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Abstract
Purpose – This study aims to use deep neural networks (DNNs) to learn the conduction heat transfer
physics and estimate temperature distribution images in a physical domain without using any physical model
or mathematical governing equation.
Design/methodology/approach – Two novel DNNs capable of learning the conduction heat transfer
physics were defined. The first DNN (U-Net autoencoder residual network [UARN]) was designed to extract
local and global features simultaneously. In the second DNN, a conditional generative adversarial network
(CGAN) was used to enhance the accuracy of UARN, which is referred to as CGUARN. Then, novel loss
functions, introduced based on outlier errors, were used to train the DNNs.
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Findings – A UARN neural network could learn the physics of heat transfer. Within a few epochs, it
reached mean and outlier errors that other DNNs could never reach after many epochs. The composite outlier-
mean error as a loss function showed excellent performance in training DNNs for physical images. A UARN
could excellently capture local and global features of conduction heat transfer, whereas the composite error
could accurately guide DNN to extract high-level information by estimating temperature distribution images.
Originality/value – This study offers a unique approach to estimating physical information, moving from
traditional mathematical and physical models to machine learning approaches. Developing novel DNNs and
loss functions has shown promising results, opening up new avenues in heat transfer physics and potentially
other fields.

Keywords Heat transfer, Deep convolutional neural networks, Information base learning,
Physical phenome

Paper type Research paper

1. Introduction
Nowadays, there is a high capability of storing and processing raw data such as images,
audio and video. However, extracting valuable information from a large data set of raw data
is challenging, demanding automated approaches and robust processing means. Artificial
intelligence (AI) has been one of the prominent inventions in automating the data process,
extracting features and interpreting meaningful information.

State-of-the-art and prospects are well discussed (Zhang and Lu, 2021). At first, the
applications of AI were limited to simple simulations until 2007, when Bengio et al. (2007)
could train the first deep neural network (DNN). From then on, DNNs became the first
candidate for classification, estimation and modeling problems. DNNs have found crucial
applications in information science. Image processing (Minaee et al., 2021), classification
(Huertas-Tato et al., 2022), neural language processing (Amirian et al., 2021), digital health
care (Nan et al., 2022), text-to-speech (Yasuda et al., 2021) and depression detection (He et al.,
2022) are some successful samples of DNN’s applications in extracting practical and high-
level information from raw data.

Physical phenomena such as heat transfer andmass transfer can be simulated by solving
complex partial differential equations (PDEs). The solution results could provide image data
about temperature distribution, fluid motion or mass distribution. Such images have
numerous applications in engineering designs and understanding the heat and mass
transfer behavior during the operation of devices. However, generally, solving a complex
PDE requires expensive numerical computations. A feasible approach to reduce the
computational time of numerical computations is using parallel computing. This is while the
numerical solution of a PDE is an inherently weak parallel process and generally involves
several serial computational stages.

Another difficulty in simulating heat and mass transfer phenome is the necessity for a
PDE representing the phenome to be available. Such PDEs could be obtained by using the
conservation of mass, energy and momentum laws combined with some closure models
representing the behavior of materials. Then, the PDE, representing the physics of a
phenome, should be validated against experimental observations. Thus, finding a PDE for a
new phenomenon is a tedious and complex process. Therefore, finding new approaches to
avoid the requirement of available PDE could be a significant advantage.

In some recent literature works (Zhu et al., 2021; Wang et al., 2021; Li et al., 2019; Kim and
Lee, 2020b; Lin et al., 2019; Edalatifar et al., 2020b, 2021), authors have shown that DNNs can
learn physical phenomes from a data set and provide a solution to physical phenomes.
DNNs are well compatible with parallel processing and can take full advantage of such
computational resources. Therefore, applying DNNs to physical phenome could be an
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alternative approach to solving PDEs (Raissi et al., 2020) and taking good advantage of
GPUs. Some recent research studies (Zhu et al., 2022; Wang et al., 2021; Li et al., 2019; Lin
et al., 2019) showed that the heat distribution in a physical domain could be estimated using
a DNN instead of the conventional numerical methods.

Löhner et al. (2021) thoroughly compared interpolation algorithms and DNNs in
addressing inverse transfer problems with linear and nonlinear characteristics. The
researchers perform multiple runs for a standard test problem, generating learning sets for
both interpolation algorithms and DNNs. Additional runs are conducted to assess the
predictive accuracy of each approach. The results reveal that interpolation algorithms
surpass DNNs in accurately solving linear heat conduction problems, whereas DNNs excel
in handling nonlinear heat conduction problems. Regarding heat convection problems, both
methods yield comparable levels of accuracy. Notably, this study represents the first
comprehensive endeavor of its kind.

