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A B S T R A C T   

Phase change materials (PCMs) inherently store and release large amounts of energy during phase transitions. In 
this research, the potential of two metal foam (MF) layers in enhancing the thermal energy storage unit’s heat 
transfer was probed, with one layer having distinct attributes at an anisotropic angle, ω. Utilizing the finite 
element method to understand the system dynamics, model accuracy was affirmed through rigorous checks. The 
impact of the heterogeneous parameter (0 < Kn < 0.3), heterogeneous angle (0 < ω < 90◦), and porosity 0.9 < ε 
< 0.975 was addressed on the melting process. To circumvent the high simulation costs, an artificial neural 
network (ANN) was trained on 7838 data points. Noteworthy findings indicate that a slight 7.5 % increase in 
porosity can reduce the melting time by 66 %. Moreover, the 0◦ anisotropic angle emerged as the most efficient 
in heat transfer due to its superior thermal properties. The incorporation of ANN analytics was a pivotal shift, 
bypassing the traditionally high computational demands of phase change heat transfer studies. Once fully 
trained, the ANN adeptly demonstrated melting volume fraction (MVF) nuances under varied conditions. 
Further, optimal melting efficiencies were pinpointed at the ω = 0◦ angle, with a specific porosity zone, ε ~ 
0.925, showing minimal MVF and the benefits of a higher porosity (ε = 0.94) becoming evident at t = 3000 s. 
Ultimately, this investigation harmoniously integrates traditional analytical tools with ANN technology, offering 
profound insights into PCM heat transfer dynamics and laying the groundwork for future energy-efficient 
thermal storage solutions.   

1. Introduction 

As the race toward energy efficiency and thermal optimization in
tensifies, applying and understanding advanced heat transfer mecha
nisms are paramount. Thanks to their impressive latent heat storage 
capacities, phase change materials (PCMs) have developed as a front- 
runner in the world of thermal management. However, despite their 

potential, there is an ongoing challenge in maximizing their heat 
transfer rate during phase change processes [1,2]. Introducing metal 
foams—a porous medium with the power to dramatically enhance heat 
transfer rates [3]. By looking into enclosures partially filled by metal 
foam layers, researchers and engineers are now unlocking new di
mensions in phase change heat transfer optimization [3,4]. This article 
delves into the intricacies of these foam layers, their interactions with 
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PCMs, and the groundbreaking heterogeneous metal foam for heat 
transfer enhancement. 

Latent heat thermal energy storage (LHTES) paired with metal foams 
is emerging as a groundbreaking technology in heat transfer and energy 
storage [5,6]. With the increasing global demand for sustainable and 
efficient energy solutions, this combination promises to reshape sectors 
ranging from building design [7] to electronics cooling [8,9]. 

Focusing on energy recovery from domestic radiators, the study of 
Sardari et al. [10] demonstrated the potential of a compact LHTES unit 
placed on the wall side surface of domestic radiators. This system cap
tures otherwise wasted energy and utilizes a porous medium for heat 
storage and retrieval, resulting in a quicker charging time, approxi
mately 95 % of the corresponding time for charging the PCM-only 
alternative. Furthermore, the study posited the superiority of higher 
porosity (97 %) systems for maintaining nearly constant surface tem
peratures. In a different realm, aiming [11] at dwelling space air heat
ing, numerical studies have shown the advantages of a composite metal 
foam/PCM-air heat exchanger over its PCM-only counterpart. Notably, 
the composite reduced discharging time by 56.5 % and provided a 
consistent output temperature. These results spotlight the importance of 
specific geometrical parameters in optimizing heat transfer. Yet another 
study explored the impact of integrating a PCM-metal foam composite 
on the charging/discharging processes of bundled-tube LHTES units 
[12]. The use of metal foams (MFs) to enhance the thermal conductivity 
of the PCM proved instrumental in achieving efficient heat transfer. This 
resulted in improved melting and solidification processes, thereby 

making the overall system both easily configurable and efficient. 
An intriguing approach considered the geometry modification to 

understand its impact on the thermal response of composite MF-PCM for 
thermal energy storage [13]. Findings of [13] suggest that geometry 
modification might hold the key to more efficient thermal responses. 
Specifically, the conical shell system enhanced natural convection, 
while the frustum tube system improved both convection and conduc
tion. Lastly, an insightful review took a comprehensive look at the 
performance parameters of PCM-MF composites [14]. Many parameters 
were identified as key influencers, including MF porosity and pore 
density. Additionally, the review pointed out the heat transfer direction, 
iteration of thermal cycles, and MF filling ratio as potential areas for 
further investigation [14]. 

