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Abstract
Purpose – This study aims to explore the evolving field of physics-informed neural networks
(PINNs) through an analysis of 996 records retrieved from the Web of Science (WoS) database from
2019 to 2022.
Design/methodology/approach – WoS database was analyzed for PINNs using an inhouse python
code. The author’s collaborations, most contributing institutes, countries and journals were identified. The
trends and application categories were also analyzed.
Findings – The papers were classified into seven key domains: Fluid Dynamics and computational fluid
dynamics (CFD); Mechanics and Material Science; Electromagnetism and Wave Propagation; Biomedical
Engineering and Biophysics; Quantum Mechanics and Physics; Renewable Energy and Power Systems;
and Astrophysics and Cosmology. Fluid Dynamics and CFD emerged as the primary focus, accounting for
69.3% of total publications and witnessing exponential growth from 22 papers in 2019 to 366 in 2022.
Mechanics and Material Science followed, with an impressive growth trajectory from 3 to 65 papers within
the same period. The study also underscored the rising interest in PINNs across diverse fields such as
Biomedical Engineering and Biophysics, and Renewable Energy and Power Systems. Furthermore, the
focus of the most active countries within each application category was examined, revealing, for instance,
the USA’s significant contribution to Fluid Dynamics and CFD with 319 papers and to Mechanics and
Material Science with 66 papers.
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Originality/value – This analysis illuminates the rapidly expanding role of PINNs in tackling complex
scientific problems and highlights its potential for future research across diverse domains.

Keywords Physics-informed neural networks (PINNs), Application categorizes,
Trends and impacts, Geographical distributions, Fluid dynamics and CFD

Paper type General review

1. Introduction
Physics-informed neural networks (PINNs) have emerged as a promising method for
incorporating domain-specific knowledge, specifically physics, into the training of neural
networks (Raissi et al., 2017). In recent years, the development and utilization of PINNs have
exploded, resulting in advancements in disciplines such as computational fluid dynamics
(CFD), solid mechanics and heat transfer (Yang et al., 2020; Bai et al., 2023; Cai et al., 2021b).
This bibliometric analysis seeks to provide an overview of the PINNs research landscape,
highlighting significant contributions, trends and possible future directions.

Raissi et al. (2017) introduced PINNs in 2017 as a novel deep-learning technique for
solving partial differential equations (PDEs). Incorporating the governing physical
equations, typically in the form of PDEs, as constraints during the training of a neural
network is the central concept underlying PINNs. This is accomplished by minimizing the
composite loss function, which includes data loss and physics-based loss (Raissi et al., 2019).
The data loss ensures that neural network predictions are consistent with the available data,
whereas the physics-based loss ensures that the underlying physical principles are satisfied.
This strategy has been shown to improve the accuracy, generalizability and interpretability
of the learned models, as well as reduce the quantity of training data required (Kovachki
et al., 2021; Han et al., 2018).

Since the inception of PINNs, the landscape of research has expanded rapidly, with
numerous studies investigating various facets of this method. Various architectures and
training techniques have been devised by researchers to enhance the effectiveness and
performance of PINNs (Bai et al., 2022; Haitsiukevich and Ilin, 2022). Researchers often use a
“teaching by example” method, like PDE systems, for scientific tasks involving equations.
They provide a model with a question paired with the correct answer, aiming to improve the
model’s accuracy. However, most common models, which thrive on vast data, can face
challenges when data is limited or when strict rules from the equations apply. In response,
researchers developed a new technique that ensures models adhere to nature’s basic rules,
using specific computer models and mathematical methods. The outcome models can
produce answers consistent with both past data and the system’s inherent rules. In addition,
these models can handle unfamiliar questions and gauge their own confidence in the
provided answers (Zhu et al., 2019).

Furthermore, it is well-known that neural networks excel at approximating continuous
functions. Remarkably, it has been suggested that a neural network with just one hidden
layer can accurately replicate any nonlinear continuous operator. This insight has profound
implications for the capabilities of deep neural networks to process and interpret continuous
operators from unstructured data. Building on this idea, researchers have extended these
findings to deep neural networks, suggesting they have greater potential to address a wider
array of problems.

Cuomo et al. (2022) conducted a comprehensive review of the existing research on PINNs.
Their analysis delved into the characteristics of these networks, evaluating their strengths
and weaknesses. The study highlighted various types of collocation-based PINNs, known as
cPINNs, and their derivatives, including standard PINNs, conservative PINNs and the
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advanced variational hp-VPINN. cPINNs are designed to incorporate physical principles by
using specific collocation points that enforce adherence to physical laws. The conservative
PINN model ensures the preservation of conservation laws such as energy or mass. On the
other hand, the variational hp-VPINN merges variational methods with high-order
polynomials and adaptive meshing techniques to refine the accuracy of solutions. The
research also covered different network architectures, optimization strategies, activation
functions and loss functions used to customize PINNs. Although PINNs have been
successfully applied in various fields, lingering theoretical challenges and opportunities for
further refinement remain. The article provides an overview of PINN developments over the
last four years, discussing their theoretical foundations, tackled equations, practical
implementations and software tools available, with a focus on enhancing training methods
and broadening their problem-solving scope.

In the past 50 years, the simulation of flow problems via numerical integration of the
Navier–Stokes equations has made significant progress. However, limitations remain, such
as the difficulty of incorporating chaotic data, the complexity of mesh generation and the
difficulty of solving high-dimensional problems. In addition, solving inverse flow problems
is frequently costly and demands the use of advanced formulas and computer codes.
Literature review shows several successful attempts in predicting physical phenome using
neural networks (Alkanhal, 2021; Zhang et al., 2023; Shi et al., 2024; Selimefendigil and
Chamkha, 2020). Since neural networks are typically quick in predictions, such predictive
models can be used for optimization of physical or engineering designs (Maghsoudi and
Bidabadi, 2020). The neural networks can also be used to replace a numerical step in
conventional simulations (Svyetlichnyy, 2018).

Considering PINNs approach, Cai et al. (2021a) discussed the incorporation of data and
mathematical models for fluid mechanics using PINNs. The efficacy of PINNs in addressing
inverse problems involving three-dimensional wake flows, supersonic flows and biomedical
flows has been demonstrated. For ill-posed problems, PINNs offer a complementary
approach to existing CFD solvers. Numerous research opportunities exist, including using
PINNs for active flow control, predicting high Reynolds number flows through transfer
learning and advancing closure models for unresolved flow dynamics. For large-scale flow
simulations, efficient multi-GPU implementations are required, with hopeful parallel speed-
up results suggesting potential applicability to industrial complexity problems that current
CFDmethods cannot address.

Cai et al. (2021b) explored the use of PINNs in addressing heat transfer issues,
particularly under conditions where traditional computational approaches struggle. They
presented examples such as convective heat transfer problems with unknown thermal
boundary conditions. The study also covered the use of PINNs in power electronics and
other industrial settings, highlighting their effectiveness in tackling intricate heat transfer
challenges in these areas. By enhancing modeling precision and bridging the gap between
experimental outcomes and simulation predictions, PINNs hold the potential to drive
significant improvements in heat transfer optimization, thermal engineering and the
handling of complex multiphase systems.

PINNs have been used in fluid mechanics to solve the Navier–Stokes equations (Raissi,
2018), characterize turbulent flows (Kag et al., 2022; Angriman et al., 2022) and simulate
multiphase flows (Qiu et al., 2022). Researchers have used PINNs to analyze crack
propagation (Tu et al., 2022), predict dynamic stress (Bolandi et al., 2022), composite (Yan
et al., 2022) and shell (Bastek and Kochmann, 2023) structures. Furthermore, the application
of PINNs in power systems (Huang and Wang, 2022), graph networks (Shukla et al., 2022),
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molecular transport in the human brain (Zapf et al., 2022) and continuum micromechanics
(Henkes et al., 2022) has been addressed very recently.

Lawal et al. (2022), using a systematic reviews andmeta-analyses methodology, analyzed
and assessed state-of-the-art PINNs in the computational sciences and engineering domains.
The authors plan to implement a new model combining PINNs with a recurrent neural
network or graph neural network via a time series data set. Using a time series data set, the
authors intend to provide new models combining PINNs with a recurrent neural network or
graph neural network.

Given the increasing interest and accelerated advancements in the field of PINNs, a
bibliometric analysis is essential for comprehending the current state of research and
determining potential future directions. Bibliometric studies are quantitative analyses of
research publications that reveal patterns, trends and significant contributions to a particular
research domain (Delwiche, 2018; Guo et al., 2020). These studies have been used extensively
to inform researchers, funding agencies and policymakers about the advancement and
impact of scientific research in various disciplines (Zyoud and Fuchs-Hanusch, 2017).

In the current research, the available literature on PINNs was examined and categorized
into several application categories and subcategories for the first time. The trend and impact
of each category were addressed. The attention of countries to each application category
was analyzed and discussed. Furthermore, the key publications and institutions that have
played a pivotal role in shaping the development of PINNs are identified.