Kim and Moon (2022) introduced a DNN to estimate the effective thermal conductivity of
flat heat pipes with spreading thermal resistance. To accomplish this, they perform an
extensive set of computational fluid dynamics (CFD) simulations, comprising 2,160 cases, to
establish a large data set and predict a broader range of effective thermal conductivity,
extending up to 10,000 W/mK. The DNN is trained and subsequently validated through
reinforcement learning with an additional 8,640 CFD cases. The results demonstrate strong
agreement between the DNN estimation and experimental, simulational and theoretical
approaches. Furthermore, the DNN method proves to be more efficient in terms of time
compared to traditional CFD simulations. The study suggests that DNN regression and
estimation offer a promising avenue for securing data and making predictions across a wide
range without requiring extensive experiments or simulations. These advancements in
thermal and materials engineering can potentially address various challenges related to
thermal obstacles encountered by researchers and practitioners.

In Edalatifar et al. (2020b, 2021), the authors generated a data set of temperature
distribution images. Then, they designed a DNN with a convolutional structure and trained
the DNN with their data set. The results showed that the convolutional DNNs could learn
the physics of heat transfer. These studies adopted the mean squared error as the loss
function. Although the outcomes of these works demonstrated the capability of DNN in
estimating heat transfer, it is not clear if using a novel DNN or another type of loss function
could further improve the ability of DNN in estimating images of temperature distribution.
Unfortunately, the data sets of the previous research are not available, so a comparison
between the results of the earlier works is not feasible.

In two recent publications, authors investigated the conduction heat transfer and
prediction of temperature distribution in arbitrary shape geometries (Edalatifar et al., 2020b)
and tried to improve the loss functions (Edalatifar et al., 2021). The input data was the
geometry and thermal boundary conditions, whereas the temperature distribution images in
a given geometry were the output data. The data set of these studies was published on the
Mendeley database (Edalatifar et al., 2020a), so comparison with these works is possible.
The results of these studies revealed that the estimation of physical images is generally
different than natural images. Physical images are those images whose pixel values are
equal to a physical parameter such as temperature. These authors showed that few pixels of
physical images could be estimated using a DNN with unacceptable error. They called
pixels (data), which have a high estimation error, the outlier pixels. The outlier pixels are not
crucial in natural images as human eyes may be unable to capture them. However, the
outlier pixels in physical images could influence simulations and engineering calculation
processes using the estimated images.
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Edalatifar et al. (2021, 2020b) reported that the loss function could critically influence the
accuracy and robustness of a DNN during the training process. Hence, they defined some
new loss functions to reduce outlier errors during the training of DNNs. Using the new loss
functions, they reduced the average and outlier estimation errors significantly. Here, there is
an open question: How significantly do these new loss functions impact the estimation
errors of deep networks, especially when applied to estimating physical images and heat
distribution such as the deep network represented by (Sharma et al., 2018) and spatially
(Farimani et al., 2017)?

Moreover, the structure of a DNN could affect its performance and, consequently, the
accuracy of the estimated images. Considering the conduction heat transfer in a physical
domain, the temperature of a point (pixel) is related to not only the temperature of its
neighbor points (pixels) but also the shape of the domain and boundary conditions. Hence,
the temperature of each point is dependent on local and global features. The local features
are essential due to the temperature dependency of a pixel on the neighbor pixels. At the
same time, the global features are important because of the influence of the shape and size of
the physical domain on each pixel in the domain.

The previous works (Zhu et al., 2021; Li et al., 2019; Wang et al., 2021; Kim and Lee,
2020b; Edalatifar et al., 2020b, 2021; Lin et al., 2019) constructed their DNNs using traditional
convolutional layers. Unfortunately, convolutional layers only extract local features.
Therefore, these convolutional neural networks (CNNs) generate and classify data using
local features. The extraction of local features is adequate for processing natural images
because they have almost no global features. As discussed, in addition to local features,
global features could help DNNs better learn the physics of heat transfer. Hence, we believe
a DNN capable of simultaneously extracting local and global features could better predict
the temperature images.

As seen, the literature works used the DNN and loss functions tailored for the process
and estimation of natural images. However, the process and estimation of physical images
require DNNs and loss functions are adjusted to meet the demands of these images. Thus,
the present study aims to introduce novel DNNs that can extract local and global features
and benefit from new loss functions to improve the training process and diminish outlier
errors.

2. Usage data set
Until the publishing of this paper, the data set represented in Edalatifar et al. (2020a) is a
comprehensive heat transfer data set that is freely accessible and can be downloaded
from https://data.mendeley.com/datasets/rw9yk3c559/2. Edalatifar et al. (2020b, 2021)
used this data set to demonstrate the ability of DNNs to learn the physics of heat transfer
as well as represent new methods to reduce error estimation. It involves 44,160 samples;
each sample contains two input images and one 64 � 64 output image. Some isothermal
boundary conditions and a domain geometry represent the two input images, whereas the
domain’s temperature distribution represents the output images. For each sample, the
first input image demonstrates the geometry of the domain and the second input image
represents the imposed isothermal boundary conditions. The output image consists of the
temperature distribution. The data set geometries are regular octagonal, hexagonal,
triangular and square. Figure 1 illustrates four samples of this data set.