A dominant theme from the research studies is the amalgamation of 
PCM with MFs to augment the heat transfer rate in LHTES systems. The 
rationale behind this synthesis is the high thermal conductivity of MFs, 
which substantially improves the heat storage efficacy of PCM, thus 
optimizing the performance of LHTES [15]. However, including MFs can 
deter the natural convection of PCM, leading to a decline in its LHTES 
capacity and an escalation in costs [15]. Thus, several configurations of 
integrating MFs into LHTES systems have recently been investigated. For 
instance, one study accentuated the shape and placement of the MF layer 
in determining the efficiency of thermal energy storage [16]. It was 
discerned that the shape of the MF layer has the potential to modulate 
the storage power by approximately 60 %, even with a constant amount 
of MF [16]. Another research, aiming at the composite design of PCM 

Fig. 1. A schematic view of an LHTES unit and channel shape PCM containers.  
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and MF LHTES, evaluated the effects of various factors, such as nano
particle volumetric fraction and tube wave amplitude, on the unit’s 
performance [17]. It was ascertained that the integration of MFs, 
coupled with nanoparticles, bolstered heat transmission and curtailed 
charging time [17]. Progressing with the exploration of configurations, a 
novel setup for LHTES using a partial filling of MF was proposed [18]. 
The foundation of this configuration lies in the optimum thermal con
ductivity enhancer (TCE) density, emphasizing the strategic placement 
of the MF in regions with high thermal potential [18,19]. Notably, this 
configuration managed to maintain an equal melting time as that of 
LHTES with a full volume of MF, demonstrating the potential for 
reduced system weight and enhanced economic efficiency [18]. 

Moreover, an in-depth investigation was conducted into the optimal 
configuration of MF layers using a combination of copper nanoparticles 
and copper foam [20]. Through applying the Taguchi optimization 
approach, this research found that when combined with high porosity 
and nanoparticle volume fraction, specific configurations could trim 
down the melting time by threefold [20]. Furthermore, empirical studies 
add significant weight to these claims. One such experimental research 
focused on a heat sink wherein PCM was embedded in open-cell copper 
foam [21]. The results indicated that copper foam filled partially with 
PCM exhibited enhanced thermal performance. Specifically, during the 
heating process, this configuration showed a temperature drop of 20.1 % 
compared to the one without any foam or PCM [21]. Further research 
indicates that incorporating copper foam fins can substantially improve 
the heat distribution and decrease the time required for melting and 
solidification processes [22]. In scenarios where the filling ratio is 50 %, 
optimizing the shapes of copper foam can reduce the complete melting 
time by 4143 s, significantly increasing the benefit of thermal transfer 
[23]. Moreover, varying the volume fraction of copper foam has a pro
nounced effect on thermal behavior, cutting down melting and solidi
fication times by as much as 97.63 % at optimal fractions [24]. Adjusting 
the porosity and density of the copper foam pores also optimizes thermal 
performance, with a suggested porosity of 92 % striking a balance be
tween enhancing heat transfer and maintaining storage capacity [25]. 
The shape of the copper foam fins further influences thermal efficiency, 
with certain designs promoting better thermal charging and discharging 
[26]. Additionally, the inclination angle of the cavity partially filled 

with copper foam affects thermal behavior, with an optimal angle of 
180◦ shortening the phase-change time by 43.16 % [27]. These insights 
highlight the crucial role of copper foam filling strategies in improving 
the efficiency of Latent Thermal Energy Storage systems. 

Some researchers utilized advanced configurations of MFs, such as 
several layers of MF with various porosities [28,29], MF with porosity 
gradients [30,31], or anisotropic MFs [32,33]. A numerical study by 
Sardari [34] demonstrates the profound influence of porosity, pore 
density, and the positioning of the heat source on the melting process of 
PCM in a vertical container embedded with copper MF. The results 
underscored a significant reduction in melting time by 85 % for the 
copper foam-PCM unit compared to PCM alone. In addition, strategi
cally altering the heater’s location from the base to the side or top could 
decrease the melting time by 70.5 % and 4.7 %, respectively. Notably, 
the research also emphasizes the advantage of a multiple-segment MF 
system, which further reduces the melting time by 3.5 % compared to a 
uniform porosity system. 

Parallel to these findings, a study on a horizontal tank filled with 
graded MF [35] throws light on the unstable nature of solar energy and 
the necessity of an effective LTES system. They found that varying 
porosity gradients can significantly affect the melting rate of PCM, with 
an optimal combination, reducing the total consumption time by up to 
9.7 % and 6.2 % for the melting and solidification processes, respec
tively. Diving deeper into the intricacies of PCM-MF systems [36] offers 
insights into the three-dimensional melting heat transfer and the heat 
storage performance of such a unit. By introducing a gradient porosity 
across three stratified layers, they aimed to refine the melting charac
teristics of the composite PCMs. Their findings point to an interesting 
competitive dynamic between conduction and convection, impacted by 
the gradient porosity. This balance, in turn, has significant implications 
for heat transfer and energy storage efficiency. 

Further exploring multi-layer PCMs, a study on a triplex heat 
exchanger employed a three-layer PCM with distinct melting tempera
tures [37]. The charging speed in the unadulterated three-layer PCM 
was notably slower than its single-layer counterpart. However, inte
grating Al-6061 MF amplified the melting rate of the three-layer PCM, 
enhancing its efficacy. The study [31] underscores the prowess of porous 
three-layer PCM configurations in thermal energy storage heat 

Fig. 2. A detailed view of a PCM channel container filled by two layers of MF. (a) the MF layer configurations, geometrical and boundary conditions; (b) the 
orthogonal directions of material properties for the heterogeneous MF. 
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exchangers. In another study, [38] delved into the augmentation of 
solidification through a combination of various PCMs, cascading MF, 
and nanoparticles within a shell-and-tube energy reservoir system. Their 
findings revealed that the design combining an array of PCMs with 
layered foam demonstrated superior thermal behavior, registering an 
impressive 94 % decrement in solidification duration, depending on the 
count of PCMs and layers of foam used. 