1.1 Artificial intelligence methods for physical problems
The field of scientific computation has undergone a remarkable transformation with the
introduction of methods based on neural networks, especially in the area of solving PDEs.
PDEs play a critical role in modeling a variety of physical phenomena, including fluid
dynamics, electromagnetism and quantum mechanics. Traditional approaches to solving
these equations have predominantly been numerical methods like the finite difference and
finite element methods. However, these traditional methods often encounter obstacles such
as elevated computational demands, challenges in dealing with complex geometries and the
issue of high dimensionality in more complex problems. The advent of methods based on
neural networks offers a new approach to surmount these challenges (Beck et al., 2020). In
some cases, a mix of CFD as a base solution and neural networks as a predictor trained on
CFD data can be used (Tamaddon Jahromi et al., 2022; Selimefendigil et al., 2019).

1.1.1 Role of neural networks and deep learning in partial differential equations resolution.
As a branch of artificial intelligence, neural networks have demonstrated remarkable
efficiency in approximating intricate, nonlinear functions, making them well-suited for PDE
resolution. Deep learning, a more sophisticated variant of neural networks, is adept at
learning feature hierarchies, thus, being particularly effective in identifying fundamental
physical laws and resolving PDEs. This potential is grounded in the universal
approximation theorem, which posits that neural networks have the capability to
approximate any continuous function, provided they have adequate depth and breadth.

1.1.2 Evolution of partial differential equations resolution through neural networks. The
idea of using neural networks for PDE resolution is not a recent innovation. Its beginnings
can be traced to the late 20th century when the potential of neural networks in
approximating differential equation solutions began to be explored. The resurgence of deep
learning in the current century, propelled by advancements in computational capabilities
and algorithmic developments, has significantly accelerated this field. The creation of
platforms like TensorFlow and PyTorch has made these potent tools more accessible,
allowing a greater number of researchers to engage in experimentation and innovation.
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1.1.3 Classifying neural network methods in partial differential equations resolution.
The methods based on neural networks for resolving PDEs can generally be divided into
three distinct categories, each with its own set of characteristics and applications (Wenshu
et al., 2022; Maslyaev et al., 2020; Lim and Psaltis, 2022):

(1) Data-driven techniques: This technique uses neural networks to derive solutions for
PDEs from partially known data, proving particularly beneficial in identifying
physical equations, uncovering unknown equations and executing parameter
inversion. Its strength lies in its capacity to reveal intricate patterns and connections
within data, which might be unattainable through conventional methods.

(2) Physical-constraint approaches: These approaches merge physical laws into the
learning processes of neural networks. By integrating governing equations and
additional physical constraints into the loss function, they diminish the network’s
dependence on labeled data. This merging of data-driven and physics-based principles
bolsters the neural network model’s ability to generalize and enhances its practical
value. In this strategy, the low-fidelity data generated from PINN predictions based on
physical equations and high-fidelity data from field measurements can be combined
for more accurate flow field reconstructions (Rui et al., 2024).

(3) Physics-driven strategies: This strategy involves neural networks solving PDEs
based entirely on physical laws, independent of labeled data. This approach is
particularly beneficial in situations where empirical data is limited or not entirely
reliable. It highlights the capacity of neural networks to function as autonomous
solvers for PDEs, relying solely on the intrinsic physical principles that regulate
the phenomena being analyzed. In this approach, a governing differential equation
can be directly used to construct the loss function and find a solution for a physical
problem (Aslam et al., 2024).

Considering the neural network strategies for tackling PDEs, PINNs are classified within the
“Physical-Constraint Approaches.” These networks represent a fusion of data-driven
methodologies and principles grounded in physics. The PINNs have the following features:

Incorporating Fundamental Physical Principles: The training process of PINNs uniquely
involves embedding physical laws into the neural network’s learning mechanism. This is
achieved by integrating these laws within the network’s loss function during training,
ensuring that the network’s output aligns with both the available data and the established
physical laws that dictate the behavior of the phenomena in question.

1.1.4 Some physics-informed neural networks advantages. Harmonizing empirical data
and physics: Diverging from methods that solely depend on empirical data, PINNs use a
combination of data and physical laws. This dual-dependence equips PINNs with the ability
to generate solutions that are not only more precise but also align with physical reality, a
crucial factor in scenarios where data is limited or contains a significant amount of noise.

Benefits in resolving PDEs: PINNs demonstrate particular effectiveness in solving PDEs,
especially given their ability to adeptly manage complex boundary conditions and the
inherent nonlinear aspects of numerous PDEs. Their capability to yield solutions consistent
with both empirical data and physical laws is indispensable in scientific and engineering
contexts.

Broadening the scope of application: The methodology used by PINNs is widening the
scope for neural network techniques in solving PDEs. This is especially relevant in areas
where conventional data-driven methods are inadequate, either due to the lack of extensive
data sets or the intricacies of the involved physical laws.
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The aim of the present study is to analysis the scientific publications and trend of
research on PINNs method. In the next section, the methodology for analysis of the related
literature is discussed.

2. Methodology
2.1 Research scope
Web of Science (WoS) is a scientific database that provides access to an extensive collection
of scholarly articles and research papers from various academic disciplines. This study
searched theWoS database on February 27, 2023, using the below search query:

[TS¼ (physic* informed neural networks)] OR TS¼ (PINNs).
Two terms were used in the search: “physic* informed neural networks” OR “PINNs.”

The “TS” field, which stands for “Topic Search,” was searched for these terms. The asterisk
(*) following the keyword “physics” is a truncation symbol, which means that the search
would include anyword that begins with “physic,” including “physics” and “physical.”

2.2 Data analysis
Upon acquiring raw text codes from the WoS, a detailed data analysis process was set into
motion, and its details are reported in Appendix 1. When it comes to keyword analysis, it is
crucial to understand that a single concept can manifest in myriad ways due to the application
of the stemming method (Singh and Gupta, 2017). For example, “physic inform” could
alternatively be represented as “Physics informed,” “Physics-informed,” “Physically-informed”
or “physically informed.” Despite these variations, they fundamentally symbolize the same
concept and should be consolidated under a single keyword. To this end, an initial step was to
convert all keywords to their root form, which was then treated as the standard keyword. For
instance, “physic inform” was designated as the root form, inclusive of all its variants. For
additional details regarding the data analysis procedure, please refer to Appendix.

Using several important variables, the current study evaluates the productivity, impact
and collaboration trends of a collection of articles. These variables shed light on various
facets of the research and publication process. For example, the total publications (TP) refer
to the total number of published works within a data set or subset, whereas the percentage
of TPs (TP%) indicates the proportion of a particular publication type within a data set,
expressed as a percentage. In addition, the study considers the total number of authors (AU)
who have contributed to a data set or subset of articles, as well as the total number of
institutions (Inst) linked to the authors in the data set or subset of articles.

The analysis of the number of nations (Count) represented by authors who have
contributed to a data set or subset of articles is an essential aspect of the research. The study
also analyzes the frequency with which articles within a data set or subset of publications
have been cited by other publications (TC). The ratio of TC to TP is a useful metric for
determining the average number of citations per publication within a data set or subset of
publications. The study also evaluates the total engaged authors per TP (AU/TP), revealing
the average number of authors involved in each publication within a specific data set or
subset of publications.

The H-index (HI) is an additional crucial variable in this study, as it measures the
productivity and influence of a researcher or group of academics by considering both the
number of publications and the number of citations for those articles. The number of
publications with the first author (AU1) is the total number of publications in a data set or
subset with the same person or group as the first author. Likewise, the number of publications
with the corresponding author (AUC) represents the total number of publications in a data set
or subset of articles where the corresponding author is the same individual or organization.
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The study concludes by examining the number of independent (Indep) and collaborative
(Collab) publications, representing the total number of articles in a data set or subset of
publications authored by authors working alone or in collaboration. The proportion of
collaborative publications within a data set or subset of publications is represented by the
ratio of collaborative publications to the total number of publications (Collab/TP).

In addition, this research precisely discerns and categorizes a diverse range of application
types, as well as their associated subcategories, in the context of PINNs, as highlighted in the
examined articles. The analysis then broadens its lens to scrutinize the geographical
distribution of these studies and the volume of research dedicated to each type of application.
Furthermore, an in-depth exploration of the temporal trends of each application type
provides a holistic comprehension of the dynamism and progress within this discipline.

3. Data overview
The search was run for a certain time period, 2019 to 2022, and produced 1,209 results.
Nevertheless, 213 of these data pertained to 2023, which has not yet been concluded, so they
were eliminated from the total number of records, leaving 996 records pertaining to 2019
through 2022. The majority of these records are articles (84.1%), followed by proceedings
papers (10.7%) and reviews (4.5%). This study adopted three types of original publications
for analysis: articles, proceedings papers and articles from proceedings papers. These
original sources encompassed a comprehensive data set of 946 records.

The WoS raw data and analysis results are provided as a Mendely data set as
supplementary materials, which can be accessed from the following link (DOI: 10.17632/
n4chxnbvjd.1) :https://data.mendeley.com/preview/n4chxnbvjd?a=33df4c79-3f37-4064-bc26-
8b32e3b83085.

Table 1 presents the language distribution of 946 original publications in PINNs. The
majority of the publications were written in English (99.6%), with only a small number of
publications written in German, Chinese and Spanish. This finding is not surprising, given
that English is the dominant language of scientific communication.

