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ABSTRACT

Analyzing the unsteadiness of flow is crucial due to its significant influence on flow characteristics, and at times, it can even alter the flow
pattern entirely. In this research, the effects of two distinct types of unsteadiness—thermal buoyancy and vortex shedding—were examined in
the context of laminar flow around a square cylinder. Initially, the impact of each unsteady phenomenon on the flow was studied independently.
Subsequently, the combined influence of both unsteady factors on the flow was assessed. The Navier-Stokes equations are solved using a finite-
volume approach, which discretizes the computational domain into small control volumes. This technique integrated a pressure-based method
with a symmetry-preserving technique, which minimizes numerical diffusion, making it well-suited for accurately capturing flow instabilities.
An in-house solver was developed specifically for this purpose. The calculations were conducted for Richardson numbers (Ri) ranging from 0 to
0.35 and for three different Prandtl numbers (Pr) of 0.2, 0.7, and 2.5, all at a Reynolds number (Re) of 100. Vortex shedding, referred to as type
1 unsteadiness, occurs naturally at Re = 100. To induce type 2 unsteadiness, Richardson numbers were varied according to a sinusoidal equation.
The findings revealed that the drag coefficient of the cylinder is significantly affected by the frequency of Richardson numbers’ variation. As the
variation frequency decreased, the difference in drag coefficients during the increasing and decreasing phases of Ri also diminished.
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NOMENCLATURE dynamics, laying the groundwork for much of the fundamental
) , research in this field." * Typically, these investigations involve cylin-
a  Cylinder’s le_ngth ders with circular or square cross sections, though studies have also
Ca D_r ag coefﬁc1ent explored cylinders with oval cross sections.” ” Fluid flows are generally
G Lift coefficient categorized into steady and unsteady types. In steady flows, the flow
k  Reduced frequency characteristics remain constant over time, whereas in unsteady flows,
Pr Prandt] number these characteristics vary with time. Unsteadiness in flow can manifest
Re’ Rf:ynolds number in three distinct ways:
Ri Richardson number Type 1 (Unsteadiness in the flow’s intrinsic nature): This type
St Strouhal number typically occurs in flows around blunt bodies due to vortex shedding.”
T,  Surface temperature For asymmetric bluff bodies or those at an angle of attack, vortex shed-
T,  Free-stream temperature

) ding results from uneven forces, inducing oscillations in both the flow
Vo  Free-stream velocity
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. . field and aerodynamic coefficients. Even symmetric bodies like cylin-

® Non-dimensional temperature d . . "
ers can experience vortex shedding at critical Reynolds numbers
when disturbances in the flow grow, causing asymmetric flow patterns
and unsteady wake dynamics. Vortex shedding can lead to flow-
induced vibrations and resonance, which are significant factors in
structural failures. However, it can also play beneficial roles, such as

I. INTRODUCTION

For more than a century, the flow around cylinders has been
extensively studied, particularly in the context of bluff body wake
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enhancing mixing or heat transfer.” Recent studies, including Ericsson'’
and Adjlout and Dixon,'" have focused on the dynamics of vortex shed-
ding in various configurations, highlighting the critical parameters
affecting unsteady flow patterns. Ericsson'’ provided insights into the
high-angle-of-attack unsteadiness in slender projectiles, while Adjlout
and Dixon'" examined vortex shedding in turbine cascades, providing a
detailed flow visualization of the location of vortices. Frendi'” and
Crouch et al."” extended this analysis by employing numerical methods
and global stability approaches to further understand the onset and
characteristics of unsteady flows in different flow regimes.

Type 2 (Unsteadiness due to changes in flow characteristics):
Unsteadiness can also arise when fluid properties, such as phase (like
phase change material (PCM) flows), density, viscosity, surface tem-
perature, or velocity, undergo continuous and time-dependent
changes.'* For example, a gradually changing surface temperature can
generate variable thermal buoyancy, making the secondary flow time-
dependent. Numerous studies have delved into such unsteadiness, par-
ticularly where thermal effects are present. Yang et al.'” conducted a
numerical analysis of unsteady flow in turbocharger turbines, revealing
the impact of pulsating flows on turbine performance. Zhang et al.'®
studied the unsteady flow over a triangular-section cylindrical at the
Reynolds number of 100, analyzing how cylinder inclination affects
flow instability and unsteady patterns using quantitative methods.
Sanyal and Dhiman'” explored the wake interactions for two square
cylinders influenced by thermal buoyancy impacts, examining
Reynolds numbers from 1 to 40, Richardson numbers from 0 to 1, and
a Prandtl number of 50.