There are various numerical methods that can be used to solve the heat PDE. One of
these methods is the finite volume method (FVM) (Bergman et al., 2011), which was used by
Edalatifar et al. (2021, 2022, 2020b) to calculate the temperature distribution of images in the
data set with the residual accuracy of 10�6. They used the following equation, subject to
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T¼ Ti for each piece of the boundary of geometry, where i is the piece number and T is the
temperature of the ith piece:

@2T
@x2

þ @2T
@y2

¼ 0 (1)

The temperature distribution and boundary conditions are normalized between zero and
one. More details about this data set are provided in Edalatifar et al. (2020a).

Figure 1.
Four random samples

of usage data set
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3. Deep neural network structures
In Edalatifar et al. (2021), the authors used a CNN to teach heat transfer physics to a DNN. A
view of the used CNN is illustrated in Figure 2. The general structure of this CNN is based
on an autoencoder (Baldi, 2012), which is a common structure of generator neural networks.
An autoencoder has two main parts: encoder and decoder. The encoder extracts features

Figure 2.
Structure of CNN
suggested by
Edalatifar et al. (2021)
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from input data and the decoder gets the features and generates output data. The CNN in the
encoder and decoder parts has 10 convolutional layers.

Moreover, batch normalization (Ioffe and Szegedy, 2015) and rectified linear unit
(Agarap, 2018) were added before each layer. The details of the proposed CNN can be found
in Edalatifar et al. (2021). In another study, Edalatifar et al. (2020b) introduced an
autoencoder residual neural network (ARN) DNN, which was a combination of a CNN and a
residual neural network (He et al., 2016). Figure 3 depicts a view of the suggested ARN.
Generally, ARN (Figure 3) shows a similar structure to CNN (Figure 2) but the main
difference is the presence of residual blocks in Figure 3. A residual block, as shown in
Figure 4, is a component of two layers with a feed-forward connection, skip connection,
which moves input data of the first layer to an adder in the output of Layer 2. Details about
the structure of the adopted residual blocks can be found in He et al. (2016). Comparing the
structure of CNN and ARN reveals that they have almost equal trainable parameters;
therefore, the difference between their results is only related to their structures.

In the next section, we will introduce two novel DNN structures that extract local and
global features simultaneously. We expect they perform better than CNN and ARN in
learning heat transfer physics. The performance of these novel DNNs will be demonstrated
in the results section.

3.1 First new deep neural network: U-Net autoencoder residual network
As mentioned, the structure of ARN contains many residual blocks. The residual blocks not
only avoid degradation phenomena (Monti et al., 2018) but also increase the speed of
convergence (He et al., 2016) in DNNs. The degradation problem augments an estimation
error instead of decreasing it when adding more layers. Edalatifar et al. (2020b) showed that
an ARN could improve the temperature estimation capability compared to a CNN.

The convolutional layers and residual blocks extract only local features in a domain to
learn the behavior of heat transfer. In natural images, features are predominantly local;
hence, CNN and ARN are suitable DNNs for the process of natural images. Nevertheless, the
temperature of a point is under the influence of the neighbor points and the distance between
a point and its boundaries. Therefore, it seems a DNN needs not only local features
(neighbor point information) but also global features (global information) to estimate
temperature distribution more accurately.

Figure 3.
Structure of ARN

suggested by
Edalatifar et al.

(2020b)
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U-Net is a DNN that was represented by Ronneberger et al. (2015) and has the ability to
process input data globally and locally. A view of a U-Net with a symmetrical structure is
depicted in Figure 5. As can be seen, U-Net has a very similar structure to that of an
autoencoder but the main difference between U-Net and autoencoder is the decoder part.
Unlike autoencoders, each layer of U-Net’s decoder receives features from both the early
layer of the decoder and the layer in the same encoder stage.

The simultaneous processing of local and global information by U-Net suggests an improved
estimation of temperature distribution. Thus, in this study, theART structure wasmodified from
an autoencoder to U-Net, leading to the development of the new structure, UARN, as shown in
Figure 6. UARN’s architecture uses residual blocks instead of convolutional layers, offering
enhanced accuracy and efficient training speeds compared to the ARN structure. As ARN and
UARN share an equal number of layers and identical settings, their trainable parameters are
nearly identical. This ensures that the accuracy of their estimations can be compared without the
number of parameters significantly influencing the results.

