference (A¢).
Figs. 3 and 4 reveal that the thermo-physical properties evaluated
by the static and dynamic models are almost coincident. The rea-
son for this behavior is that the concentration difference (A¢)
between the cone surface and the ambient free stream is very
low (A¢ ~ 0.33%).

The Brownian motion parameter (Nb) and the Lewis number
(Le) are plotted as functions of the ambient volume fraction (¢..)
and the nanoparticles diameter (dp) in Figs. 5 and 6, respectively
when the surface of the cone is hot. These figures show that

5
L Cone with hot surface
4 —
'f | d =30 nm
w | e d =60 nm
Tl e =
x 3F d =90 nm
a |
Z |
2 -
1 [ P - P R L
0.01 0.02 0.03 0.04 0.05

Fig. 5. The effects of nanoparticles volume fraction and diameter on the Brownian
motion parameter.
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Fig. 6. The effects of nanoparticles volume fraction and diameter on the Lewis
number.

increasing the nanoparticles diameter significantly decreases the
Brownian motion parameter and increases the Lewis number.
However, the variation of the nanoparticles volume fraction (¢..)
does not significantly lead to affect Nb and Le. The Lewis number
is an increasing function of the nanoparticles size. In fact, the aug-
mentation of the size of the nanoparticles tends to reduce the ther-
mal conductivity of the nanofluid (k,;) as well as the Brownian
motion coefficient (Dg). However, the decline of the Brownian
motion coefficient (Dg) is much stronger than the raise of the ther-
mal conductivity, and thus, an augmentation of the size of the
nanoparticles raises the Lewis number. Fig. 5 depicts that the
Brownian motion parameter for nanofluids is very small (about
107>), and Fig. 6 shows that the Lewis number is very high (about
4 x 10%).

It is found that the size of nanoparticles has no significant effect
on the buoyancy ratio parameter (Nr) and the thermophoresis
parameter (Nt) (see Table 2). Hence, the variation of these param-
eters is not plotted in the figures. However, the concentration of
nanoparticles significantly affects these parameters. Table 3 shows
the effect of the nanoparticles volume fraction on the thermopho-
resis and buoyancy ratio parameters when ¢=0.5, AT =20, and
T.. = 30 (the case of cone with a hot surface). Table 3 demonstrates
that the increase of nanoparticles volume fraction decreases the
buoyancy ratio parameter whereas it increases the thermophoresis
parameter.

In the study of external natural convection of nanofluids, the
investigation of the following three quantities: velocity, gradient
of temperature and the gradient of nanoparticles concentration
at the surface is very important. Therefore, Figs. 7-9 have been
plotted to show the influence of the nanoparticles volume fraction
and the nanoparticles size on the velocity, gradient of temperature
and the gradient of nanoparticles concentration at the surface,
respectively when the surface of the cone is hot.

Table 3
The variation of Nr and Nt for various values of nanoparticles volume fraction when
£=0.5, AT=20, T, =30.

Do Nt Nr

0.01 4.89E-06 696.302
0.02 9.63E-06 683.615
0.03 1.43E-05 671.761
0.04 1.90E-05 660.677
0.05 2.36E-05 650.308

By increasing the nanoparticles size and the nanoparticles vol-
ume fraction, the results that the velocity, S'(0), and the gradient
of nanoparticles concentration, f(0), at the surface of the cone raise
whereas the temperature gradient profile decreases. The effects of
d, and ¢, on S'(0) and f(0) are significant; however, these effects
on ¢'(0) are negligible (the variation of ¢’(0) is in the order of 103).
As seen earlier, the effect of the nanoparticles concentration differ-
ence (comparison between the static and the dynamic models) on
the thermo-physical properties is very low. Augmentation of d, or
¢, increases the concentration difference at the surface (A¢).
Hence, the absence of high density nanoparticles (because of con-
centration difference at the surface) leads to an increase of the sur-
face velocity S'(0) (see Fig. 7). Fig. 8 shows a very smooth
decreasing trend of the surface temperature gradient, ¢'(0) as a
result of increasing the nanoparticles size and the nanoparticles
volume fraction. However, the observed variation of the tempera-
ture gradient duo to increasing both d, and ¢, is not significant.

Fig. 9 depicts that the augmentation of the ambient volume
fraction and the nanoparticles size raises the nanoparticles concen-
tration gradient, f(0), at the hot surface of the cone. The reason for
this behavior is that the augmentation of d, reduces the Brownian
motion parameter as observed in Fig. 5. As already shown, the
effect of variation of ¢., on the Brownian motion parameter is
not significant. However, the increase of ¢, increases the thermo-
phoresis parameter (Nt), and therefore, the nanoparticles concen-
tration gradient at the cone surface increases.