Type 3: In cases where the geometry is elastic, time-dependent
deformations may occur. Similarly, a rigid body may experience oscil-
latory motions such as plunging or pitching, leading to unsteady flow
characteristics. For instance, a pitching airfoil will encounter varying
aerodynamic coefficients during its descent and ascent. Frendi'* pro-
vided a detailed investigation into unsteadiness caused by geometric
oscillation at different Reynolds numbers, highlighting the influence of
oscillation frequency. Studies like Karn et al."* also focused on geomet-
ric oscillations, particularly analyzing their effect on cavitation and
unsteady wake formation.

Hwang and Kang'’ numerically analyzed unsteady flow charac-
teristics in an axial compressor, identifying two types of unsteadiness,
including stall onset, using a three-dimensional finite-volume solver.
In another study, Zhang et al.”’ examined flow stability around two
circular cylinders arranged in a staggered formation, noting significant
perturbation growth in the far-wake region due to the close proximity
of cylinders. Similar studies”"*** have also been performed on elliptical
cylinders with varying aspect ratios.

The effects of natural and mixed convection within enclosures
containing Newtonian fluids have also been widely studied. These
investigations include enclosures with different shapes,z} inclina-
tions,” and boundary conditions.””*” Research has explored various
cylinder configurations, such as cylinders inside rectangular™ or con-
centric enclosures™ with variable aspect ratios and eccentricities. Jami
et al.”’ used the lattice Boltzmann method to examine natural convec-
tion within a square enclosure, highlighting the cylinder’s position as a
crucial factor influencing heat transfer and flow patterns. Arif and
Hasan®’ explored the performance of different characteristic numerical
boundary conditions in mixed convective flow simulations involving a
heated square cylinder under a non-Boussinesq approach. This study
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highlights the importance of properly choosing boundary conditions
for achieving accurate results in numerical simulations of mixed con-
vective flows. Oztop et al.”” focused on partially open enclosures, ana-
lyzing the impact of geometric parameters on phase change material
melting during natural convection. Mixed convection arises when a
rotating cylinder is introduced, where forced and buoyancy-driven
convection interplay, as observed by Ghaddar and Thiele,”” who found
heat transfer behavior to depend significantly on rotational speed and
Rayleigh number. Costa and Raimundo’* and Liao and Lin’” extended
this understanding by examining the influence of cylinder size, speed,
and enclosure geometry on thermal performance.

One phenomenon that can influence an unsteady flow field is the
secondary flow induced by thermal buoyancy.”® When a flow field
experiences free convection heat transfer, local variations in flow den-
sity can generate a secondary flow, altering the overall flow characteris-
tics.”” For instance, if thermal buoyancy aligns with the direction of
the free stream, it may suppress vortex shedding.”’® Arif and
Hasan’’ conducted a numerical investigation into vortex shedding
suppression in mixed convection past a square cylinder subjected to
large-scale heating. Using a non-Boussinesq model, they identified a
buoyancy parameter that governs the suppression mechanism and
highlighted the role of buoyancy and variations in transport properties
in controlling vortex shedding. Al-Sumaily et al.*’ performed a com-
putational investigation to analyze how thermal buoyancy affects the
flow pattern and thermal performance of circular cylinders in a lami-
nar flow regime, covering Reynolds numbers between 20 and 150 and
Richardson numbers ranging from 0 to 5, with a constant Prandtl
number of 7.1. Their findings demonstrated that as the cylinder’s tem-
perature increased, the recirculating flow near the wake dissipated,
leading to flow separation only at the rear stagnation point.
Furthermore, Ding et al."' examined vortex-induced vibration in three
cylinders arranged in an equilateral triangle under opposing thermal
buoyancy using numerical methods. They observed that higher
Richardson numbers reduced heat transfer on the up-flow surface of
the cylinder while enhancing heat dissipation near the rear stagnation
point. Salimipour’ conducted numerical simulations to investigate the
effects of surface temperature variations on flow dynamics and transfer
of heat around the horizontal cylinders, accounting for buoyancy
forces in 2D, and laminar vertical flows. The study analyzed Grashof
number ranging from 0 to 120,000 with fixed Reynolds and Prandtl
numbers of 200 and 0.7, respectively. Findings indicated that for the
fully isothermal surfaces, the specific Grashof number causes cessation
of vortex shedding above the cylinder. In another study, Salimipour”
examined the influence of mixed convection on thermal and flow char-
acteristics of rotating circular cylinders, with a Prandtl number of 0.7
and Reynolds number of 200, across Grashof numbers ranging from 0
to 120,000 and rotation rates between —4.5 and 4.5. It was observed
that clockwise rotation resulted in lower oscillation amplitudes in flow
behavior compared to counterclockwise rotation.