As discussed, PCMs combined with MFs have gained substantial 
attention for their potential in LHTES systems. A pivotal aspect of this 

research area is the utilization of artificial neural networks (ANNs) and 
deep neural networks (DNNs) to study and enhance heat transfer 
mechanisms in thermal systems. The study of Shafi et al. [39] sheds light 
on the significance of neural networks in predicting phase change heat 
transfer. The research employs an ANN to model the relation between 
the nanoparticles fractions and the anisotropic angle, focusing on the 
melting volume fraction. Their computational model revealed that an 
ANN could produce highly accurate predictions, evidenced by an R- 
value close to unity. Furthermore, the study’s findings underscore the 
vital role of MF fins’ geometrical placements and the influence of 
nanoparticle concentrations on heat transfer. Interestingly, while 
nanoparticles can generally enhance surface heat transfer, they may 
reduce the thermal storage volume of the heatsink. Another ground
breaking approach came from introducing an Artificial Neural Network 
(ANN) combined with a Genetic algorithm [40]. Aimed at optimizing 
the porosity distribution of graded MF, this approach focused on 
amplifying unidirectional phase-change processes. Their numerical 
model highlighted the profound effect of graded MF on heat transfer 
rates, where an optimal distribution could augment heat transfer by a 
staggering 1160 % and 1185 % for two-layer and three-layer graded MF, 
respectively. 

On a broader note, [41] ventured into the potential of DNNs to un
derstand the physics of 2D heat transfer conduction. Their dataset, 
which comprised a diverse set of geometries, was introduced to a con
volutional DNN. This approach aimed at predicting 2D heat transfer 
without explicit knowledge of the underlying partial differential equa
tion. The study introduced two novel loss functions tailored for heat 
transfer physics. Results indicate the robust capability of DNNs in 
comprehending physical problems and suggest one of the loss functions 
as a potentially superior training tool. In a parallel stride, [42] further 
delves into the efficacy of loss functions in the deep learning paradigm. 
The research introduces three novel loss functions to bolster the training 
of DNNs for thermal conduction problems. Their findings highlight that 
one of these new loss functions significantly outperforms conventional 
ones, improving prediction accuracy and minimizing errors. 

Deep learning’s versatility is further illustrated in [43], which em
ploys a DNN for parameter classification in natural convection heat 
transfer of nano-encapsulated PCM. By leveraging isotherm images, the 
DNN could accurately classify the effects of the Rayleigh number and 
nanoparticle volume concentrations. Additionally, a transfer learning 
approach significantly enhanced the accuracy of Stefan number classi
fication. Lastly, [44] extends the application of ANNs to study phase 
change processes in an inclined container filled with PCM and an MF-fin 
hybrid structure. Results suggest that combining MF and fins can 
significantly reduce melting time, especially with an increased number 
of fins. The ANNs used in the study demonstrated excellent predictions 
of various heat transfer metrics, affirming their role in such applications. 

The literature review underscores the significance of designing 
LHTES units with advanced heat transfer attributes in renewable energy 
systems. Notably, more research is needed to enhance the heat transfer 
of LHTES units using MF layers, especially innovative heterogeneous 
MFs. This research explores the thermal storage and heat transfer of 
LHTES units amplified by uniform and heterogeneous MF layers. Addi
tionally, artificial neural networks are employed to understand the 
system’s thermal dynamics and refine the unit design. 

2. Model description 

Fig. 1 illustrates a schematic view of an LHTES unit made of heat 
transfer fluid (HTF) passages and channel-shaped containers filled by 
PCMs. The HTF fluid is water, which passes over the PCM container 
walls. One side of each PCM container is in contact with the HTF, 
exchanging heat to water at a temperature Th, and melts the PCM at a 
fusion temperature Tm while (Tm < Th). The melting phase change of 
PCM absorbs a notable amount of energy, which can be later released in 
a solidification process. 

Fig. 3. Schematic representation of the numerical methodology employed to 
interpret the primary equations. 

Table 1 
Details of meshes across different mesh control values (Nm).  