4. Results and discussions
4.1 Annual analysis
Table 2 details the characteristics of each year’s published records in the field of PINNs. The
number of publications has continuously climbed from 37 in 2019 to 527 in 2022, as seen in
the table. Particularly, the number of publications increased significantly from 2019 to 2020,
followed by a consistent increase in subsequent years. This trend indicates a growing
interest in PINNs research, as well as a concomitant rise in the number of researchers and
research institutes working in this topic.

The table reveals that (AU/TP) decreased from 5 in 2019 to 3 in 2020 and 2021 before
increasing to 4 in 2022. The decrease in the average number of authors per publication in

Table 1.
Languages

represented in the
analyzed

publications
(946 records)

Language TP TP (%)

English 942 99.6
German 2 0.2
Chinese 1 0.1
Spanish 1 0.1

Source: Original – from authors
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2020 and 2021 could be attributed to the varying scope and focus of research projects, as
well as changes in the research landscape and the wider scientific community. The increase
in the average number of authors per publication in 2022 suggests that collaborations
between researchers are becomingmore common in PINNs.

In addition, the number of institutions contributing to the publications has increased over
time, from 68 in 2019 to 656 in 2022, demonstrating that more institutions are now
contributing to PINNs research. Similarly, the number of nations represented in PINNs
papers has expanded from 14 in 2019 to 53 in 2022, indicating that the scope of PINNs
research is growing increasingly worldwide.

The total number of citations received by publications related to PINNs varied across the
years, ranging from 1,389 in 2022 to 4,466 in 2020. The peak in TC observed in 2020 could be
explained by the fact that publications from 2020 addressed particularly important or novel
topics, which received more attention from other researchers and therefore received more
citations.

The TC/TP decreased over time, ranging from 2.6 in 2022 to 90.2 in 2019. The high
average number of citations in 2019 could be attributable to the fact that it was the earliest
year in the analysis, with a smaller number of articles that may have garnered greater
attention at the time. On the other hand, the decrease in TC/TP in recent years may be
attributable to the rise in the number of publications, which may have diminished the total
influence of each article.

4.2 Countries/institutes contribution analysis
Table 3 showcases the engagement of nations in the field of PINNs. A total of 62 countries
have been involved in this research. The USA and China exhibit significant activity in
PINNs. The USA has contributed to 50.8% of the TP and has amassed 10,047 citations,
underscoring both their prolific research volume and its widespread influence. China, on the
other hand, has a contribution of 25.8% and has earned 1,925 citations, with a TC/TP value
of 7.9, indicating its substantial presence in this domain. European nations, especially
Germany, England, France, Switzerland, Italy and The Netherlands, are consistent
contributors. Germany’s engagement is especially noteworthy with its TC/TP ratio of 16.1,
hinting at the high quality of its research. Collaborative research across European nations is
evident, with The Netherlands, for instance, boasting a high Collab/TP% of 88.9%. In the
landscape of collaborative research, the USA, despite its vast TP, has 143 collaborative
outputs, suggesting its extensive global research connections. In comparison, countries such
as Switzerland, Canada and Singapore place a strong emphasis on international ties, with
their collaborative numbers standing out relative to their TP.

In terms of TC/TP, Singapore emerges prominently. With only 19 publications, its
citation rate is a remarkable 14.3, denoting the high quality of its outputs. Similarly, Canada,
Norway and Iran display commendable TC/TP values, underlining the significance of their

Table 2.
Characteristics of
published records
per year

Year TP TP (%) AU Inst Count TC TC/TP AU/TP

2019 37 3.9 170 68 14 3,338 90.2 5
2020 113 11.9 366 146 27 4,466 39.5 3
2021 269 28.4 918 343 41 3,635 13.5 3
2022 527 55.7 1,989 656 53 1,389 2.6 4

Source: Original – from authors
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research in the field. Emerging players include India, South Korea, Saudi Arabia and Brazil.
Although their current representation is modest, their presence suggests a budding interest
and potential growth in PINNs. Japan and South Korea, both recognized for their
technological advances, exhibit unique patterns in the field. Japan’s contribution stands at
around 1.5% of TP, while South Korea has a TC/TP of 2.7, providing insights into their
varying recognition or impact on the global research stage.

In term of Research authorship, especially AU1, AUC. The USA and China, for instance,
often appear in key authorship positions, indicating their central roles in the research
narrative. Similarly, countries like Germany and England, despite having fewer publications,
have been instrumental in leading or concluding pivotal research in the domain. The HI
provides further insights. Countries such as the USA, China, some European nations,
Singapore and Saudi Arabia showcase their sustained impact over time with varying HI
values. For instance, while the USA’s HI is 46, countries like Germany and Saudi Arabia
range between 4 and 14. Some unexpected data points arise from nations like Japan and Iran.
Despite Japan’s renowned technological background, its HI stands at 4. Conversely, Iran,
despite being lower on other metrics, boasts an HI of 6, emphasizing the consistent quality of
its contributions. Notably, the collaborative nature of research is highlighted by countries like
The Netherlands and Iran, with Collab/TP% figures of 88.9% and 90.9%, respectively.

The data in Table 4 provides insights into the performance of the top 20 institutes in the
field of PINNs among the 924 institutes with at least one publication. Regarding TP, Brown
University leads the field with 54 publications, accounting for 5.7% of the publications
produced by the leading institutions. The Massachusetts Institute of Technology (MIT) ranks
second with 43 publications, which accounts for 4.5% of the total. The Chinese Academy of
Sciences ranks third with 25 publications, accounting for 2.6% of all publications. The Pacific
Northwest National Laboratory and Penn State University have 22 and 18 publications,
representing 2.3% and 1.9% of the total number of publications in PINNs.

Table 3.
Top 20 countries in
terms of TP related

to PINNs

Country TP TP (%) TC TC/TP Collab Indep Collab/TP (%) AU1 AUC HI

USA 481 50.8 10,047 20.9 143 338 29.7 402 400 46
China 244 25.8 1,925 7.9 91 153 37.3 215 212 21
Germany 70 7.4 1,124 16.1 42 28 60 49 42 14
England 49 5.2 313 6.4 36 13 73.5 28 28 9
India 30 3.2 131 4.4 12 18 40 25 25 6
France 28 3 115 4.1 17 11 60.7 18 19 6
Switzerland 25 2.6 214 8.6 15 10 60 17 17 9
Canada 25 2.6 313 12.5 18 7 72 12 11 6
Italy 25 2.6 123 4.9 16 9 64 17 16 7
South Korea 24 2.5 64 2.7 10 14 41.7 19 20 5
Australia 22 2.3 129 5.9 16 6 72.7 11 9 6
Singapore 19 2 272 14.3 13 6 68.4 9 6 8
Saudi Arabia 18 1.9 161 8.9 7 11 38.9 14 15 7
Netherlands 18 1.9 105 5.8 16 2 88.9 9 7 5
Japan 14 1.5 42 3 5 9 35.7 12 11 4
Sweden 13 1.4 61 4.7 7 6 53.8 11 8 5
Denmark 13 1.4 87 6.7 5 8 38.5 11 11 4
Brazil 12 1.3 72 6 5 7 41.7 9 8 5
Norway 11 1.2 104 9.5 7 4 63.6 7 6 6
Iran 11 1.2 134 12.2 10 1 90.9 6 3 6

Source: Original – from authors
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With 5,198 TC, Brown University once again ranks first, followed by Penn State University
with 2,887 citations. Third place is the Pacific Northwest National Laboratory with 1,369
citations, followed by the MIT and University univ Notre Damewith 1,286 and 744 citations,
respectively. This indicates that Brown University’s research output in PINNs has a
significant quantitative and qualitative impact on the field.

The TC/TP measures the impact per publication on average. In this regard, Brown
University has an impressive average of 96.3 citations per publication, demonstrating their
work’s high relevance and influence in PINNs. Despite having fewer publications (18), the
University of Pennsylvania has the highest TC/TP ratio of 160.4, indicating that their work
has a significant impact per publication. MIT’s TC/TP ratio is 29.9, while the Pacific
Northwest National Laboratory’s is 62.2, and the Chinese Academy of Sciences’ is 6.1.

With 21 collaborative publications, MIT is in first place, followed closely by Brown
University with 20 collaborative publications. The Chinese Academy of Sciences and the
Swiss Federal Institutes of Technology each have seven collaborative publications, while
Penn State University has only four. Brown University continues to lead the pack in terms of
Indep with 34 publications. MIT’s research output is well-balanced, with 22 independent
publications accounting for slightly more than half of its total output. The Chinese Academy
of Sciences has 18 Indep, whereas the Pacific Northwest National Laboratory and Penn State
University each have 16 and 15, respectively.

The five universities with the highest ratio of Collab/TP are Tsinghua University
(57.1%), Swiss Federal Institute of Technology (50%), MIT (48.8%), Shanghai Jiao Tong
University (40%) and Hong Kong Polytechnic University (38.5%). These institutions place a
significant emphasis on interdisciplinary research and collaborative endeavors, which
contributes to their status as preeminent research universities.