Further research has also examined mixed convective heat trans-
fer scenarios involving various geometries and boundary conditions.
Basak et al.*” studied mixed convection of air in a square cavity and
observed that maximum heat transfer occurred at the edges of the bot-
tom wall rather than at its center. Arif and Hasan" examined the
impact of both high heating levels and cylinder inclination on mixed
convective flows around a square cylinder using a non-Oberbeck-
Boussinesq model. Their numerical study revealed that increasing
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either the heating level or the inclination angle results in higher drag
coefficients while also affecting heat transfer characteristics differently
in steady and unsteady regimes. Biswas and Sarkar"* reported that the
critical Richardson number increases with Reynolds number for flow
around circular cylinders, highlighting the interplay between buoyancy
forces and flow dynamics. The wake characteristics of bluff bodies are
further modified when placed in confined domains.*” Comprehensive
investigations have detailed how buoyancy-driven transport affects
free-stream flows around different objects under varying Reynolds and
Prandtl numbers.”* *’

Recent studies have continued to explore the complex dynamics
of flow around bluff bodies involving vortex shedding, buoyancy
effects, and the impact of varying Prandtl numbers. These works high-
light the role of thermal gradients and flow unsteadiness in shaping
vortex dynamics. Kumar and Dhiman® examined how aiding buoy-
ancy and channel confinement can affect heat transfer around a square
cylinder, particularly at higher Prandtl numbers. Yu et al."” explored
the impact of thermal buoyancy on flow patterns and heat transfer
around porous cylinders, noting that asymmetry in flow occurs after
specific ranges of Darcy and Richardson numbers. Garg et al.*® con-
ducted a numerical investigation on mixed convective flow past an
elliptical cylinder, examining the effects of varying free-stream orienta-
tions and Richardson numbers on aerodynamic parameters. They
found that heat transfer generally increased with Richardson number,
except for specific orientations, providing insights for compact heat
exchanger design. Arif and Hasan"’ investigated thermal buoyancy
effects on mixed convection around an inclined square cylinder, identi-
fying a critical Richardson number (Ric = 0.78) that suppressed vortex
shedding. Similarly, Ali et al.”’ explored the combined influence of
Prandtl number, Richardson number, and flow orientation on flow
past a heated square cylinder. Their findings showed that higher
Richardson numbers led to steady flow at lower Prandtl values, while
the flow remained unsteady at 90° inclination. They also observed that
the Strouhal number increased with Richardson number but decreased
with Prandtl number, highlighting the complex interaction between
buoyancy forces and thermal gradients in determining flow behavior.