Nm (mesh 
cases) 

Quads Edge 
elements 

MVF@106 
(min) 

Err 
% 

Computational 
time  

6  14,641  600  0.999 0.60 20 h:01 min  
7  19,881  700  0.991 0.20 22 h:27 min  
8  25,921  800  0.991 0.20 25 h:57 min  
9  32,761  900  0.992 0.10 30 h:25 min  
10  40,000  10,000  0.993 – 37 h:23 min  
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Two layers of MF are utilized to improve heat transfer in the PCM 
containers. A detailed view of the channel section is depicted in Fig. 2. 
The first MF layer comprises a heterogeneous MF with engineered local 
properties, while the second layer is a uniform MF. The permeability and 
thermal conductivity of the heterogeneous MF depend on an anisotropic 
parameter (Kn) and anisotropic angle (ω). The heterogeneous properties 
can be controlled by adding material to one direction and removing it 
from another direction. Some anisotropic metal foams are discussed in 
[45–47]. Kn can be considered as the ratio of the excess material in a 
perpendicular direction compared to the average material. Thus, the 
MF’s thermal conductivity (k) and permeability (κ) of the heterogeneous 
MF are introduced as [48]: 

kMF =

[
k1(cosω)

2
+ k2(sinω)2

(k1 − k2)(sinω)(cosω)

(k1 − k2)(sinω)(cosω) k1(sinω)2
+ k2(cosω)2

]

(1)  

κ =

[
κ1(cosω)2

+ κ2(sinω)2
(κ1 − κ2)(cosω)(sinω)

(κ1 − κ2)(cosω)(sinω) κ1(sinω)
2
+ κ2(cosω)2

]

(2)  

where subscript MF indicates the metal foam and subscripts 1 and 2 are 
the orthogonal directions, as introduced in Fig. 2. Besides, k2 = (1− Kn) 
× km, k1 = (1 + Kn) × km, and κ2 = (1 + Kn) × κm, κ1 = (1-σ) × κm 
[32,49]. km and κm are the average properties of a simple metal foam. 
The MF’s average property is represented by the subscript m. More de
tails about computing thermophysical properties related to anisotropic 
aspects such as κm and km can be found in [32]. 

2.1. Governing equations 

The heat transfer and phase change of PCM inside the MF layer and 
the natural convection circulation of liquid PCM inside the MF pores can 

Fig. 4. How the mesh resolution parameter (Nm) influences (a) the melting progression and (b) the stored energy.  

Fig. 5. Comprehensive and close-up perspectives of the mesh at Nm = 8.  
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be explained by physical laws of conservation of mass, momentum, and 
energy. The following provides partial differential equations repre
senting the physical behavior of a channel PCM during a melting pro
cess. The model for fluid flow in the metal foam is based on the Darcy- 
Brinkman-Forchheimer framework [17,50,51]: 

Conservation of mass: 

∂u
∂x

+
∂v
∂y

= 0 (3) 

The x-momentum equation: 

ρPCM

ε
∂u
∂t

+
ρPCM

ε2

(

u
∂u
∂x

+ v
∂u
∂y

)

= −

(
∂p
∂x

)

+
1
ε

[
∂
∂x

(

μPCM
∂u
∂x

)

+
∂
∂y

(

μPCM
∂u
∂y

)]

−
μPCM

κ
u − ρPCM

CF
̅̅̅
κ

√ ∣U∣u+Amush
(1 − f (T))2

λmush + f 3(T)
u

(4) 

The y-momentum equation in y direction: 

ρPCM

ε
∂v
∂t
+

ρPCM

ε2

(

u
∂v
∂x

+v
∂v
∂y

)

= −

(
∂p
∂y

)

+
1
ε

[
∂
∂x

(

μPCM
∂v
∂x

)

+
∂
∂y

(

μPCM
∂v
∂y

)]

+gρPCMβPCM(T − T0) −
μPCM

κ
v − ρPCM

CF
̅̅̅
κ

√ ∣U∣v+Amush
(1 − f (T))2

λmush + f 3(T)
v

(5) 

The conservation of energy in PCM: 

ε
(
ρCp

)

PCM
∂TPCM

∂t
+
(
ρCp

)

PCM

(

u
∂TPCM

∂x
+ v

∂TPCM

∂y

)

=

∂
∂x

(

keff,PCM
∂TPCM

∂x

)

+
∂
∂y

(

keff,PCM
∂TPCM

∂y

)

+hv(TMF − TPCM) − ερPCMLPCM
∂f (T)

∂t
(6) 

The conservation of energy in MF: 

(1 − ε)
(
ρCp

)

MF
∂TMF

∂t
=

∂
∂x

(

keff,MF
∂TMF

∂x

)

+
∂
∂y

(

keff,MF
∂TMF

∂y

)

− hv(TMF − TPCM)

(7) 

Here, a detailed local thermal none-equilibrium (LTNE) model is 
utilized to take into account the temperatures of solid MF and PCM in
side the MF pores. The density, thermal conductivity, and specific heat 
capacity are denoted by ρ, k, and Cp, respectively. T symbolizes the 
temperature field, while t stands for time. The pressure (p), x, and y 
velocity components (u and v) denote the hydraulic field variables. The 
heat transfer between MF and PCM in the volumetric unit was repre
sented in the energy Eqs. (6) and (7) through the coefficient hv [52]. The 
given equations make use of the acceleration due to gravity (g), the 
coefficient related to thermal volume expansion (β), the parameter 
known as the Frochheimer factor (CF), and the latent heat associated 
with fusion (L). The values of Amush = 1010 Pa.s/m2 and λmush = 10− 3 

were applied to control the domain’s PCM velocity. |U| is the effective 

(a)

(b)

90 min 180 min 270 min

Fig. 6. Melting patterns of hybrid PCM-MF paraffin wax within a square chamber: (a) results from our recent study and (b) hands-on data from [63] (with permission 
from Elsevier). 