Regarding the number of publications with the first author, Brown University stands out
with 42 publications, nearly double the number of publications with the first author at MIT,

Table 4.
Statistical analysis of
the top 30
institutions in the
field of PINNs by TP

Institution TP TP (%) TC TC/TP Collab Indep Collab/TP (%) AU1 AUC HI

Brown Univ 54 5.7 5,198 96.3 20 34 37 42 37 27
MIT 43 4.5 1,286 29.9 21 22 48.8 18 18 19
Chinese Acad Sci 25 2.6 153 6.1 7 18 28 15 15 7
Pacific Northwest Natl Lab 22 2.3 1,369 62.2 6 16 27.3 7 7 14
Penn State Univ 18 1.9 125 6.9 3 15 16.7 15 15 4
Purdue Univ 18 1.9 201 11.2 5 13 27.8 12 11 7
Univ Penn 18 1.9 2,887 160.4 4 14 22.2 10 12 12
Univ Illinois 17 1.8 204 12 4 13 23.5 8 9 8
Stanford Univ 17 1.8 204 12 6 11 35.3 11 13 8
Univ Chinese Acad Sci 16 1.7 137 8.6 6 10 37.5 14 0 6
Univ Arizona 15 1.6 126 8.4 5 10 33.3 9 10 6
Swiss Fed Inst Technol 14 1.5 121 8.6 7 7 50 10 8 7
Univ Notre Dame 14 1.5 744 53.1 4 10 28.6 9 10 10
Tsinghua Univ 14 1.5 30 2.1 8 6 57.1 10 12 4
Hong Kong Polytech Univ 13 1.4 52 4 5 8 38.5 5 5 4
Univ Cent Florida 13 1.4 170 13.1 1 12 7.7 12 12 9
Northeastern Univ 12 1.3 279 23.3 2 10 16.7 12 12 6
Cornell Univ 11 1.2 62 5.6 4 7 36.4 10 6 4
Univ Michigan 11 1.2 317 28.8 2 9 18.2 7 7 5
Shanghai Jiao Tong Univ 10 1.1 50 5 4 6 40 5 7 3

Source: Original – from authors
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which has 18 publications with the first author. The Chinese Academy of Sciences and Penn
State University each have 15 publications with the first author, whereas the Pacific
Northwest National Laboratory has the fewest, with only seven.

Brown University leads in the number of publications, with the corresponding author
with 37, followed by MIT with 18 publications. Each of the Chinese Academy of Sciences
and Penn State University has published 15 works with the corresponding author. This
indicates that researchers at Brown University are not only conducting research but also
communicating and supervising the work.

Finally, HI measures the significance and efficacy of a university’s research output.
Brown University’s HI of 27, the highest in PINNs, reflects its productive and influential
research efforts. The Pacific Northwest National Laboratory has an HI of 14, while MIT has
an HI of 19. The Chinese Academy of Sciences and Penn State University have H-indices of 7
and 4, respectively, indicating that their research output is less influential than that of other
leading institutions.

4.3 Journals analysis
Table 5 provides a comprehensive overview of the 20 leading journals in the field of PINNs
among the 472 journals in PINNs. The Journal of Computational Physics ranks first on the
list with the maximum total number of publications (57) and a substantial 6% proportion of
the total number of publications in the field of PINNs. This demonstrates the journal’s
prominent standing and dedication to disseminating cutting-edge PINNs research. In
addition, the journal has received a total of 3,541 citations, highlighting its significance and
influence within the academic community.

After the Journal of Computational Physics, Computer Methods in Applied Mechanics and
Engineering rates second with 48 TP, accounting for 5.1% of the field’s TP. This journal
also boasts a high TC count of 2,009, indicating that its published articles have received

Table 5.
Leading 20 journals

in terms of TP within
the PINNs domain

Journal name TP TP (%) TC HI

Journal of Computational Physics 57 6 3,541 18
Computer Methods in Applied Mechanics and Engineering 48 5.1 2,009 21
Physics of Fluids 23 2.4 218 9
Scientific Reports 14 1.5 70 4
IFAC Papersonline 12 1.3 6 1
IEEE Access 10 1.1 54 4
Energies 9 1 37 2
Sensors 9 1 21 3
Engineering Applications of Artificial Intelligence 8 0.8 120 5
Nonlinear Dynamics 8 0.8 153 5
Journal of Petroleum Science and Engineering 8 0.8 68 4
Computers and Fluids 8 0.8 64 3
Computers and Structures 8 0.8 46 5
Physical Review Fluids 8 0.8 197 6
Chaos Solitons and Fractals 7 0.7 79 5
Neurocomputing 7 0.7 107 4
IEEE Transactions on Geoscience and Remote Sensing 7 0.7 30 2
Siam Journal on Scientific Computing 7 0.7 443 6
Chaos 7 0.7 20 3
Applied Sciences-Basel 7 0.7 54 3

Source: Original – from authors
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considerable attention and recognition. The journal’s HI of 21 underscores the significance
of its research contributions to PINNs.

Physics of Fluids, which ranks third, has a total of 23 publications, or 2.4% of all PINNs
publications. Despite the fact that its TC count of 218 is significantly lower than the top two
journals, it still retains a respectable position within the PINNs research community.

Scientific Reports and IFAC Papersonline have 14 and 12 TP, accounting for 1.5% and
1.3% of the TP in the discipline, respectively. However, these journals have relatively lower
TC counts: Scientific Reportswith 70 citations and IFAC Papers online with only six citations,
reflecting the relatively lower influence of their publications within the PINNs domain. IEEE
Access, Energies and Sensors have each published 10 and 9 articles, respectively. These
journals have made contributions to the field of PINNs with citation counts spanning from 21
to 54, indicative of their modest influence on the research community.

It is important to recognize that this list does not encompass all journals active in the
field of artificial intelligence and simulations. The omission is due to the focus of some
journals on different aspects of the field. For instance, there are studies on the support vector
machine (Shadloo, 2020), optimization of engineering designs using artificial neural
networks (Zeeshan et al., 2023, Pakatchian et al., 2020), the use of deep neural networks for
predicting material properties (Kim and Moon, 2022) and inverse problems (Löhner et al.,
2021). These represent alternative approaches to modeling and simulation in physical
problems. Consequently, several journals that contribute to artificial intelligence and
physical simulations might not be included in this list.

Figure 1 displays the publication tendencies of the top five journals in the field of PINNs
over time (2019–2022). Journal of Computational Physics, Computer Methods in Applied
Mechanics and Engineering, Physics of Fluids, Scientific Reports and IFAC PapersOnline are
among the journals included.

There is a distinct upward trend in the number of publications in each of the five journals
from 2019 to 2022, indicating a growing interest in PINNs research.The Journal of Computational
Physics saw the greatest increase in publications, from three in 2019 to 29 in 2022. This rapid
expansion may be attributed to the journal’s emphasis on computational methods and its
relevance to developing and applying PINNs in various research fields. Similarly, the number of
articles published in Computer Methods in Applied Mechanics and Engineering increased
significantly from 10 in 2020 to 24 in 2022. This journal’s multidisciplinary nature, with an
emphasis on computational mechanics, makes it an ideal venue for research on PINNs, which
frequently entails interdisciplinary collaboration among researchers fromvarious disciplines.

Physics of Fluids publications related to PINNs increased from 1 in 2019 to 15 in 2022. The
journal’s focus on fluid mechanics is pertinent to studying fluid flow and heat transfer
mechanisms using PINNs, which is crucial to developing and applying these neural networks.

The number of PINNs articles published in the multidisciplinary journal Scientific
Reports increased from 1 in 2019 to 7 in 2022. This expansion may be attributable to the
journal’s broad scope, which attracts research from diverse disciplines, such as
implementing PINNs for various problems.

The number of PINNs publications published by IFAC PapersOnline, which publishes
papers on automatic control and related disciplines, increased from zero in 2019 to nine in
2022. Researchers are investigating the application of control techniques and systems
engineering in the context of PINNs, as evidenced by this expansion.

4.4 Keywords analysis and physics-informed neural networks trending
A keyword cloud map, depicted in Figure 2, represents the commonly used keywords in
PINNs. The font size denotes the keywords’ importance, whereas the larger the font, the
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greater the importance of the keyword. In addition, repeated keywords also indicate their
importance. The center of the map, highlighted in red color, represents the physics-informed
neural network keyword, which is a significant component of the research on PINNs. The
map contains 100 commonly used keywords related to PINNs.

Table 6 displays the top 20 frequently used keywords among the 100 commonly used
keywords shown in Figure 2. Physic Inform Neural Network has the highest TP of 283,
representing 29.9% of the TP. “Machin Learn” has the second-highest TP value of 152 and a
TP% of 16.1%, making it the second most published keyword. It also has the highest TC
value of 3,846 and an HI of 20, indicating that it is highly influential and widely cited in
physics-informed neural networks.

The keyword with the lowest TP is Paramet Estim, with only 13 publications, accounting
for 1.4% of the TP. Machin Learn, Deep Learn and Neural Network are the second, third and
fourth most important keywords, respectively, with TP% values of 16.1%, 16.0% and 9.5%,
respectively.