3.2 Second new deep neural network: conditional generative adversarial network U-Net
autoencoder residual network
A conditional generative adversarial network (CGAN) (Zhang et al., 2019; Kim and Lee,
2020a) is a well-known deep structure that improves the training process and enhances the

Figure 4.
Residual block
structure
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accuracy of a deep generative network. It has two essential parts: the generator and the
discriminator. The generator is a DNN that produces data and CGAN is used to enhance its
accuracy. The discriminator supervises the accuracy of the produced data with the
generator in the training process and navigates the training process to improve the accuracy
of generated data. After the training process, the discriminator is useless; only the generator
can create data. In the present study, CGAN is used to make a comparison between the
influence of CGAN and the new loss function introduced by Edalatifar et al. (2021) called
MSEþMMuMaSE on the UARN. So, according to the results, it will be decided which one is
better: training UARNwith MSEþMMuMaSE, CGAN or both of them.

Figure 5.
Comparison of the
structure of U-Net
and autoencoder
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Our suggested CGAN is shown in Figure 7 and is referred to as CGUARN. As illustrated in
Figure 7, the UARN is added for the generator part, and the discriminator, shown in
Figure 8, is called ResNet2. Figure 7 denotes that the generator gets input data from the data
set and estimates output data in the training process. Next, the discriminator receives
estimated data (with generator), analyzes them and returns an error to enhance the accuracy
of the generator (Error 2). After that, the optimizer gets two errors: an error of the generator
estimation (Error1) and an error of the discriminator’s analysis (Error 2). Finally, the
optimizer modifies the trainable parameters of the generator (weights of the generator) to
enhance the accuracy of the generator estimation.

ResNet2, which is used as a discriminator in CGUARN, is a classifier. It must detect whether
the input image is a real or fake image. If the image belongs to the data set, it is real; otherwise,
if it is made with the generator, it is fake. In the training process, the generator and
discriminator are always in competition. The generator tries to become stronger and generate
images with minimum error to mislead the discriminator and identify the generated images as

Figure 7.
Structure of the used
CGUARN

Figure 6.
Structure of the utsed
UARN
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real. In contrast, the discriminator attempts to become stronger and correctly identify the fake
images. This competition causes both the generator and discriminator to become stronger
during the training process. As a result, the more powerful the detector, the more powerful the
generator. The steps of the training process for CGAN are as follows:

� Select a sample of the data set and call it Sample1.
� Create a subsample data set and call it Sub_Sample_Real. Its input and output are

the output image of Sample 1 and the “Real” label, respectively.
� Give input images of Sample1 to the generator and estimate output as Fake_Image.
� Create another subsample data set and call it Sub_Sample_Fake. Its input and

output are Fake_Image and “Fake” labels, respectively.
� Train the discriminator with Sub_Sample_Real and Sub_Sample_Fake.
� Train CGAN (Figure 8) with Sample1 while the discriminator weights are fixed.

Therefore, in this step, only the generator weights are adapted.

In the structure of ResNet2, the residual blocks are added. They improve the speed of
convergence in the training process and increase accuracy. For more details, see Edalatifar
et al. (2020b).

4. Loss functions
Introducing a proper loss function is one of the key parts of the DNN training and its outputs
are a criterion for error estimation. The optimizer is responsible for tuning the DNN’s
weights in each step of an iterated process. It checks the estimation error using the loss
function and modifies weights according to loss values. Therefore, loss function directly
influences the accuracy of DNNs, and thus, a loss function must be defined carefully.
Research by Edalatifar et al. (2021, 2020b) showed that when a DNN estimates an image, a
small portion of pixels could be estimated with a substantial error, called an outlier error.
The error of these pixels, i.e. outlier errors, could not be detected with eyes. Hence, they are
not important for estimating natural images but estimating physical images affects later
processes and design decisions that may use these images.

Edalatifar et al. (2021, 2020b) suggested four loss functions that could be used in the
training process of DNNs. They showed the influence of the suggested loss functions on the
training speed, mean estimation errors and outlier errors. The best of those loss functions
was called MSEþMMuMaSE. It could reduce mean and outlier errors and speed up the

Figure 8.
Structure of the used

ResNet2
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training process. In the current study, the mean square error (MSE), a popular loss function
andMSEþMMuMaSE are used to train DNNs and their results will be compared.