Despite the numerous recent investigations into flow unsteadi-
ness induced by thermal effects, there remains a gap in understanding
the interplay between thermal buoyancy and intrinsic vortex dynamics
under varying Prandtl numbers. Moreover, by reviewing and summa-
rizing the results of past research, it can be seen that none of them
have studied the effect of continuous changes in flow parameters. In
addition, the unsteadiness resulting from the interaction of free stream
and thermal buoyancy is not seen in the aforementioned studies. The
present study aims to address this by systematically exploring flows
with two types of unsteadiness: those arising from the intrinsic nature
of the flow (type 1) and those due to changing flow characteristics
(type 2). This study examines the laminar flows around a horizontal
square cylinder at Reynolds number of 100, where vortex shedding
(type 1) naturally occurs. To introduce type 2 unsteadiness, variable
thermal buoyancy is applied through changes in surface temperature,
leading to a flow with a varying Richardson number (Ri = %"/,.). A
sinusoidal function with different frequencies is used to produce the
Richardson numbers. Additionally, the study evaluates the opposing
effects of momentum and thermal diffusion by simulating the flow at
three different Prandtl numbers: 0.2, 0.7, and 2.5. Figure 1 illustrates
the setup of the square cylinder subjected to a vertical free stream.

pubs.aip.org/aip/pof
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FIG. 1. Configuration of a square cylinder imposed to a vertical free stream.

Il. NUMERICAL SOLUTION OF GOVERNING EQUATIONS

In this research, the unsteady and two-dimensional forms of the
conservation equations for mass, momentum, and energy are utilized
to model heat transfer and fluid flow around a square cylinder. The
Boussinesq approximation is applied to account for buoyancy effects,
while the energy equation excludes the term associated with viscous
dissipation. The governing equations are used in their non-
dimensional forms, as described in the referenced literature,”" and are
expressed as follows:

Continuity equation,

Ou Ov

aﬁ-a—y—o. (1)

Momentum equations,

8(:0”) 8]147)/ 6]1473: o oP
or Ay tTox T T @)
A(pv) Oy  OJp—x 0P  Gr
ot * oy * ox 787y+@ 3)
Energy equation,
d(p®)  Olo—y  Olo—x
00)  Joy Vo _, @)

ot Oy Ox

Here, p denotes the density, P represents the pressure, and © is
the dimensionless temperature. J,—y, Ju—xs Jo—ys Jo—x» Jo—y> and Jo_x
include convection and diffusion terms of the momentum and energy
equations, defined as follows:

], _L% Juoy = 1 Ou
wox = PUE T peax 1 TP T Re dy
1 v 1 0v
R L A
1 00 1 90
Joox = P40 ~ R ox ]@”Y*pU@_RePray'

The Prandtl, Reynolds, and Grashof numbers are defined as
follows:™
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C vy ATa’
:u, Re:p a7 Gr:gﬁ a4

k I V2

Pr , (6)
where the characteristic length is scaled by the cylinder length (a),
velocities by the velocity of the free stream (V,), time (7) by a/V,
pressure (P) by pV..?, and the temperature (®) is normalized by
(T — Tw)/(Ts — Tso). Ts determines the cylinder's surface
temperature.

A custom FORTRAN program was developed to discretize these
equations using a finite-volume, cell-centered approach. The pressure-
velocity coupling is handled using the RK-SIMPLER scheme, as
described in ref. 51. This method solves the momentum and energy
equations explicitly, while the pressure equation is derived implicitly
from the continuity equation. This method involves solving only one
nonlinear equation iteratively for the pressure field, eliminating the
need for corrections in the velocity or pressure fields, thus obviating
the requirement to solve an approximate pressure correction equation.
The Runge-Kutta algorithm is employed to solve the explicit equations
for momentum and energy, whereas the Gauss-Seidel method is used
to solve the implicit equation for pressure.