In terms of TC, Machin Learn has the highest TC of 3,846, followed by Physic Inform
Neural Network with a TC of 3,215. Deep Learn has the third-highest TC with 1,535 citations.
The keyword with the lowest TC is Mathemat Model, with only 32 citations. HI is a measure
of the productivity and impact of a keyword. Physic Inform Neural Network has the highest
HI of 29, followed by Deep Learn andMachin Learn, with HI values of 21 and 20, respectively.

4.5 In-depth application categories analysis and trending
In the following section, we delve into a comprehensive exploration of the various
applications of PINNs. These applications have been divided into seven primary categories,
each featuring related subcategories. Figure 3 provides a visual illustration, encapsulating
the distribution and relationship of these functional categories and their respective
subcategories within PINNs.

Table 6.
Top 20 root
keywords associated
with PINNs

Keyword root TP TP (%) TC HI

Physic inform neural network 283 29.9 3,215 29
Machin learn 152 16.1 3,846 20
Deep learn 151 16 1,535 21
Neural network 90 9.5 930 14
Physic inform machin learn 56 5.9 796 14
Partial differenti equat 50 5.3 607 11
Deep neural network 45 4.8 1,360 14
Invers problem 38 4 770 12
Artifici neural network 34 3.6 352 9
Convolut neural network 31 3.3 179 7
Physic inform 30 3.2 837 9
Uncertainti quantif 28 3 684 11
Scientif machin learn 22 2.3 596 12
Artifici intellig 20 2.1 115 7
Surrog model 20 2.1 248 8
Physic inform deep learn 20 2.1 210 6
Mathemat model 17 1.8 32 4
Recurr neural network 17 1.8 116 5
Transfer learn 14 1.5 312 6
Paramet estim 13 1.4 168 4

Source: Original – from authors
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Table 7 is organized according to these categories, providing a concise overview of the
distribution of published research within the field of PINNs. Table 7 is derived from a
thorough examination of 946 original articles focused on PINNs. These articles have been
categorized into seven main domains, further divided into various subcategories. It should
be noted that an article may fall into several categories. Thus, the sum of the numbers in
Table 7 could equal or exceed the total number of articles.

The category “Fluid Dynamics and Computational Fluid Dynamics (CFD)” represents a
substantial field in physics and engineering that is concerned with the study of fluids (gases,
plasmas and liquids) in motion. In our data set of 946 PINNs articles, this category, divided
into five distinct subcategories, showcases a broad spectrum of research focus within the
realm of fluid dynamics. The subcategory “Modeling Fluid Flows” accounts for the highest
proportion (39%) within this category. This suggests that many researchers are exploring
how PINNs can help simulate fluid flows more efficiently and accurately. These models are
essential in various industries, including aviation, automotive and environmental science,
where understanding fluid behavior can drive innovation and enhance performance.
“Solving Flow Equations” is the next dominant subcategory, featuring 26% of articles. This
indicates a keen interest in using PINNs to tackle the mathematical intricacies of fluid flow
equations, like Navier-Stokes equations, which describe the motion of fluid substances. Such
research could lead to breakthroughs in the precise prediction and control of fluid dynamics
systems. The subcategory “Predicting Turbulence” with 16% of articles, underscores the
challenges and importance of turbulence prediction in fluid dynamics. Turbulence, despite
its complexity, is a common phenomenon in fluid flows, affecting aerodynamic performance,
energy efficiency and heat transfer processes. Researchers seem to be leveraging PINNs to
enhance turbulence modeling and prediction. Some studies consider using PINNs in such as
outdoor airflow (Rui et al., 2023) and indoor airflow field using PINNs (Wei and Ooka, 2023)
and neural networks (Gao et al., 2024).

Figure 3.
Suggested categories

and subcategories
based on analysis of
946 original articles

on PINNs
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Recent studies like (Pioch et al., 2023, Xiao et al., 2023, Hanrahan et al., 2023) highlight the
innovative approaches being taken within these subcategories. For instance, (Pioch et al.,
2023) describes the use of various Reynolds-averaged Navier–Stokes (RANS) models in a
PINN framework to predict turbulent flows more accurately, potentially enhancing our
understanding and control of such complex systems (Pioch et al., 2023). Similarly, (Xiao
et al., 2023) explores an improved PINN framework specifically for the challenging Rayleigh-
Taylor turbulence, suggesting a broader applicability of PINNs in handling complex, multi-
scale flow problems (Xiao et al., 2023). Finally, the research in Section 3 demonstrates the
capability of PINNs to infer critical flow features from limited data, which could
revolutionize experimental approaches in fluid dynamics (Hanrahan et al., 2023). These
examples underscore the dynamic nature of research in this field and the potential for PINNs
to make significant contributions to fluid dynamics and beyond.

“Optimizing Fluid Flow,” featuring 14% of articles, reflects endeavors to use PINNs to
optimize fluid flow in various systems, from pipelines to airfoils. This could significantly
enhance system efficiency and reduce energy consumption. Finally, “Aeroacoustics and

Table 7.
Application
categories and
subcategories in the
PINNs

Categories Subcategory TP TP (%)

Fluid dynamics and CFD Modeling fluid flows 316 39
Solving flow equations 213 26
Predicting turbulence 127 16
Optimizing fluid flow 109 14
Aeroacoustics and engineering 39 5

Mechanics and material science Material characterization 66 40
Failure analysis 33 20
Predicting stress in structures 32 20
Structural design 25 15
Composite material behavior 8 5

Electromagnetism and wave propagation Electromagnetic field modeling 26 23
Waveguide analysis 25 23
EMC analysis 21 19
Antenna design 20 18
Optics and photonics 19 17

Biomedical engineering and biophysics Biological system modeling 50 41
Medical image analysis 26 21
Biomechanics and tissue mechanics 18 15
Drug discovery 14 12
Computational neuroscience 13 11

Quantum mechanics and physics Quantum system simulation 38 51
Quantum dynamics 13 17
Phase transitions in Physics 11 15
Quantum many-body problems 10 13
Quantum chemistry 3 4

Renewable energy and power systems Power grid stability 6 30
Predicting renewable energy resources 5 25
Energy storage optimization 4 20
Smart grid response 3 15
Renewable energy system placement 2 10

Astrophysics and cosmology Astrophysical modeling 4 57
Gravitational wave study 2 29
Stellar and galactic dynamics 1 14

Source: Original – from authors
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Engineering,” despite having the least proportion of articles (5%), is a niche area focusing on
the interaction between fluid flow and sound. Given its crucial applications in reducing noise
pollution from vehicles, wind turbines and aeronautical equipment, this might signify an
opportunity for future research.

The category “Mechanics and Material Science” is central to the field of physics,
engineering and industry, dealing with the behavior of materials under various conditions.
It focuses on the behavior of materials under different physical conditions, and how we can
design and analyze structures using these materials. In the data set of 946 original articles
on PINNs, five subcategories are delineated within this broader category. The “Material
Characterization” subcategory stands out, boasting the highest proportion of published
articles (40%) in this category. This demonstrates a robust interest in leveraging PINNs to
improve our understanding of material properties. This involves understanding the
complex physical properties of various materials, including elasticity, hardness, ductility
and tensile strength. The insights gained from these studies directly influence the design
and manufacturing processes across industries ranging from aerospace and automotive to
electronics and biomedical engineering.

Next, “Failure Analysis” has 20% of articles. This subcategory underscores the
significant role of PINNs in predicting potential failures in materials and mechanical
systems. By better understanding how materials fail under different conditions, such as
extreme temperatures, loads or corrosive environments, researchers and engineers can
proactively design materials and structures to avoid such failures. The subcategory
“Predicting Stress in Structures” contributes 20% of articles. Stress analysis is crucial in the
design process of any structure, from bridges and buildings to aircraft and automobile
components. PINNs are used to predict the effects of different stress conditions on
structures, leading to safer and more efficient designs. “Structural Design” follows next with
15% of articles. It underlines the use of PINNs in streamlining the design process, from
optimizing design parameters to simulating the performance of the structure under various
conditions. This can lead to significant time and cost savings in the design process. Finally,
“Composite Material Behavior” is the least represented subcategory, with only 5% of
articles. Composite materials combine two or more materials to create superior properties,
and they are widely used in industries like aerospace, automotive and sports equipment.
The lower count suggests that there are significant opportunities for future research,
specifically in leveraging PINNs to understand and predict the behavior of these complex
materials. The structures and beams have also been simulated using PINNS as discussed in
(Kapoor et al., 2024, Kapoor et al., 2023).

The “Electromagnetism and Wave Propagation” category in this study represents an
integral part of modern physics, encompassing research areas that form the basis for much
of today’s technology, such as telecommunications, radar systems and optical devices.
PINNs are increasingly being applied to these domains, offering new ways to model, analyze
and optimize electromagnetic systems. The subcategory “Electromagnetic Field Modeling”
with 26% of articles leads in this category. This area includes research related to modeling
and simulating electromagnetic fields, essential for various applications like MRI scanners,
wireless communication or electronic component design. This interest demonstrates the
importance of accurate electromagnetic field modeling in technological innovation.
“Waveguide Analysis” has 25% of articles.