MSE is defined as the mean of square errors (SEs). Suppose Trg is a 3D matrix that
represents a collection of target images of a data set. Here, Est is a matrix with a size similar
to Trg, estimated with a DNN. We expect Est to be as similar as Trg for a trained DNN.
Hence, different criteria could be defined to calculate unsimilarity between Est and Trg. One
of the common loss functions that have been used in literature for natural images is the
MSE, which can be calculated as:

MSE ¼ mean Trg � Estð Þ � Trg � Estð Þð Þ (2)

in which, � is the element-wise product. The value of a pixel on Trg and Est is accessible
with Trgn,i,j and Estn,i,j that n is the image number index, as well as i and j denote the row
and column index, respectively. MSE is the sole number because it is the average of all SEs.
The SE of estimation for a pixel is calculated as:

SEn;r;c ¼ Trgn;r;c � Estn;r;c
� �2 (3)

The SE for all pixels is computed using the matrix calculations as:

SE ¼ Trg � Estð Þ � Trg � Estð Þ (4)

As a result, equation (1) could be written as:

MSE ¼ mean SEð Þ (5)

MMuMaSE is the mean of M bigger SEs, whereM is a finite number, so MMuMaSe can be
considered as a maximum pixel error index. To calculate MMuMaSE, first, M biggest SEs
must be determined and then the mean of them should be calculated. So, MMuMaSE for an
image can be computed as follows:

� Calculate SE.
� Sort the SE.
� Select theM biggest elements of SE.
� Calculate the mean of M chosen SEs.

For a collection of estimated images, for instance, a batch of images, MMuMaSE is the mean
of MMuMaSE of each image. MSEþMMuMaSE is the sum of MMuMaSE and MSE, and
thus, it represents a composite outlier-mean error index. Therefore, to calculate
MSEþMMuMASE, MSE and MMuMaSE are computed separately and added together.
More details about these loss functions can be found in Edalatifar et al. (2021). Following
Edalatifar et al. (2021),M is set to 82 for all computations of the current study.

5. Distinction between the present method and physics informed neural
networks (PINNs)
It is important to note that the key difference between our current approach and the PINNs
method developed by Raissi et al. (2019, 2020) is centered on the training strategy and how
the loss function is defined. In the PINN method, the DNN is tailored to solve a particular
problem with set parameters like a specific PDE, geometry and boundary conditions. This
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specialization means that a DNN trained with PINNs may not fully grasp the broader
implications of how changes in PDE coefficients, geometry and boundary conditions affect
the solution. On the other hand, the present approach involves training the DNN on a wide
range of solved problems, enabling the network to understand the links between various
input problems and their solutions, thereby enhancing its ability to generalize.

When it comes to the loss function, PINNs use a two-component system: one for the PDE
error and another for boundary conditions error, merged using weighted coefficients.
Finding the perfect balance for these weights can be challenging, especially as the error
scales for PDE and boundary conditions can vary greatly. In contrast, the present method
simplifies this by not needing to separate the PDE and boundary conditions errors. The loss
function is straightforwardly defined using solutions obtained from numerical methods. As
a result, the DNN trained with the current approach is capable of generating solutions for
new problems through generalization, independent of specific numerical methods. The main
limitation of the current method is the necessity of having a data set comprising solutions
from numerical methods to train the DNN.

6. Evaluation parameters
MSE is an appropriate parameter for exploring the average estimation error. However, here,
we need a parameter to examine the outlier errors. Edalatifar et al. (2020b) introduced MaSE
as an appropriate parameter to check outlier errors for the first time. It is defined as the
mean of the maximum outlier error of each image in a group of images. The calculation of
MMaSE is strict as follows:

� Determine the SEs of each image.
� For each image, select the maximum SE.
� Compute the average of selected SEs in the last step.

The comparison of MMuMaSE and MMaSE reveals that they are equal for M ¼ 1. As the
square is a nonlinear operator, it alters the actual error scale. Thus, an appropriate operator
to have a good view of errors may be the absolute error (AE). Therefore, similar to SE, AE,
which is a 3Dmatrix with a similar size as SE, is defined as:

AE ¼
����Trg � Est

���� (6)

andmean absolute error (MAE), similar to MSE, is calculated as:

MAE ¼ mean
����Trg � Est

����
 !

¼ mean AEð Þ (7)

Likewise, mean of maximum absolute error (MMaAE) is similar to MMaSE, but instead of
using SEs, it uses absolute errors. These error functions were used to analyze the new DNNs
introduced in previous sections.

7. Results and discussion
As mentioned, the number of trainable parameters of UARN, ARN and CNN are almost
equal. The main difference is their structures, which is the main reason for the differences in
accuracy. Three tests were performed in this section: the details are discussed in the next
section. In the first test, CNN, ARN and UARNwere trained with the MSE loss function. The
results of this part aim to study the ability of UARN compared to CNN and ARN to learn the
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physical phenomena. In the second test, UARN was trained with a CGAN structure called
CGUARN. It was trained twice, once with MSE and once with the MSEþMMuMaSE loss
function. The results of this test are very important and reveal information about howmuch
MSEþMMuMaSE improves the accuracy of CGAN. In the third test, UARN and CGUARN
are compared, and the best of them was selected as the ultimate DNN for estimating the
temperature distribution images.