Fig. 7. Verification of current study through comparison with empirical [63] 
measurements. 
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velocity∣U∣ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 +v2

√
. Subscript PCM denotes the PCM material, and f is 

the phase change field introduced as [53]:  

Also, further information about the LTNE properties is available in 
[52]. The thermophysical properties of Copper (MF) [33] and paraffin 
wax (PCM) were taken from the literature [54–56]. The fusion tem
perature of PCM was considered as the average temperature of solid- 
liquid temperatures as Tm = 51.5 ◦C. The enclosure size (H) was set as 
15 cm in the current study. 

2.2. Boundary and initial conditions 

The non-slip and impermeability conditions were applied for all 
enclosure surfaces. A reference pressure with zero value was used at the 
top-left corner of the enclosure. The left wall of the channel, as depicted 
in Fig. 2, is at a hot temperature of Th = (Tm + 15 ◦C) while the 
remaining surfaces are well insulated. The PCM and MF in the enclosure 
are initially at a supper cold temperature T0 = (Tm-15 ◦C). The reported 
temperatures are the temperature differences defined as ΔT = T-T0 (◦C). 

2.3. Characteristic parameters 

The melting volume fraction represents the mean amount of PCM 
that has melted, and its determination can be achieved through the 
provided equation: 

MVF =

∮

V f εdV
∮

V εdV
(9) 

Wherein dV stands for the volume element within the shell domain. 

To compute the total thermal energy retained, both the latent and sen
sible heat are combined: 

Fig. 8. The influence of porosity (ε) on the time history of: (a) MVF and (b) stored energy.  

Fig. 9. A graphical representation of melting times when MVF = 0.95 for 
various values of porosity. 

f (T) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 T < Tm −
1
2

ΔTm (SolidPCM)

(T − Tm)

ΔTm
+

1
2

Tm −
1
2

ΔTm ≤ T ≤ Tm +
1
2

ΔTm (Solid − Liquid PCM region)

1 T > Tm +
1
2

ΔTm (Liquid PCM)

(8)   
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Q =
{
(ρCP)MF

∮

V
(1 − ε)dV

}
(T − T0)+

[∮

V

(

ε
∫ T

T0

(ρCP)PCMdT
)

dV
]

+ ε
∮

V
f ρPCMLPCMdV (10) 

To measure the rate of energy storage, one divides the accumulated 
energy by the elapsed time: 

P = Q/time (11) 

The rate at which thermal energy is stored signifies the energy 
accumulated from the cold PCM’s initial state up to a distinct point 
during the charging phase. 

In the present study, Kn = 0.3 was adopted for the heterogenous 
foam layer parameter. The heterogeneous angle was investigated in the 
0 < ω < 90◦ range, and average porosity in the 0.9 < ε < 0.975 range. 
Base values of ω = 0.785 rad (45◦), ε = 0.925, and Kn = 0.3 were 
adopted for the presentation of the results. Otherwise, the value will be 

stated. 

3. Solution approach and model verification 

This section provides the quantitative technique, model evaluations, 
and mesh sensitivity scrutiny. 

3.1. Utilization of the Finite Element Technique (FET) 

To decipher the core equations, along with their boundary and initial 
conditions, the Finite Element Technique (FET) was employed. This 
method was essential for efficiently handling the nonlinear sink/source 
elements associated with phase transformation [57,58]. The governing 
partial differential equations are transformed into a weak form. A sec
ond order discretization for momentum and thermal equations was 
utilized. The set of equations were integrated via the Gauss quadrature 
integration on an element-by-element basis to find algebraic residual 
equations. Iterative solutions for these equations were found using the 
Newton technique [59,60], and a damping coefficient of 0.8 was 
incorporated to enhance the convergence rate. In collaboration with the 
Newton approach, the PARDISO parallel computation system was 
deployed to facilitate simultaneous calculations across multiple pro
cessing units [61,62]. 

Autonomously, the solution’s timing and convergence were adjusted 
to maintain a relative error under 5 × 10− 3, utilizing the backward 
differential formula’s primary-secondary order. The FET ensures a 
smooth and precise outcome over the segmented mesh, aligning 
perfectly with the goals of this research. Initiating with the starting 
conditions, the study progressed to investigate phase transition dy
namics and energy storage. Equations relating to thermal aspects, con
tinuity, and the phase change field (f) were deemed fully consolidated 
and solved in a step-by-step manner. The algorithm was designed to be 
terminated when an utterly molten state was reached, recognized by an 
MVF value greater than or equal to 0.995, serving as the completion 
metric. A schematic representation of the applied computational 
approach can be observed in Fig. 3. 

3.2. Mesh sensitivity analysis 

To analyze the effect of mesh resolution on computational accuracy, 
a test case with Kn = 0.3, ω = 45◦, and ε = 0.925 was examined. The 
domain of the solution was partitioned using a uniform structured mesh. 
Nm, a mesh resolution parameter, was used to dictate the size of the 
mesh. Table 1 showcases the attributes of the generated meshes, the 
MVF at t = 106 min, and the associated computational durations. This 
particular time frame of 106 min was chosen due to its proximity to the 
complete melting phase. 