Waveguides are structures that guide waves, like electromagnetic or sound waves, from
one point to another. In telecommunications and radar systems, waveguide designs directly
impact the performance and efficiency of the systems. Therefore, PINNs’ application in
waveguide analysis shows a commitment to advancing our understanding and improving
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these critical systems. The subcategory “EMC Analysis” contributes 21% of articles.
Electromagnetic compatibility (EMC) is the ability of electrical devices to function correctly
in their electromagnetic environment without introducing intolerable electromagnetic
disturbances. Understanding and ensuring EMC is becoming increasingly crucial as our
world becomes more interconnected and reliant on electronics. “Antenna Design” holds 20%
of articles. Antennas are essential for broadcasting and receiving signals in devices ranging
from cell phones to satellites. Using PINNs in antenna design can lead to better performance,
more efficient designs and the creation of antennas for new frequencies or applications. The
least represented subcategory is “Optics and Photonics,” with 19% of articles. These fields
study the behavior and properties of light and its interaction with matter. Their applications
are vast, from fiber-optic communications and laser systems to medical devices and even
quantum computing. The lower representation suggests the potential for more exploration
and application of PINNs in this area.

The “Biomedical Engineering and Biophysics” category encompasses significant
research areas in biology and medicine where PINNs are being implemented to uncover new
findings and improve processes. “Biological SystemModeling,” with 30% of articles, stands
out as the most explored subcategory in this area. These studies revolve around
constructing mathematical and computational representations of biological systems, like
organs, cellular networks or even entire organisms. Using PINNs in such modeling can lead
to more accurate simulations, a better understanding of system dynamics and predictive
tools for studying diseases or testing therapies. “Medical Image Analysis” has 16% of
articles. This subcategory demonstrates the use of PINNs in analyzing medical imaging
data, such as X-rays, MRI scans and CT scans, for better diagnostics and understanding of
various medical conditions. This fusion of AI with medical imaging can potentially
revolutionize healthcare, offering quicker, more precise diagnoses and personalized
treatment plans. With 11% of articles, “Biomechanics and Tissue Mechanics” investigates
the mechanical properties of biological tissues and their response to various forces. Accurate
modeling of these mechanics is crucial for surgical planning, prosthetics design and
understanding disease progression like cancer metastasis.

PINNs can provide a novel approach to capturing these complex behaviors. “Drug
Discovery,”with 8% of articles, denotes the use of PINNs in streamlining the drug discovery
process. From predicting drug interactions to modeling biological pathways affected by
potential drugs, PINNs could accelerate drug development, making it less expensive and
more effective. Finally, “Computational Neuroscience,” with 8% of articles, uses PINNs to
model and understand the functioning of the brain and nervous system. The lesser
representation in this subcategory may suggest an area ripe for further exploration.

The latter part of the table provides an overview of how PINNs are applied to different
fields, such as quantum mechanics, renewable energy and astrophysics. “Quantum System
Simulation” leads the “Quantum Mechanics and Physics” category with 60% of articles. It
illustrates how PINNs can offer fresh insights into quantum systems by simulating their
complex dynamics. This is particularly helpful in systems that exhibit quantum
entanglement or superposition, which are otherwise computationally challenging to model.
“Quantum Dynamics,” “Phase Transitions in Physics,” “Quantum Many-Body Problems”
and “Quantum Chemistry” have fewer articles, ranging from 21% to 5%, indicating that
these areas are relatively less explored. Despite their lower representation, they encompass
significant quantum phenomena that can benefit immensely from PINNs, such as
understanding temporal changes in quantum states, predicting phase transitions, solving
many-body problems andmodeling chemical reactions at the quantum level.
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The “Renewable Energy and Power Systems” category explores how PINNs can optimize
and manage energy systems. “Power Grid Stability,” with 30% of articles, indicates the
potential of PINNs in maintaining the stability and reliability of power grids. The other
subcategories, including “Predicting Renewable Energy Resources,” “Energy Storage
Optimization,” “Smart Grid Response” and “Renewable Energy System Placement,”with 10%
to 25% of articles each, demonstrate the application of PINNs in optimizing energy use,
predicting renewable energy output and deciding optimal locations for renewable energy
systems. Finally, the “Astrophysics and Cosmology” category contains articles on
“Astrophysical Modeling,” “Gravitational Wave Study” and “Stellar and Galactic Dynamics,”
ranging from 40% to 10% of articles. These illustrate the use of PINNs in studying large-scale
cosmic phenomena, predicting gravitational waves – a breakthrough in modern astrophysics,
and understanding the dynamics of stars and galaxies. A few articles could indicate that these
areas are still at the beginning stages of implementing PINNs in their research.

Figure 4 presents the distribution of the PINNs articles in each application category by
percentage, offering a broader perspective of the current research landscape and the interest
of researchers in various areas of science and engineering.

The category of “Fluid Dynamics and CFD” is notably prevalent in the research
landscape, comprising a substantial 69.3% of all articles. This indicates a marked emphasis
on research applying PINNs to issues in fluid dynamics. Areas of focus include the modeling
of fluid movements, addressing flow equations, forecasting turbulence, optimizing the flow
of fluids and studying aeroacoustics. The high percentage signifies the versatility and
effectiveness of PINNs in handling the complexities of fluid dynamics problems such as
nonlinearity, turbulence and multiphase flows. The “Mechanics and Material Science”
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category, accounting for 11.5% of the articles, is the second most researched area. Research
within this category primarily concentrates on exploring the properties of materials,
forecasting stress in different structures, examining mechanisms of failure and
investigating the behavior of composite materials. The prominent representation of this
category underscores the significant role that PINNs can play in enhancing the safety and
effectiveness of structures and materials across a range of sectors, including construction
and aerospace.

The “Electromagnetism and Wave Propagation” category follows with 6.8% of the articles,
reflecting the application of PINNs in understanding and manipulating electromagnetic fields.
The studies in this category encompass electromagnetic field modeling, waveguide analysis,
EMC analysis, antenna design and optics and photonics. This reflects the significant
implications of PINNs in various sectors, including telecommunications, energy and health care.

The “Biomedical Engineering and Biophysics” and “Quantum Mechanics and Physics”
categories represent 5.5% and 5.4% of the articles, respectively. These indicate that PINNs
are being increasingly recognized in both traditional and modern physics realms, spanning
from biological system modeling and drug discovery to quantum system simulations and
quantum chemistry. Finally, the “Renewable Energy and Power Systems” and
“Astrophysics and Cosmology” categories have the least representation, with 1% and 0.5%
of the total articles, respectively. While this may suggest that these areas are still emerging
in the context of PINN applications, it also highlights significant opportunities for future
research, considering the global urgency for renewable energy solutions and the ongoing
cosmic explorations in astrophysics.

Figure 5 shows a comprehensive view of the trending research areas in PINNs over the
years, from 2019 to 2022. It allows us to observe how interest and research in different
categories have evolved over time.

The “Fluid Dynamics and CFD” category consistently remains the most active area of
research over the years. Starting with just 22 articles in 2019, it shows a substantial leap to
82 in 2020, followed by a more than doubling in 2021 to 195 articles. The trend continues
with an impressive rise to 366 articles in 2022. The exponential growth in this category
underscores the increasing adoption and recognition of the effectiveness of PINNs in
addressing complex problems in fluid dynamics and CFD.

Next, “Mechanics and Material Science” is another category that has seen significant
growth. Beginning with just three articles in 2019, there is a consistent increase in the
number of publications in this area, reaching 65 by 2022. This trend indicates an expanding
interest in applying PINNs to understand the characteristics of different materials and the
mechanics of structures, which has wide-ranging applications in various industries.

The “Electromagnetism and Wave Propagation” category also follows a similar upward
trajectory, even though at a slower pace. With a jump from two articles in 2019 to 36 articles
in 2022, the increasing interest in this field signifies the versatility of PINNs in modeling
electromagnetic fields and wave propagation, which has significant implications in sectors
such as telecommunications, electronics and health care.

The growth in the “Biomedical Engineering and Biophysics” category is steady but
slower compared to other categories, suggesting a more cautious adoption of PINNs in these
areas, possibly due to the complexities and sensitivities involved in biomedical applications.
However, the consistent growth from 8 to 27 articles between 2019 and 2022 shows
increasing interest and potential in applying PINNs in biological system modeling, drug
discovery and other related fields.

The “Quantum Mechanics and Physics” category has also shown consistent growth,
albeit at a slower rate. Starting with just two articles in 2019, the category has seen a steady
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rise to 30 articles by 2022. The growth, although modest, highlights the expanding role of
PINNs in addressing complex quantum problems, ranging from quantum system
simulation to quantum chemistry.

The “Renewable Energy and Power Systems” category shows a small but steady
increase from 0 to 5 articles between 2019 and 2022. This trend signifies the emerging
interest in the application of PINNs in renewable energy and power systems. Given the
urgent global call for clean and sustainable energy sources, this area will likely witness
more robust growth in the future.

Finally, the “Astrophysics and Cosmology” category, though starting from zero in 2019,
sees a slow but steady increase to three articles by 2022. While this category remains the
least researched, it highlights an emerging and exciting area for PINNs’ application in
studying astrophysical phenomena and cosmic dynamics.