In mathematical terms, the balance between convective transport
and diffusive dissipation involves two differential operators with differ-
ent symmetries: the convective derivative is skew-symmetric, while dif-
fusion is described by a symmetric, positive-definite operator. One of
the important processes in the finite-volume method is the interpola-
tion of flow quantities on the computational cell faces using several
schemes such as upwind, central differencing, MUSCL, and QUICK.
The RK-SIMPLER procedure is based on the schemes of upwind fam-
ily. All upwind schemes have a numerical diffusion due to being one-
sided. For this reason, they are not suitable for accurate determination
of flow instabilities because they delay the onset of instability (such as
vortex shedding onset and transition to 3D flow) by unintentionally
removing disturbances. In the present study, due to the importance of
vortex shedding ranges, a zero-diffusion scheme based on a second-
order central interpolation is used. On the other hand, central schemes
are generally unstable and may lead to numerical solution divergence.
Verstappen and Veldman™ solved the instability problem by introduc-
ing a method called symmetry-preserving discretization, which pre-
serves the symmetries of the balancing differential operators. In the
current article, we develop a powerful zero-diffusion and high-
accuracy solver by combining RK-SIMPLER and symmetry-preserving
discretization methods. Moreover, the temporal discretization is car-
ried out using the second-order Adams-Bashforth method.

As mentioned above, the Richardson number is made to oscillate
using a sinusoidal function defined as follows:

Ri(t) = Riy, + Rig sin(kt), 7)

where Ri,, and Ri, are the mean Richardson number and oscillation
amplitude, respectively. k denotes the reduced frequency, which is
defined as follows:

k:J%. ®)

Here, f represents the frequency of oscillation. In this study,
the reduced frequency k varies from 0.0001 to 0.1, while a constant
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The outcomes of the numerical simulations include flow con-
tours, vector fields, and streamlines around the cylinder, along with
the computed coefficients of drag and lift, which are defined as follows:

Ci=pie, ©
EpVéa
R T (10)

where F; and F; represent the drag and lift forces, respectively.

According to the geometry of the problem, using a Cartesian grid
could be the best choice. To study the solution independence from the
computational grid, three grid sizes of 200 x 120, 240 x 140, and
290 x 170 are tested. Table I compares the average drag coefficients
obtained by these grids. The results of grids 2 and 3 are very close
together. Therefore, grid 2 with 240 x 140 cells in vertical and horizon-
tal directions, respectively, is chosen for the current numerical solu-
tion. Figure 2 depicts a view of the selected grid. The red line indicates
the geometry boundary. The computational domain used in this article
is large enough so that the distance of the boundaries of the domain
on the left, right, and bottom sides is 10 times the cylinder’s length and
40 times on the top side. No-slip boundary conditions were assigned at
the cylinder surface, with velocity-inlet and pressure-outlet conditions
at the flow boundaries, and symmetry conditions at the lateral
boundaries.

lll. VALIDATION STUDIES

To achieve the accuracy and reliability of the numerical solver
used in this study, the average drag coefficients of a square cylinder at
a Reynolds number of 100 were compared against results from previ-
ous experimental and numerical studies. The validation was carried
out for two scenarios: with and without the influence of thermal buoy-
ancy. The coefficients of mean drag obtained from the current study
are presented in Table II, alongside those from other research studies.
The discrepancies observed between the results were minimal, with the
maximum deviation not exceeding 3%.

As an additional validation measure, the Strouhal numbers corre-
sponding to various Ri (ranging from 0.0 to 0.3) at Re=100 and
Pr=0.7 were compared with the numerical results provided by
Kakade et al.”” Same conditions have been used for the simulation. As
illustrated in Fig. 3, a good correspondence between the results is
observed.

IV. RESULTS AND ANALYSIS
A. Flow-field analysis for type 1 unsteadiness

The initial instability in the flow past a square cylinder under no-

buoyancy conditions emerges at a critical Reynolds number (Re.,) of
. . . s e 08,59

approximately 45, as noted in prior studies.”””” However, the presence

TABLE |. Calculations for the average drag coefficient at Prandtl, Reynolds, and
Richardson numbers 0.7, 100, and 0.1, respectively.

Grid 1 Grid 2 Grid 3
200 x 120 cells 240 x 140 cells 290 x 170 cells

value of 0.1 is set for the mean Richardson number and oscillation Cy 1.405 1.476 1.476
amplitude.
Phys. Fluids 36, 113626 (2024); doi: 10.1063/5.0235800 36, 113626-4
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FIG. 2. A view of Cartesian mesh, red line: geometry boundary.

of thermal buoyancy modifies this critical Reynolds number.
Specifically, when thermal buoyancy aligns with the direction of the
free stream, it enhances the stability of the flow. Consequently, at a
fixed Reynolds number, a specific critical Richardson number can be
identified where vortex shedding is suppressed, resulting in a steady
flow. For instance, at Re = 100 and Pr = 0.7, the critical Richardson
number is determined to be 0.125, as illustrated in Fig. 3. The temporal
variation of the lift coefficient serves as a method to detect the onset of

TABLE II. Mean drag coefficients comparison of a square cylinder.