The conditions of training and comparison for the three tests are similar to each other
and are detailed in Table 1. Moreover, the main settings of the training process are also
illustrated in Table 1. Each DNN was trained for 2,000 epochs, and an epoch with less loss
function for validation data, i.e. validation loss error, was selected as the best training point.
DNNwas saved in this epoch for later usage. The estimation error of training and validation
data was preserved throughout the training process and later plotted in diagrams. Then, the
estimated results were examined by the adopted mean of errors (MSE) and the outlier errors
(MMuMaSE) parameters.

7.1 Test 1
In this test, CNN, ARN and UARN are trained with the MSE loss function, which is the most
common loss function for training generator DNNs. The evaluation parameters for this test are
represented in Table 2. As seen, the results of UARN are fantastic; the mean (MSE, MAE) and

Table 1.
Main setting of
training DNNs

No. of epochs Tests 1 and 2: 2,000 Test 2: 1,000

Optimizer Adam (Kingma and Ba, 2014)
Learning rate 0.001
b1 of Adam 0.9
b2 of Adam 0.999
Programing language Python 3.7.2
Library of machine learning Tensorflow
Tensorflow version 1.12.0
Batch size 32
Method of initializing weights Glorot Uniform (Glorot and Bengio, 2010)
Loss function MSE or MMuMaSE (based on test)
M (parameters of MMuMaSE) 82

Source: Table is original and from authors

Table 2.
Validation
parameters for CNN,
ARN and UARN
were trained with the
MSE loss function

Data type DDN type MSE MMaSE MAE MMaAE MaAE

Train CNN 1.010e-5 0.00441 0.00115 0.0611 0.2091
ARN 2.2509e-6 0.000582 0.00061 0.0219 0.972
UARN 2.0598e-6 0.000374 0.000582 0.0170 0.1186

Validation CNN 1.455e-5 0.00748 0.00133 0.07619 0.801
ARN 5.450e-6 0.0022 0.000796 0.0326 0.9964
UARN 2.462e-6 0.000415 0.00064 0.0174 0.1513

Test CNN 1.438e-5 0.00736 0.00132 0.076 0.6224
ARN 4.728e-6 0.00178 0.00079 0.0322 0.9953
UARN 2.399e-6 0.000397 0.000633 0.0172 0.1866

Source: Table is original and from authors
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outlier errors (MMaSE, MMaAE, MaAE) were reduced incredibly. As the sole difference
between UARN and ARN is the U-Net structure of UARN, the decrease of UARN errors in
comparison to ARN is related to the U-Net structure. Hence, it could be concluded that UARN,
in addition to local features, could extract global features and better learn the physics of heat
transfer. It should be noted that the estimation improvement of ARN in comparison to CNN
depends on residual blocks because it is the only difference between them.

Figures 9 and 10 illustrate the variation of MSE and MMaSE during the training
procedure, respectively. In these figures, some of the first epochs have been ignored for the
sake of a graphical representation of data. Figures 9 and 10 show that a UARN network
could decrease the mean and outlier errors faster than other DNNs. In addition, at the early
epochs, MSE and MMaSE parameters for UARN are notably smaller than other examined
neural network structures. Thus, it can be seen that UARN could provide very lowMSE and
MMaSE error parameters and keep its superiority during later epochs of the training
process. Another interesting result is that CNN and ARN never could achieve the value of
MSE and MMaSE of UARN at the final epoch, i.e. 500. It can be seen that UARN, during the
first few epochs, could reach an accuracy that it seems CNN and ARN can never obtain.
Finally, a comparison between Figures 9 and 10 show that the fluctuations (variance) of
MSE and MMaSE for UARN are pretty small compared to CNN and ARN. This observation
is more pronounced for MMaSE compared to MSE.

7.2 Test 2
In Test 1, the superior ability of UARN was demonstrated in learning heat transfer
physics. Using UARN could dramatically reduce mean and outlier errors. Now, in this
test, UARN is trained with CGAN structure. As mentioned, CGAN has been used in the
literature (Mirza and Osindero, 2014; Al-Shargabi et al., 2021) as a powerful structure for

Figure 9.
Variation of MSE

during the training
process for CNN,
ARN and UARN

when they train with
MSE loss function
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training a deep generator network. The new structure was discussed earlier as a
CGUARN. Here, CGUARN was trained using the MSE loss function. Then, the same
CGUARN was also trained using the MSEþMMuMaSE loss function for comparison.
The results are represented in Table 3. Unlike other tests that are trained for 2000 epochs,
Test 2 was specially trained for only 1,000 epochs as it was adequate for the purpose of
the investigation of the current study. The variation of MSE and MMaSE for each epoch
is plotted in Figures 11 and 12.