Figure 6 illustrates PINNs application categories in the six most productive countries: the
USA, China, Germany, England, India and France. This analysis offers insights into the
international trends and focus areas in PINNs research.

The category Fluid Dynamics and CFD has seen the highest number of publications. The
USA has published 319 articles, which is a testament to the country’s strong research base
and interest in this field. China, too, has shown substantial interest in Fluid Dynamics and
CFD, contributing 180 articles showcasing the high importance placed on these areas.
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Germany, England, India and France follow, indicating a worldwide research focus on the
understanding and simulation of fluid dynamics which are essential in numerous industries,
including aerospace, automotive, energy andmore.

Mechanics and Material Science is the second most active area of research, with the USA
again leading with 66 articles. China trails behind with 26 articles, demonstrating its strong
foothold in this crucial field. It highlights the importance of understanding materials’

Figure 6.
Radar charts
depicting seven
application categories
across the most
productive countries:
the USA, China,
Germany, England,
India and France
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physical properties and behavior under different conditions in industries like construction,
manufacturing andmore.

Electromagnetism and Wave Propagation also have significant contributions from the
USA and China. This research area is critical for advancements in communication
technologies, radar systems and even health-care technologies. Biomedical Engineering and
Biophysics is another active area of research, particularly in the USA and China. In this
category, using PINNs can lead to significant breakthroughs in understanding complex
biological systems, medical imaging, drug discovery and even neural activity, demonstrating
the intersection of healthcare and artificial intelligence.

In the category of Quantum Mechanics and Physics, the USA again leads, illustrating its
strong commitment to quantum research. Quantum mechanics can revolutionize our
understanding of the universe and could lead to advancements in computing, cryptography
andmaterial science.

Renewable Energy and Power Systems have fewer publications, with the USA
contributing five articles. Despite the low numbers, this shows the increasing interest in
using PINNs to optimize energy systems, improve renewable energy forecasts and manage
power grid stability, aligning with global sustainability efforts. Astrophysics and
Cosmology, a complex field dealing with the universe’s origins and evolution, also shows
limited activity, with the USA leading with three articles.

4.6 Most cited publications
In this section, the publications with over 100 citations are selected. PINNs are a very
recent topic, so these publications have received significant attention. Table 8 shows a
list of articles that have gained over 100 citations in the PINNs field. Figure 7 provides
the topic and main features of the top ten most cited publications in PINNs. It is
important to recognize that earlier-published articles often accumulate more citations.
Therefore, the relative trend in citation numbers could serve as another metric to
identify emerging publications. Given that the field of PINNs is relatively recent, those
publications that have garnered significant citations are likely to be the most influential
in the field.

The top 20 papers can be divided into PINN Frameworks and Applications (Raissi et al.,
2019; Lu et al., 2021b, Meng and Karniadakis, 2020; Jagtap and Karniadakis, 2021; Meng
et al., 2020), PINNs in Fluid Mechanics (Samaniego et al., 2020; Raissi et al., 2020; Sun et al.,
2020; Mao et al., 2020; Jin et al., 2021), PINNs in Specialized Applications (Pang et al., 2019;
Goswami et al., 2020; Jagtap et al., 2020b, Kissas et al., 2020; Oviedo et al., 2019; Chen et al.,
2020) and Enhancements and extensions of PINNs (Jagtap et al., 2020a, Zhang et al., 2019;
Yang et al., 2021; Yang and Perdikaris, 2019; Pun et al., 2019).

PINN Frameworks and Applications includes papers that focus on the development and
application of PINNs and associated frameworks (Raissi et al., 2019; Lu et al., 2021b, Meng
and Karniadakis, 2020; Jagtap and Karniadakis, 2021; Meng et al., 2020). These studies are
centered around solving differential equations, estimating functions and tackling time-
dependent PDEs. The foundational paper (Raissi et al., 2019) introduces PINNs as a deep
learning framework to solve forward and inverse problems involving nonlinear PDEs.
DeepXDE (Lu et al., 2021b) presents a deep-learning library designed to solve differential
equations using PINNs. The neural network (Meng and Karniadakis, 2020) uses multi-
fidelity data to learn the inverse PDE problems through function approximation. PINNs
improve the overall performance and robustness of the model. Extended PINNs (XPINNs)
(Jagtap and Karniadakis, 2021) offer a generalized space-time decomposition framework
using a deep learning framework for solving nonlinear PDEs, allowing for more efficient
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and accurate solutions. Finally, the Parareal PINN (Meng et al., 2020) emphasizes solutions
for time-dependent PDEs. This approach integrates parallel-in-time integration techniques,
aiming to enhance the scalability and efficiency of solutions derived fromPINNs.

PINNs in Fluid Mechanics cover papers that apply PINNs and machine learning
techniques to fluid mechanics (Samaniego et al., 2020; Raissi et al., 2020; Sun et al., 2020; Mao
et al., 2020; Jin et al., 2021). These works demonstrate the potential of PINNs in solving
complex fluid dynamics problems. The energy approach in (Samaniego et al., 2020) solves

Table 8.
Articles that have
garnered over 100
citations in the
PINNs field

Ref. Title PY TC

Raissi et al. (2019) “Physics-informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear partial
differential equations”

2019 2,098

Samaniego et al.
(2020)

“An energy approach to the solution of partial differential equations in
computational mechanics via machine learning: concepts,
implementation and applications”

2020 490

Raissi et al. (2020) “Hidden fluid mechanics: learning velocity and pressure fields from
flow visualizations”

2020 394

Lu et al. (2021b) “Deepxde: a deep learning library for solving differential equations” 2021 258
Sun et al. (2020) “Surrogate modeling for fluid flows based on physics-constrained deep

learning without simulation data”
2020 190

Mao et al. (2020) “Physics-informed neural networks for high-speed flows” 2020 189
Pang et al. (2019) “fPINNs: fractional physics-informed neural networks” 2019 170
Goswami et al.
(2020)

“Transfer learning enhanced physics informed neural network for
phase-field modeling of fracture”

2020 165

Jagtap et al. (2020a) “Adaptive activation functions accelerate convergence in deep and
physics-informed neural networks”

2020 159

Jagtap et al. (2020b) “Conservative physics-informed neural networks on discrete domains
for conservation laws: applications to forward and inverse problems”

2020 141

Jin et al. (2021) “NSFnets (Navier–Stokes flow nets): physics-informed neural networks
for the incompressible Navier–Stokes equations”

2021 131

Zhang et al. (2019) “Quantifying total uncertainty in physics-informed neural networks for
solving forward and inverse stochastic problems”

2019 127

Yang et al. (2021) “B-PINNs: Bayesian physics-informed neural networks for forward
and inverse PDE problems with noisy data”

2021 126

Kissas et al. (2020) “Machine learning in cardiovascular flows modeling: predicting
arterial blood pressure from non-invasive 4d flow MRI data using
physics-informed neural networks”

2020 125

Yang and
Perdikaris (2019)

“Adversarial uncertainty quantification in physics-informed neural
networks”

2019 124

Meng and
Karniadakis (2020)

“A composite neural network that learns from multi-fidelity data:
application to function approximation and inverse PDE problems”

2020 123

Pun et al. (2019) “Physically informed artificial neural networks for atomistic modeling
of materials”

2019 117

Oviedo et al. (2019) “Fast and interpretable classification of small x-ray diffraction
datasets using data augmentation and deep neural networks”

2019 115

Chen et al. (2020) “Physics-informed neural networks for inverse problems in nano-optics
and metamaterials”

2020 107

Jagtap and
Karniadakis (2021)

“Extended physics-informed neural networks (xpinns): a generalized
space-time domain decomposition based deep learning framework for
nonlinear partial differential equations”

2020 105

Meng et al. (2020) “PPINN: parareal physics-informed neural network for time-dependent
PDEs”

2020 102

Source: Original – from authors
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PDEs in computational mechanics using machine learning, while (Raissi et al., 2020) learns
velocity and pressure fields from flow visualizations. Surrogate modeling (Sun et al., 2020)
uses physics-constrained deep learning without simulation data for fluid flows and
(Mao et al., 2020) applies PINNs to high-speed flows. Navier–Stokes Flow Nets (NSFNet)

Figure 7.
Top 10most cited
articles and their

topics
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(Jin et al., 2021) uses PINNs for the incompressible Navier–Stokes equations, providing an
efficient and accurate solution for fluid flow problems.

PINNs in Specialized Applications focus on specialized applications of PINNs (Pang et al.,
2019; Goswami et al., 2020; Jagtap et al., 2020b, Kissas et al., 2020; Oviedo et al., 2019; Chen
et al., 2020). Fractional PINNs (Pang et al., 2019) are proposed for problems involving
fractional-order PDEs, while (Goswami et al., 2020) uses transfer learning to enhance PINNs
for phase-field modeling of fracture. Conservative PINNs (Jagtap et al., 2020b) are applied to
discrete domains for conservation laws, and Kissas et al. (2020) predict arterial blood pressure
using PINNs on noninvasive 4D flowMRI data. Fast and interpretable classification of small
x-ray diffraction data sets (Oviedo et al., 2019) is achieved using data augmentation and deep
neural networks. Finally, (Chen et al., 2020) applies PINNs to inverse problems in nano-optics
andmetamaterials, demonstrating the versatility of PINNs in various fields.