As seen in Table 1, there is a clear inverse relationship between the 
mesh resolution parameter, Nm, and the associated error percentage, Err 
%. As Nm increases from 6 to 9, the error consistently decreases, moving 
from 0.60 % at Nm = 6 to just 0.10 % at Nm = 9. This trend highlights 
that a finer mesh resolution typically results in more accurate compu
tational representations. The impact of mesh resolution parameter on 
the melting fraction and stored energy is plotted in Fig. 4 during the 
energy storage process. 

As the mesh resolution parameter, Nm, ascends from 6 to 10, there is 
an evident and direct relationship with the computational time: from 20 
h:01 min at Nm = 6 to 37 h:23 min at Nm = 10. Interestingly, the in
crease in computational time does not just grow, but the gaps between 
consecutive Nm values expand, hinting at a potentially exponential rise 
in computational demands with mesh refinement. This trend mirrors the 
inverse relationship observed between Nm and the error percentage (Err 
%), where higher mesh resolutions led to reduced errors. This correla
tion between Nm, computational time, and Err % illuminates a pivotal 
trade-off in computational modeling. As mesh granularity intensifies, 
while accuracy gains are achieved (as evidenced by lower Err %), they 

t = 1200s 

t =2400s 

t =3600s 

t =4800s 

t =6000s  

Fig. 10. The isotherms (ΔT), melting interface, and streamlines at ε = 0.9 for 
various melting times. 
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come at the high cost of extended computational durations. Thus, as a 
fair trade between computational time and accuracy, Mesh with Nm = 8 
was selected. The structure of mesh with Nm=4 is depicted in Fig. 5. 

3.3. Model verification 

During the melting procedure of the hybrid PCM-MF paraffin wax, 
the results generated by our simulations were compared to experimental 
observations shared by Zheng et al. in [63]. Within a square enclosure of 
100 mm, paraffin wax underwent the melting phase. A heat flux of 1150 
W was administered to a singular vertical face, with only slight heat loss 
from the surrounding boundaries of the compartment. The metal foam 
made of copper had a porosity of 0.95 and a PPI of 5. Fig. 6 showcases 
the liquid-solid boundary at intervals of 90 min, 180 min, and 270 min 
during the melt. Meanwhile, Fig. 7 visualizes the average temperature 

along a vertical trajectory situated 2.5 cm from the warmth-infused 
plane. The present simulation’s observed structure, boundary points, 
and temperature outlines resonate strongly with the observations made 
by Zheng et al. [63]. 

4. Results and discussion 

Fig. 8 presents the chronological progression of MVF and stored 
energy throughout the melting process. A notable observation is that an 
increase in porosity considerably prolongs the melting process. To 
illustrate, let’s consider a scenario where the MVF is 0.5, signifying that 
half the enclosure is filled with molten PCM. For cases with porosities ε 
= 0.9, ε = 0.925, ε = 0.95, and ε = 0.975, the respective melting du
rations are 2280 s, 2760 s, 3720 s, and 6780 s. Interestingly, a modest 
porosity increase of 7.5 % from 0.9 to 0.975 augments the melting 
duration by a striking 66 %. This underscores the profound influence of 
the average porosity of the MF layers on heat transfer and energy storage 
rates. For an MVF of 0.5, Fig. 8(b) reveals that the energy storage rates 
for ε = 0.9 and ε = 0.975 are 1848 W and 637 W, respectively. This 
implies that a 7.5 % augmented use of metal foam (at ε = 0.9), enhances 
the thermal properties and then, amplifies the power rate by almost 2.9 
times when juxtaposed with the ε = 0.975 scenario. The unit of MJ/m 
was employed as the unit for energy storage, assuming a unit length of 
unity. 

Fig. 9 graphically elucidates the melting times required for MVF =
0.95. A conspicuous disparity is observed between the ε = 0.95 and ε =
0.975 cases, while the differences among other cases appear relatively 
nominal. This suggests that selecting a metal foam with an average 
porosity of 0.95 or 0.925 might strike an optimal balance between 
enhanced heat transfer and minimal material addition. As the porosity is 
reduced to 0.9, the amount of metal foam matrix increases, but the heat 
transfer enhances slightly. The fastest melting occurs in the scenario 
with ε = 0.9, which intriguingly also shows the greatest resistance to 
natural convection currents. Therefore, the ε = 0.9 scenario has been 
selected for an in-depth analysis of temperature distribution and pat
terns of melting. 

Fig. 10 offers insights into the isotherms and the melting frontier, 
supplemented by streamlines for the ε = 0.9 case, captured at intervals 
beginning from 1200s. At the 1200s mark, the melting boundary pre
dominantly progresses at the enclosure’s upper section, attributable to 
the influences of natural convection. The molten regions feature 

Fig. 11. The influence of heterogeneous angle ω (rad) on time history of: (a) MVF and (b) stored energy.  