Studies (at Pr=0.7, and Re = 100)

Ri= 0.0 0.1 0.15
Sohankar et al.”™* 1.477

Darekar and Sherwin (3D)”” 1.486

Sahu ef al.”® 1.488 . -

Arif and Hasan™” 1.510 1.55 1.58
Present 1.486 1.51 1.53
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——=o6—— Kakade et al.
) ———8—— Present study
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Ri

FIG. 3. Comparison between the current Strouhal numbers and the numerical
results obtained by Kakade et al.”’

primary instability. Figure 4 illustrates the temporal changes in the lift
coefficient at Re = 100 and Pr = 0.7, and various Richardson num-
bers. The minor disturbances observed within the time interval 20 <
T < 40 are attributed to insufficient numerical diffusion in the solver,
though these disturbances dissipate over time. As the thermal buoy-
ancy increases, the amplitude of the lift coefficient’s oscillations
decreases. It is evident that at Ri = 0.125, the oscillations in the lift
coefficient are completely suppressed.

This section analyzes type 1 unsteadiness by discretely solving the
flow parameters for each Richardson number. The continuous varia-
tion of the Richardson number, governed by sine Eq. (7), will be
explored in the subsequent section. In this study, Prandtl numbers of
0.2,0.7, and 2.5 are examined. Figure 5 presents the changes in average
drag coefficients across Richardson numbers ranging from 0.0 to 0.2
for these Prandtl numbers. As the Richardson number increases, the
drag coefficient rises due to heightened shear stress. At the critical
point (Ri = 0.125), a sudden drop in the drag coefficient occurs, coin-
ciding with the elimination of vortex shedding. This reduction
becomes more pronounced with higher Prandtl numbers. In fact,
removing vortex shedding increases the stability of the flow, which
reduces the drag coefficient. But then, the increase in the secondary
flow velocity due to increase in the Richardson number increases the
drag coefficient. Additionally, an increase in the Prandtl number leads
to a decrease in the average drag coefficient for each Richardson num-
ber, which can be attributed to enhanced momentum diffusion and,
consequently, a reduction in frictional drag. Figure 6 compares
the contours and streamlines of non-dimensional temperature at
Re = 100 and Pr = 0.7 for Richardson numbers of 0.12 and 0.125. At
Ri = 0.12, type 1 unsteadiness is present, while at Ri = 0.125, the
formation of two symmetric vortices behind the cylinder indicates sta-
bilization of the flow.

B. Flow-field analysis for type 2 unsteadiness

In the previous subsection, it was demonstrated that when the
Richardson number falls below the critical threshold (Ri.), the flow
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T

included type 1 unsteadiness, while for higher Richardson numbers, a
steady flow was established. By considering a sinusoidal equation for
the Richardson number, type 2 unsteadiness can be formed in the flow
field. To prevent the influence of type 1 unsteadiness (vortex shed-
ding), the range of Richardson numbers from 0.15 to 0.35 is investi-
gated. In this range, there is no vortex shedding. According to Eq. (7),
for Ri,, = 0.25 and Riy = 0.1, the Richardson number will change
between 0.15 and 0.35. For this purpose, by replacing Eq. (7) in the
present solver, it is possible to examine the drag coefficient changes at
different reduced frequencies. Figure 7 illustrates how the drag coeffi-
cient varies in response to continuous changes in the Richardson num-
ber for k=0.01, 0.1, and0.2, alongside the separate solutions
representing type 1 unsteadiness at Re = 100 and Pr = 0.7. It can be
seen that a hysteresis loop is formed for each reduced frequency. At
k = 0.01, the drag coefficients in the increasing and decreasing paths

0 0.05 0.1 0.15 02
Ri

FIG. 5. lllustration of mean drag coefficients as the Richardson number varies for
three different Prandtl numbers, with a Reynolds number of 100.

of the Richardson number almost match the type 1 drag coefficients.
Therefore, there is no unsteadiness. However, as the reduced frequency
(k) increases, the variation rate of Richardson number is intensified
and, consequently, the type 2 unsteadiness of the flow increases. For
example, at k = 0.2 and Ri = 0.25, the difference in drag coefficient in
the increasing and decreasing Ri paths is 3.5%.