The results show that training the DNN using MSEþMMuMaSE and MSE as the loss
functions has a minor influence on MSE (mean error) parameter. Using MSEþMMuMaSE
as the loss function decreases not only the MSE parameter slightly but also the outlier errors
(MMaSE, MMaAE, MaAE) effectively. As another result, in Figure 12, the variance
(scattering) of outlier errors during the training process for MSEþMMuMaSE is less than
MSE. In summary, Test 2 demonstrated the ability of MSEþMMuMaSE to reduce mean and
outlier errors. While the CGAN, which is known as a powerful structure for training
generator deep networks, could not outperformMSEþMMuMaSE loss function.

Figure 10.
Variation of MMaSE
during the training
process for CNN,
ARN and UARN
when they train with
MSE loss function

Table 3.
Validation
parameters for
CGUARN, trained
with MSE and
MSEþMMuMaSE
loss functions

Data type Loss function MSE MMaSE MAE MMaAE MaAE

Train MSE 3.238e-6 0.000556 0.00100 0.02096 0.1529
MSEþMMuMaSE 2.7848e-6 0.000297 0.000839 0.01554 0.0904

Validation CGUARN 3.8646e-6 0.0007197 0.00105 0.02128 0.9637
MSEþMMuMaSE 3.027e-6 0.000318 0.000864 0.0158 0.09314

Test CGUARN 3.614e-6 0.000569 0.00105 0.0211 0.1310
MSEþMMuMaSE 3.0051e-6 0.000308 0.000863 0.0157 0.0741

Source: Table is original and from authors
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Figure 12.
Variation of MMaSE
during the training

process for CGUARN
when it trains with

MSE and
MSEþMMuMaSE

loss functions

Figure 11.
Variation of MSE

during the training
process for CGUARN

when it trains with
MSE and

MSEþMMuMaSE
loss functions
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7.3 Test 3
In the first test, the power of UARN to learn heat transfer physics was demonstrated. In the
second test, it was shown thatMSEþMMuMaSE could outperform CGUARN loss functions. In
the present test, UARN, which was the best DNN structure, is trained with MSE and
MSEþMMuMaSE loss functions. The aim is to see how the accuracy of UARN could be
improved using the superior MSEþMMuMaSE loss function. Moreover, the results of training
CGUARN with MSEþMMuMaSE were also added to the graphs for further comparison. In
this test, DNNswere trained for 2,000 epochs. Table 4 represents the evaluation parameters and
Figures 13 and 14 illustrate the variation ofMSE andMMaSE during the training process.

The results show an impact of using MSEþMMuMaSE on average and outlier errors.
The outlier errors are also significantly influenced by the MSEþMMuMaSE loss function.

Figure 13.
Variation of MSE
during the training
process for UARN
and CGUARNwhen
training with MSE
and
MSEþMMuMaSE
loss functions

Table 4.
Validation
parameters for
UARN and CGUARN
when they are
training with
MSEþMMuMaSE
loss function

Data type DDN type Loss func. MSE MMaSE MAE MMaAE MaAE

Train CGUARN MSEþMMuMaSE 2.6559e-6 0.00020 0.00078 0.01295 0.0769
UARN MSEþMMuMaSE 1.6440e-6 0.00015 0.00063 0.01098 0.0797
UARN MSE 2.0598e-6 0.000374 0.000582 0.0170 0.1186

Validation CGUARN MSEþMMuMaSE 2.887e-6 0.00023 0.00081 0.0133 0.099
UARN MSEþMMuMaSE 1.9657e-6 0.00022 0.00067 0.0117 0.365
UARN MSE 2.462e-6 0.000415 0.00064 0.0174 0.1513

Test CGUARN MSEþMMuMaSE 2.892e-6 0.00023 0.00080 0.0133 0.3189
UARN MSEþMMuMaSE 1.9189e-6 0.00020 0.000665 0.01158 0.322
UARN MSE 2.399e-6 0.000397 0.000633 0.0172 0.1866

Source: Table is original and from authors
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Using this loss function can notably reduce outlier errors. Interestingly, a combination of
MSEþMMuMaSE and UARN could better estimate thermal images than CGUARN and
MSEþMMuMaSE. Thus, the combination of UARN and MSEþMMuMaSE is the best
means to simulate and estimate physical images.

Two more important points could be concluded from Figures 13 and 14 during the
training process. First, CGUARN plots and UARN (trained with MSEþMMuMaSE) plots
correspond to the most and least variances. The data for CGUARN are extremely scattered.
As mentioned, we expect a uniform decrease in errors when the variances are small. Second,
the MMaSE values for URAN(MSE) are notably larger than URAN (MSEþMMuMaSE) and
CGUARN (MSEþMMuMaSE). Thus, it can be concluded that using MSEþMMuMaSE can
significantly reduce the outlier errors, regardless of the adopted DNN structure.

Figure 15 shows some test data samples estimated with UARN when trained with
MSEþMMuMaSE. The columns from left to right are input images to UARN, the target
image of the data set and the estimated image with UARN. Under each row, the range of
pixel values is written. The values MSE, MAE andMaAE for the estimated image are added
on the right side of the rows.