Fig. 12. A graphical representation of melting times when MVF = 0.95 for 
various values of heterogeneous angles ω (rad). 
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prominently developed streamlines, indicating fluid movement 
ascending adjacent to the heated surface, reaching the melting bound
ary, relinquishing heat to the solid PCM, and then descending. With the 
progression of time, melting continues, notably shrinking the solid re
gion to the right. Close-knit isotherms, especially at the enclosure’s 
upper section, indicate pronounced temperature gradients. By the 6000 
s mark, the enclosure predominantly transitions to a liquid state, with 
temperatures approximating the heated wall’s temperature. At the same 
time, the gaps in the streamlines become smaller, indicating a decrease 
in natural convection as a result of lessened temperature differences and 
weaker buoyancy forces. 

Fig. 11 presents the melting fraction and stored energy across vary
ing heterogeneous angles: ω = 0 rad (0◦), 0.26 rad (30◦), 0.52 rad (60◦), 
and 0.78 rad (90◦). Augmenting the heterogeneous angle results in a lag 
in both the melting process and stored energy. 

Fig. 12 sheds light on the melting duration corresponding to each 
heterogeneous angle. The least duration is associated with the zero 
heterogeneous angle. This unique pattern can be attributed to the 
anisotropic characteristics of the MF layer. When ω = 0, in line with the 

heterogeneous matrices defined by Eqs. (1) and (2), there’s a notable 
enhancement in thermal conductivity in the x-direction coupled with 
increased permeability in the y-direction. This dual mechanism facili
tates the MF layer in effectively absorbing heat from the hot wall pri
marily through conduction. The heightened permeability in the y- 
direction then bolsters natural convection flows, ensuring optimal nat
ural convection circulations. As a result, these circulations efficiently 
spread the absorbed heat in the y-direction through the process of 
advection, thereby enhancing heat distribution. On the other hand, an 
angle of 90◦ demonstrates weaker conduction heat transfer perpendic
ular to the hot surface while also resisting natural convection flows 
adjacent to the heated surface. Both these factors collectively hinder 
convection heat transfer. Melting typically initiates adjacent to the hot 
wall, extending toward the enclosure’s center. 

Fig. 13 shows isotherms and streamline contours and the melting 
front for the anisotropic angle ω = 0◦. Comparing with similar contours 
in Fig. 10 for ω = 45◦, we observe that the top region in Fig. 10 exhibits 
advanced melting for t = 1200s. This can be linked to superior thermal 

t = 1200s 

t = 2400s 

t = 3600s 

t = 4800s 

t = 6000s  

Fig. 13. The isotherms (ΔT) and streamlines at ω = 0 rad for various 
melting times. 

t = 1200s

t = 2400s

t = 3600s

t = 4800s

t = 6000s

Fig. 14. The isotherms (ΔT) and streamlines at ω = 0.785 rad (90◦) for various 
melting times. 
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conductivity in the MF layer for ω = 0◦ in the x-direction. Additionally, 
during the early stages (at t = 1200s), only a small quantity of PCM is 
available, indicating a weak natural convection flow. A closer look at 
Fig. 11 also indicates minimal discrepancies between melting curves in 
the early stages as ω varies. By t = 2400 s, the natural convection dy
namics intensify, pushing the melting boundary rapidly upwards. Fig. 14 
shows the same contours but for ω = 90◦. As seen, the melting interface 
is not as advanced as that of Fig. 13 at t = 2400, which is due to the low 
permeability of the MF layer with ω = 90◦ in the y direction. For both 
cases of ω = 0◦ and ω = 90◦, melting also progresses commendably at the 
base. By t = 4800 s, the bulk of the PCM has transitioned to a molten 
state, and a stratified zone is evident in the enclosure’s upper section. 
However, it is clear that the amount of solid PCM is much higher in 
Fig. 14 for case ω = 90◦. Yet, in both cases, consistent natural convection 
currents persist in the lower section. By t = 6000 s, the entirety of the 
enclosure nearly matches the wall temperature, with no residual solid 
PCM. 

Fig. 15 illustrates the effects of the heterogeneous parameter, Kn, on 
MVF and stored energy, with results detailed for a default angle of ω =

45◦. Notably, the influence of Kn on both MVF and stored energy ap
pears to be marginal. Most disparities emerge during the concluding 
phases of the melting process when only a trace amount of solid PCM 
remains, and there is a shift in streamline patterns. Additionally, for this 
particular scenario, the presence of a heterogeneous structure might 
slightly hamper the melting process. This can be ascribed to the chosen 
angle ω = 45◦, which not only diminishes permeability in the y-direction 
but also results in reduced thermal conductivity in the x-direction. 

Fig. 16 depicts the melting durations. Observably, variations in Kn 
exert a negligible effect on the melting timeframe. Figs. 17 and 18, 
which display the isotherms, reveal only minor thermal and melting 
discrepancies between the Kn = 0 and Kn = 0.3 scenarios. This minimal 
variation can be attributed to the angle ω = 45◦, which furnishes 
balanced local properties in both the x and y directions, effectively 
neutralizing each other’s impacts. 