C. Combination of both unsteadiness effects

If a range of Richardson numbers produced by sinusoidal Eq. (8)
is less than the critical Richardson number, the flow will include vortex
shedding. In this situation, a combination of type 1 and type 2
unsteadiness occurs. The analysis of such a flow can have interesting
physical implications. By choosing Ri,, = Rip = 0.1, a range of
Richardson numbers between 0 and 0.2 is produced, which includes
vortex shedding. Figure 8 depicts the variations of the drag coefficients
with respect to continuous changes of the Richardson number for k =
0.001 and 0.1 along with the separate solutions representing type 1
unsteadiness at Re = 100 and Pr = 0.7. The red area at k = 0.001 is
formed due to compression of the drag oscillation resulting from vor-
tex shedding. The magnified area shows the oscillation better. The
increasing Ri path at k = 0.1 also has oscillation resulting from vortex
shedding, but because it requires much less time to form a hysteresis
loop compared to k = 0.001, the oscillations have much less compres-
sion. At k = 0.001, the increasing Ri path over separate solution points
almost coincides, except in the vicinity of the critical Richardson num-
ber, where a sudden decrease in drag coefficient did not occur. In fact,
type 2 unsteadiness does not occur in the increasing Ri path. In the
decreasing Ri path and in the range of Richardson numbers between
0.05 and 0.15, a significant decrease in drag coefficient is observed, so
at Ri =0.065, the difference in drag coefficient in the increasing and
decreasing Ri paths is 6%. At k = 0.1, completely different drag coeffi-
cients than the separate solutions are obtained due to the strengthening
effects of the unsteadiness. For example, at Ri = 0.0, the difference in
drag coefficient in the increasing Ri path and separate solution is about
5.5%. In addition, by comparing Figs. 7 and 8, it is found that the
directions of closed paths are opposite in these two figures. Figure 7
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includes larger Richardson numbers that do not include vortex shed-
ding. Therefore, the secondary flow in the decreasing Ri path has more
opportunity to stabilize, which leads to an increase in the drag coeffi-
cient and, as a result, the production of a counterclockwise loop.
However, Fig. 8 includes smaller Richardson numbers that include
vortex shedding. In the decreasing Ri path, due to elimination of vortex
shedding, the drag coefficient is reduced and, as a result, a clockwise
loop is created.

Figure 9 shows the flow patterns around the cylinder for varying
Richardson numbers at k=0.001, Re= 100, and Pr=0.7. The upper

1.85
R [m] Type 1 (separate solutions)
{4 ——— k=0.01

1.754

Q165

1.554

1.45—— T T e T i r
0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ri

FIG. 7. Hysteresis loops of drag coefficient for k=0.01, 0.1, and 0.2 along with
separate solutions representing type 1 unsteadiness at Re = 100 and Pr=0.7.
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FIG. 6. Temperature contours and stream-
lines at Reynolds and Prandtl numbers of
100 and 0.7, respectively, at an arbitrary
time: (a) Ri=0.12 (instantaneous
streamlines) and (b) Ri = 0.125.

shapes are for the increasing Ri path and the lower shapes are for the
decreasing Ri path. As expected, for Ri<0.1, vortex shedding is
observed with the explanation that with increasing Richardson num-
ber, the oscillation amplitude of the flow field decreases. For Ri > 0.15
in the increasing Ri path, a steady flow consisting of two symmetrical
vortices is formed. However, at Ri=0.2, a smaller vortical area is
observed compared to Ri=0.15. In the decreasing Ri path for
Ri>0.07, the steady flow is still maintained and as expected, as the