7.4 Time of training and prediction process
An essential consideration when using numerical solutions in mathematics is the
computational expense associated with these calculations. DNNs possess the remarkable
ability to forecast data swiftly. Although the training phase in the current approach may be
time-consuming, the approach’s generalization capability ultimately yields a rapid and
precise solution. To investigate this matter, Table 5 illustrates the time required for the
training and prediction processes of the UARN. These times are calculated with a system

Figure 14.
Variation of MMaSE
during the training
process for UARN

and CGUARNwhen
they are training with

MSE and
MSEþMMuMaSE

loss functions
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Figure 15.
Some samples of test
data of the data set
that are estimated
with UARN after it
was trained with
MSEþMMuMaSE

Table 5.
Training and
prediction process
time with UARN
while using GPU or
CPU

Training time for
one epoch (s)

Time of prediction of all of the testing data (s)
Batch¼ 1 Batch¼ 32 Batch¼ 256

GPU
Training data 52 ��� ��� ���
Testing data ��� 45 4 3

CPU
Training data 421 ��� ��� ���
Testing data ���� 123 24 21

Notes: The training process is done with MSEþMMuMaSE loss function
Source: Table is original and from authors
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with an AMDRyzen 7 5800H CPU, 16 GB RAM and an NVIDIA GeForce GTX 1650 graphic
card.

A DNN is conventionally trained with training data and evaluated with a collection of
data that is never seen in the training process, called testing data. Validation data is
sometimes used in the training process to validate training during the process and stop the
process before being trapped in overfitting. Therefore, in Table 3, the time of training is
presented only for training data and the prediction time is only for testing data.

The time of the training process in Table 3 is for an epoch, which means the time of one
optimization UART with all training data in the form of batches (groups) of 32 images. The
prediction time is also presented to predict all testing data, which consists of 6,624 output
images. Predictions can be made simultaneously for a single image or a group of images
called batches. For more comparison, testing data are predicted three times with different
batch sizes.

8. Conclusions
Extracting meaningful information from complex data is always a challenging task. Heat
transfer physical images contain a complex pattern of temperature distribution. Thus, for DNN
to learn heat transfer physics, it demands a well-designed structure compatible with the
physical nature of the phenomenon and a robust loss function to guide adequately. The present
study focused on designing a DNN structure capable of capturing local and global views of the
temperature distribution and developing new loss functions to train the DNN better. The
investigations of thermal images showed that, unlike natural images, the temperature of each
point depends on neighbor points as well as the distance of the point to the heat bound and the
characteristic of the bound. Therefore, a DNN called UARN was suggested in the present
study. A UARN, in addition to having a high convergence speed, could simultaneously extract
local and global features. As, unlike natural images, physical images contain local and global
features, UARN had better estimation in comparison to DNNs without the ability to extract
global features. Considering the loss functions handling the error estimation of physical
images, two loss functions, MSE and MSEþMMuMaSE, were introduced. Moreover, a CGAN
structure, which is a famous method to train generator deep networks, was also introduced.
The combined structure of UARN and CGAN was called CGUARN. In this structure, CGAN
was performing as an intelligence loss function. The impact of using different DNN structures
and loss functions on the accuracy and performance of DNNs in learning heat transfer physics
and predicting temperature images was examined in three cases. The key findings of the
current research can be listed as follows:

� In Test 1, UARN was trained with the MSE loss function. It showed that UARN
has a stronger ability to learn the heat transfer physics phenomena in comparison
to similar DNNs. Moreover, UARN could rapidly reduce mean and outlier errors.
In about epoch 500 of the training process, it reached a level of mean and outlier
errors that CNN and ARN could never achieve. The fluctuations of outlier errors
during the UARN training process were tiny and error reduction was relatively
stable.

� In Test 2, CGUARN was trained using MSE and MSEþMMuMaSE as loss
functions. It was revealed that MSEþMMuMaSE could slightly reduce MSE errors
and significantly reduce the outlier errors. Thus, using MSEþMMuMaSE not only
did not reduce the performance of CGUARN in dealing with MSE errors but also
increased its performance in dealing with the outlier errors.
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� In Test 3, UARN was trained with MSE and MSEþMMuMaSE. The results showed
that using MSEþMMuMaSE could reduce MSE slightly and significantly reduce
the outlier errors. Thus, MSEþMMuMaSE leads to better results compared to MSE.
Using MSEþMMuMaSE for training UARN could outperform the powerful
CGUARN (tainted with MSEþMMuMaSE).

� The UARN was able to predict solutions for all 6,624 test data cases within a matter
of seconds. This highlights that the current approach cannot only generalize
solutions to test cases that were never encountered during the training process but
also can swiftly predict solutions in a matter of seconds.
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