In the previous research investigations [7-12], which have
adopted the non-homogenous models, no effort was made to con-
duct a comparison between the convective heat transfer of the
nanofluid and the base fluid. As presented in Section 2, a new rela-
tion, Eq. (22), was derived to perform this comparison. As dis-
cussed, this relation represents the ratio of the convective heat
transfer of nanofluids to the convective heat transfer of the base
fluid. Fig. 10a and b demonstrate the effects of the nanoparticles
volume fraction and the nanoparticles size on the heat transfer
ratio (hy/hy) for the cases of the cone with a hot surface and a cold
surface, respectively. Fig. 10a depicts that the heat transfer ratio is
an increasing (or decreasing) function of the nanoparticles size (or
nanoparticles volume fraction). In addition, the results reveal that
the enhancement ratio, hyghy, is lower than unity in all cases.
Therefore, dispersing nanoparticles in the cold base fluid does
not enhance the convective heat transfer of the resulting nanofluid.
Fig. 10b shows that the enhancement ratio is higher than unity for

3.6
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Fig. 7. The effects of nanoparticles volume fraction and diameter on the velocity,
$(0).
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Fig. 8. The effects of nanoparticles volume fraction and diameter on the temper-
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Fig. 9. The effects of nanoparticles volume fraction and diameter on the nanopar-
ticles concentration gradient; f(0).

the case of cone with a cold surface. The results of this figure are in
contrast with Fig. 10a. The migration of heavy nanoparticles into
the surface increases the volume fractions of nanoparticles at the
surface. The variation of thermo-physical properties of the nano-
fluid as a function of temperature affects the enhancement ratio.
In addition, the presence of the heavy nanoparticles at the surface
increases the buoyancy force because of the mass transfer. Further-
more, the increase of the volume fraction of nanoparticles at the
surface results in the extra enhancement of the thermal conductiv-
ity (the higher volume fraction of nanoparticles, the higher thermal
conductivity). Therefore, the enhancement of heat transfer can be
seen in the case of cone with a cold surface.

In order to compare the convective heat transfer coefficients, i.e.
hpynamic and hsqic, evaluated using the dynamic and the static mod-
els, the enhancement ratio, Eq. (23), was introduced. Fig. 11 shows
the variation of hpynamic/hstatic as a function of the ambient nano-
particles volume fraction, ¢..,, and the size of nanoparticles, d,
when the cone surface is hot. The results depict that the difference
between the heat transfer from the cone surface evaluated using
the dynamic model and the static model is about 0.5%. Therefore,
it can be concluded that there is no significant difference between
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Fig. 10. The effects of nanoparticles volume fraction and diameter on the
enhancement ratio, h,g/hy ((a) the cone with hot surface and (b) the cone with
cold surface).
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Fig. 11. The effects of nanoparticles volume fraction and diameter on the
enhancement ratio, hpynamic/ Nstatic-
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the results obtained using the dynamic model and those using the
static model. In addition, by decreasing both the size and the vol-
ume fraction of nanoparticles, the dynamic model approaches the
static model.

5. Important outcomes and conclusion

In this paper, a case study was performed to theoretically exam-
ine the natural convection heat transfer enhancement of Al,03-
water nanofluid around a vertical cone placed in a saturated por-
ous medium. A new practical boundary condition, zero flux of
nanoparticles at the cone surface is utilized. Moreover, the effects
of the local temperature and the local volume fraction of nanopar-
ticles are taken into account. The partial differential equations are
reduced into a set of highly non-liner ordinary differential equa-
tions. The system of ordinary differential equations is a general
function of the local thermal conductivity and the local dynamic
viscosity. Thus, the governing equations can be solved for any arbi-
trary function of the thermal conductivity and the dynamic viscos-
ity. Practical correlations obtained using regression on the
available experimental data are employed to evaluate the dynamic
viscosity and the thermal conductivity of nanofluids. The impor-
tant outcomes of the present study can be summarized as follows:

(I) An augmentation of the nanoparticles size and the nanopar-
ticles volume fraction raises the concentration difference,
the non-dimensional nanoparticles concentration gradient
and the non-dimensional velocity at the cone surface but
reduces the non-dimensional temperature gradient at the
cone surface for the case of a cone with a hot surface.

(II) For the case of a cone with a hot surface, the increase (or
decrease) of the nanoparticles volume fraction (or nanopar-
ticles size) tends to decrease the enhancement ratio. As one
of the most important findings, the results reveal that the
values of the enhancement ratio between the nanofluid
and the base fluid, hyq/hs are less than unity which means
that using nanoparticles in a base fluid cannot be helpful
for increasing the natural convection heat transfer from
the cone surface.

(1) For the case of a cone with a cold surface, the presence of
nanoparticles enhances the heat transfer rate from the sur-
face. Therefore, utilizing nanofluids in this case is helpful.