1.65
| O Type 1 (separate solutions)
k=0.001
1.554
~
D .
1.454
135777 T T
-0.05 0 0.05 0.1 0.15 0.2 0.25

Ri

FIG. 8. Hysteresis loops of drag coefficient vs the sinusoidal Richardson number for
k=0.001 and 0.1 along with separate solutions representing type 1 unsteadiness
at Pr=0.7 and Re = 100.
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Ri = 0.07

«— «—

FIG. 9. Flow patterns and contours of temperature at Re =100, and Pr=0.7, and k= 0.001. The direction of arrows shows the hysteresis loop of Richardson numbers.

Richardson number decreases, the vortices become larger. For
Ri < 0.06, type 1 unsteadiness prevails and causes vortex shedding.
Figure 10 depicts the variations of the drag coefficients with respect
to continuous changes of the Richardson number for four different
reduced frequencies at Re = 100 and Pr=0.7. In order to better see the
hysteresis loops, the oscillating regions of the drag coefficients are time
averaged. As the reduced frequency decreases, the drag coefficient values
become closer to the separated solutions. At k= 0.0001, except near the
critical point (Ri=0.125), there is very good agreement with the

separated solution points. In fact, at this frequency, the flow finds
enough opportunity to form under the applied thermal buoyancy. The
lowest drag coefficient in the examined cases occurs at k = 0.01, which is
at Ri=0.03 with a value of 1.375. The difference in drag coefficient in
the increasing and decreasing Ri paths at this point is 8.5%.
Furthermore, at k= 0.1, the curve trend is different compared to that at
the other reduced frequencies. At k= 0.1, the flow has not enough time
to change the structure. Therefore, the effects of thermal buoyancy at
different Richardson numbers are integrated into each other.
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FIG. 10. Hysteresis loops of time-averaged drag coefficient with respect to continu-
ous Richardson numbers for several reduced frequencies at Re =100 and
Pr=0.7.

V. CONCLUSIONS

This paper numerically studied the unsteady flow around a hori-
zontal square cylinder along with the thermal buoyancy effects for
Re =100, 0.0 <Ri<0.35,and Pr=0.2, 0.7, and 2.5. The effects of two
unsteadiness types (typel: vortex shedding, type 2: variable Richardson
number) on the flow patterns and characteristics were investigated in
separate situations and combined form. A finite-volume pressure-
velocity coupling scheme was used to numerically solve the flow field
and temperature field. To avoid numerical errors due to undesirable
damping effects, a second-order, central symmetry-preserving method
was used, which preserved the symmetries of the balancing differential
operators. The results were categorized into three sections as follows:
flow-field analysis for type 1 unsteadiness, flow-field analysis for type 2
unsteadiness, and combination of both unsteadiness effects. In type 1
unsteadiness, a critical Richardson number was found to eliminate the
vortex shedding and formed a steady flow. For example, the critical
Richardson number at Re=100 and Pr=0.7 was 0.125. In type 2
unsteadiness, a sinusoidal equation was used to generate variable
Richardson number. A hysteresis loop was formed for each reduced
frequency. As the reduced frequency increased, the variation rate of
the Richardson number was amplified and, consequently, type 2
unsteadiness of the flow increased. In the third study, by combining
the two unsteadiness effects, it was observed that the overall unsteadi-
ness effect was increased. At k=0.001, for Ri > 0.15 in the increasing
Ri path, a steady flow was formed. In the decreasing Ri path for
Ri > 0.065, the steady flow is still maintained and, as expected, as the
Richardson number decreased, the vortices became larger. For
Ri <0.065, type 1 unsteadiness prevails and causes vortex shedding.
Moreover, except in the vicinity of the critical point, there was a strong
agreement with the distinct solution points. In addition, at k = 0.1, the
curve trend was different compared to that at other reduced frequen-
cies because the flow had not enough time to change its structure.

ARTICLE pubs.aip.org/aip/pof

Therefore, the effects of thermal buoyancy under different Richardson
numbers were integrated into each other.
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