Enhancements and extensions of PINNs deal with enhancements and uncertainty
quantification in PINNs (Jagtap et al., 2020a, Zhang et al., 2019; Yang et al., 2021; Yang and
Perdikaris, 2019; Pun et al., 2019). Adaptive activation functions (Jagtap et al., 2020a)
accelerate convergence in deep and physics-informed neural networks, improving the
efficiency of learning complex relationships. Uncertainty quantification is crucial in
understanding the reliability of model predictions, and papers by Zhang et al. (2019) and
Yang and Perdikaris (2019) focus on quantifying uncertainty in PINNs when solving
forward and inverse stochastic problems. Bayesian methods are used in Yang et al. (2021),
introducing Bayesian PINNs for solving inverse and forward PDE problems involving noisy
data. Physically informed artificial neural networks (Pun et al., 2019) are used for atomistic
modeling of materials, demonstrating the potential for incorporating physical constraints
into various types of neural networks.

5. Conclusions
In this comprehensive examination of the literature on PINNs, a total of 996 records from the
WoS database spanning the years 2019 to 2022 were retrieved. Initially, an overview of the
field was presented, highlighting the contributions of institutes and countries. Subsequently,
the literature records were carefully categorized into seven main categories and 33
subcategories. The distribution of application categories and subcategories was extensively
analyzed and reported. In addition, there was an in-depth discussion on the evolution of the
main categories over time. A significant portion of the analysis was devoted to examining
the primary areas of focus of the countries most actively engaged in each application
category. The principal insights from this study can be summarized in the following points:

� The publications were categorized into seven primary domains, each with various
subcategories: Fluid Dynamics and CFD, Mechanics and Material Science,
Electromagnetism and Wave Propagation, Biomedical Engineering and Biophysics,
Quantum Mechanics and Physics, Renewable Energy and Power Systems and
Astrophysics and Cosmology.

� “Fluid Dynamics and CFD” dominate PINNs research, accounting for 69.3% of total
articles. Among five distinct subcategories, “Modeling Fluid Flows” represents the
largest area of focus (39% of articles), followed by “Solving Flow Equations” (26%).
The smallest subcategory, “Aeroacoustics and Engineering” (5%), provides a
unique area for potential future exploration. The interest in this category has seen
exponential growth, with articles rising from 22 in 2019 to 366 in 2022, indicating an
increasing recognition of the effectiveness of PINNs in addressing complex
problems in fluid dynamics and CFD.
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� The “Mechanics and Material Science” category, encompassing 11.5% of PINNs
articles, has been marked by considerable growth, from three articles in 2019 to 65 in
2022. The research is segmented into five subcategories, with “Material
Characterization” leading (40% of articles), indicating a strong interest in using PINNs
to improve understanding of material properties. “Failure Analysis” and “Predicting
Stress in Structures” comprise 20% of articles, reflecting PINNs’ significant role in
predicting potential failures and stress effects. Despite “Composite Material Behavior”
having only 5% of articles, it signals a ripe area for future research in understanding
complex materials.

� Within the category of “Electromagnetism and Wave Propagation,” which
encompasses critical research areas such as telecommunications, radar systems and
optical devices, there is a growing trend of using PINNs. Notably, this category
includes significant subcategories like “Electromagnetic Field Modeling,” accounting
for 26% of the articles, and “Waveguide Analysis,” making up 25%. These
subcategories underscore their pivotal role in technological advancements. Although
“Optics and Photonics” is less represented, constituting 19% of the research, it holds
promising potential for future applications of PINNs. The number of articles in this
category has grown from two in 2019 to 36 in 2022, emphasizing the rising interest
and the versatility of PINNs in modeling electromagnetic fields and wave
propagation, which is critical for advancements in various sectors, including
healthcare and communications.

� The “Biomedical Engineering and Biophysics” category, where PINNs are
increasingly applied, covers areas like “Biological System Modeling” (30% of
articles) and “Medical Image Analysis” (16%), indicating the promising potential for
PINNs in healthcare. Other research realms such as “Quantum Mechanics and
Physics,” “Renewable Energy and Power Systems” and “Astrophysics and
Cosmology” collectively suggest a growing recognition of PINNs across diverse
fields, despite representing only 5.5%, 5.4%, 1% and 0.5% of articles, respectively.
The trend analysis shows steady growth in each category from 2019 to 2022,
indicating the expanding role of PINNs in addressing complex problems in these
sectors and suggesting significant potential for future research.

� The PINNs field has leaders such as the United States, China, Germany, England
and India, underlining the importance of international cooperation. Top research
institutions include Brown University, MIT and the Chinese Academy of Sciences,
with Brown University leading in terms of TP and Indep publications, as well as
those with a first or corresponding author. The primary channels for sharing
developments are journals like the Journal of Computational Physics and Computer
Methods in Applied Mechanics and Engineering. Engineering, Computer Science and
Physics were identified as top subject areas, showing PINNs’ interdisciplinary
potential. Frequently used terms in PINNs research include “Physics Informed
Neural Network,” “Deep Learning” and “Machine Learning.” The most cited articles
are related to Frameworks and Applications for PINNs and PINNs in Fluid
Mechanics. Recent advancements have shown PINNs’ promise for multiphase flows
despite some computational efficiency issues. Future research can potentially
enhance PINNs’ effectiveness and precision.

� The six most productive countries in PINNs research are the USA, China, Germany,
England, India and France, with Fluid Dynamics and CFD as the most published
category. The USA leads with 319 articles, followed by China with 180. The Mechanics
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and Material Science category is the second most active, led by the USA with 66
articles. Biomedical Engineering and Biophysics; Electromagnetism and Wave
Propagation; and Quantum Mechanics and Physics also see significant contributions,
especially from the USA and China. Despite fewer publications, the categories
Renewable Energy and Power Systems and Astrophysics and Cosmology indicate
emerging interest, signifying potential growth areas for PINNs applications.
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Appendix
The raw data was extracted from WoS, where a snapshot of the raw data, particularly a recorded
segment related to PINNs, drawn fromWoS is depicted in Figure A1. To transmute this raw data into
insightful and statistically significant reports, a Python script was designed and used.

This Python script holds a central role in sifting through the raw data to extract valuable
information and process it accordingly. However, it is important to underline that certain phases of
the analysis, manual inspection and intervention were applied. The process commences with the
application of filters to the data based on distinct criteria, such as types of publications and
publication years. The script then classifies the data into a dictionary comprising diverse elements
like keywords, institutes, countries and journal names, among others. Moreover, evaluation indices
are computed for each element, serving as the foundation for ranking the items and generating
connectivity matrices.

However, it is worth highlighting that text format inconsistencies and irregularities in author
affiliations often call for manual corrections. Similarly, the standardization of abbreviations and resolving
similar keywords frequently demand human intervention. Furthermore, certain types of analysis, such as
identifying the types of PINNs, resist automation and call for hands-on human analysis.

The procedure for analysis using python can be explained by steps illustrated in Figure A2.
These steps are:
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(1) Import necessary libraries and modules for data analysis, such as pandas, numpy
and matplotlib. Import raw text and make a database to store the data in an
organized structure.

(2) Read and clean data:
� Access the raw bibliographic data using Python’s file-handling capabilities.
� Use appropriate methods from pandas or other libraries to import the data and

create a dataframe.
� Apply data cleaning techniques to correct any errors or inconsistencies in the data,

such as removing duplicates, fixing formatting issues and handling missing values.

FigureA1.
An example of
unprocessed data
obtained fromWoS

FigureA2.
An illustration
depicting the stages
involved in
processing data
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(3) Extract and filter data:
� Identify the relevant information required for the analysis, such as publication

titles, authors, publication years and keywords.
� Use pandas dataframe manipulation techniques to extract and filter the data based

on specific criteria, such as publication types or a specific range of publication
years.

(4) Organize data:
� Create dictionaries or data structures to store and organize the extracted data.
� Generate a rank table based on predefined criteria, such as the number of citations,

publication frequency or any other relevant metric.
� Implement techniques like stemming or lemmatization to transform keywords to

their root form, enhancing consistency in the analysis.
(5) Process data:

� Establish connections or cross-references between the different data dictionaries or
structures, enabling further analysis and exploration.

� Create a connectivity matrix to identify relationships and co-occurrences between
the data set’s authors, keywords or other relevant entities.

(6) Category analysis::
� Determine the application categories or subject areas.
� Apply appropriate classification techniques, such as topic modeling, to categorize

the publications based on their content.
(7) Generate reports and visualizations:

� Use python’s data manipulation and visualization libraries to generate informative
tables summarizing the analyzed data, including relevant statistics and metrics.

� Include supplementary materials, such as plots, charts or graphs, to visually
represent the analyzed bibliographic data.

� Export the generated reports and visualizations in a suitable format, such as PDF or
HTML, for further analysis or sharing with others.
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