(IV) The enhancement ratio hpynamic/hstatic has been derived to
calculate the difference between the heat transfer coeffi-
cients obtained using the dynamic and the static models.
The results depict that the value of this ratio is about unity.
Therefore, the difference between the dynamic and the static
models is negligible when the cone surface is hot. Moreover,
in the case of a cone with a hot surface, the minimum and
maximum values of the enhancement ratio (hpynamic/hstatic)
are found to be about 0.9973 and 0.9987, respectively.
Hence, for convenience, the dynamic effects of the Brownian
motion and the thermophoresis causing the concentration
gradient can be eliminated in the engineering applications.
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Appendix A

Substituting the stream function in the momentum equation in
the direct of x-axis leads to:

LueD)100_1_

i Tay = |"on (17 bebey cosy(T =T

ox
~&(pr — pr.c) cOSP(6 — 6]
Differentiating Eq. (A.1) with respect to y, and differentiating
the momentum equation in the direct of y-axis respect to x; then
subtracting the equations to eliminate the pressure yields:
Popoe (W@ 1Y 1 e T) 10y
K lunfac r ay :Llnf,oo ay r 8y

= |- .oy, cosy(55) - (o Jacosy(55)] a2

Using the similarity variables, each term in Eq. (A.2) is obtained
as follows:

(A1)

o _Ra

ay X (A3)

a5 = Yeffaf T Ra? (A4)

ay ~asoqay I TS (A-5)

Y Ra?

2 (M T x)s (n6)

o6 _opof on_ . Ra,

oT 9T 90 oy Ra\ |

oy =0 % @ Ty ( )9 (A.8)

Oy (9. T) (Ol Of aunf o0\ _ o (A9)
dy of an a0 an dy Fog ay :

Substituting Egs. (A.5), (A.
the following equation:

Hagoo (g (f50) Rax 1 Rai) 1 ( Ray >
Oleffn s + - effnf - T+ 75
K ( :unf.oc r - /'tnfx ﬂ Tx X o

- [(1 — )Py (Tu—To) cos /(R“*> 0

), and (A.8) into Eq. (A.2) yields to

Rax
~(pe— by )8l — d) cOS7 af} (A10)
where it can be simplified as:
79 n 79 ’ / !
Hoyf )S'—i- Hor([,0) S—0+ApxNr-f =0 (A11)
Iunf.oo nf 00

where Nr = (p, = pp.. )/ (PpB(Tw = T)(1 = 6..)).
Now, using the similarity variables, each term of the heat equa-
tion, Eq. (13), is obtained as follows:

T Ra,\

5= (TW—TOO)<XG )9 (A12)
a 2 R X /!

o= n= 00 (S ) (A13)
oy  (-1\ Ra

()% (A14)
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96 9 of on 1 Ra% Eq. (A.23) can be simplified as:
o oqox - O 2V )f A Bl N A2
+ e-Sf +—— Ap - Nb (A.24)
Ok (9, T) (8knf Of Ok 89> n_ on
= gy e (A.18) Nt _ Dr(Tw —Tx) _ Yeff nf o
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Substituting Egs. (A.5), (A.7), (A.8), and (A.12)-(A.18) into Eq.
(13) yields:
A D S (el
(pc)nf 1 2
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Eq. (A.19) can be simplified as: Appendix B
Kegr nr (f, 0) 0+ <keff.nf(fv 0)) 0 +§50f +A¢-Nb-f'0 +Nt-02=0 Using the standard reference data, the thermal conductivity of
Kef nf Kef nf o 2 water is computed from the following relation [22]
(A.20) . N
where Nb — pcﬂﬂ - and Nt — % ks = 0.6065 x < 1.48445 + 4. 12292298 15 -1 63866(298 15) >
Using the similarity variables, the two terms of Eq. (15) are x for 274 < T < 370 (B.1)
written as: where kis the thermal conductivity of water and T is the absolute
P Ra, ., temperature.
2 (b — V) X—zxf (A.21) The first derivatives of u and kg, are needed for the solution of
Y Egs. (12)-(14), these terms, using Eqs. (8)-(10), are obtained as
follows:
o¢ _9¢ of on -1 Rax ) For the dynamic viscosity of nanofluid:
ax — of an ox = ($w — 9x0) 27X f (A.22) iy l£.0)
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P P
0.01<¢<0.09, 20<T(°C)<70, 13nm<d,<131nm

Substituting Eqgs. (A.5), (A.7), (A.12), (A.21) and (A.22) into the con-
servation of the nanoparticles, Eq. (15) leads to the following

equation:
d(f,0
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For the effective thermal conductivity of the porous medium
and the nanofluid:

gy (.0) _ r-cpe- 1 dig(£.0) .
dn Tdp .
where
5 0.7383 02246 ('t 0.0235
oy =k 0.9843 +0.398(¢ x 10°) 2 d, 7224 ()
~3.9517% x 10 4 34.034%; x 10° +32.509 % x 107

<$ <010, 20<T(°C)<70, 11nm<d, <150 nm
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