5. Neural network-based exploration on heat transfer analysis 

The computations of phase change heat transfer are pretty expensive. 
The results of the Mesh sensitivity analysis in Section 3.2 showed that 
the computational time for the selected mesh case of Nm = 8 is about 26 
h. Therefore, here in order to better understand the behavior of physical 
systems for a range of design parameters, the neural networks have been 
leveraged to dive deeper into the influence of control parameters on heat 
transfer rates. This specific network is structured with three inter
connected hidden layers. Each of these layers holds 15 neurons, utilizing 
sigmoid as their activation function, as shown in Fig. 19. A dataset 
spanned 36 distinct melting cases providing 7838 samples was created 
using the simulated data. The dataset details a myriad of parameters 
elaborated within the results section. Inputs and outputs processed by 
the neural network are listed in Table 2. The range of each input 
parameter is also reported in the table. 

The data were normalized in the range -1 to 1, and the dataset was 
randomized before the training process began, allocating 70 % for 
training and evenly splitting the remainder for both validation and 
testing purposes. During the training process, the objective was to 
reduce the Mean Squared Error (MSE) by employing the Adam optimizer 
[64]. The neural network was exposed to 1000 training episodes with 
batch sets of 4. To streamline the data, the StandardScaler methodology 
[65] was employed. The validation and training and loss values ach
ieved were both below 9 × 10− 4. 

Fig. 20 depicts the MSE’s trajectory for the training and validation 
datasets across various epochs, signifying a continuous decline with 
increasing epochs. Meanwhile, Fig. 21 juxtaposes the actual versus the 

Fig. 15. The influence of heterogeneous parameter (Kn) on time history of: (a) MVF and (b) stored energy.  

Fig. 16. The required time for the melting process and the total heat released 
for various ε, ω, and Kn for MVF = 0.95 (95 %). 
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projected test data, evidencing a robust model alignment. Leveraging 
this neural network’s precise predictive capabilities, contour diagrams 
were drawn to elucidate the influence of the control parameters on MVF. 

Fig. 22(a) and (b) present contour plots of MVF in relation to Kn and 
ω, captured at time intervals of t = 2000 s and t = 3000 s with ε set at 0.9. 
These contours offer insights into heat transfer velocities across various 
control parameters. Achieving such detailed results was computation
ally intensive before the adoption of ANNs. In the absence of ANNs, 
generating this level of detail would have demanded thousands of 
computational hours. A key takeaway from Fig. 22(a) and (b) is the 
positive correlation between an increase in the heterogeneous param
eter (Kn) and the melting rate (MVF), especially as the anisotropic angle 
(ω) diminishes. This trend aligns with the findings from the prior sec
tions regarding the parametric analysis. Furthermore, Fig. 22(a) and (b) 
shed light on the effects of the anisotropic angle, highlighting that for 
angles of ω >45◦, a rise in Kn can actually reduce MVF rather than 
enhance it. 

Fig. 23(a) and (b) showcase MVF corresponding to different 

t = 1200s

t = 2400s

t = 3600s

t = 4800s

t = 6000s

Fig. 17. The isotherms (ΔT) and streamlines at Kn = 0 for various 
melting times. 

t = 1200s 

t = 2400s 

t = 3600s 

t = 4800s 

t = 6000s 

Fig. 18. The isotherms (ΔT) and streamlines at Kn = 0.3 for various 
melting times. 

Fig. 19. The structure of utilized NNs for learning the physical dynamic of the 
energy storage unit. 
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porosities (ε) and anisotropic angles (ω) at two snapshots: t = 2000 s and 
t = 3000 s, with Kn set at 0.3. The illustrations suggest an anisotropic 
angle of ω = 0◦ yields optimal melting efficiency. During the 

intermediate phase of the charging process, particularly during melting, 
a distinct region emerges with mid-level porosity values (around ε ~ 
0.925), where MVF is at its lowest. Interestingly, a porosity value of ε =
0.9 achieves the peak MVF, while a higher porosity of ε = 0.94 delivers 
commendable MVF. Lower porous MF excels in effective thermal con
ductivity, while higher porosity MF favors enhanced natural convection 
circulation. Consequently, the benefits of ε = 0.94 become more evident 
at t = 3000 s than at t = 2000 s. 

6. Conclusions 

PCMs possess the intrinsic ability to store and release significant 
energy during melting and solidification processes, respectively. In the 
present study, the efficacy of using two layers of MF to enhance heat 
transfer in a thermal energy storage unit is meticulously examined. One 
of the MF layers is heterogeneous with engineered local properties in an 
anisotropic angle ω. The finite element method was applied to solve the 
governing equations representing the physical behavior of the energy 
storage unit. Mesh study and model verifications were performed to 
ensure the accuracy of the model and computations. Due to the high cost 
of simulations, an ANN was trained to learn the physical behavior of the 
system using 7838 sample data. The results were reported in the form of 
MVF graphs, stored energy, and isotherm contours and streamlines. The 
key findings of the study can be summarized as follows:  

• The results encompass examining the effects of the anisotropic angle 
(ω) ranging between 0◦ and 90◦ and a defined porosity (ε) value 
within 0.9 to 0.975. The core findings underscore a profound impact 
of MF’s average porosity on the melting duration, as evidenced by 
the dramatic 66 % decrease in melting time resulting from a mere 
7.5 % porosity augmentation. Further, the interplay between the 
melting fraction, stored energy, and varying heterogeneous angles 
reveals that a 0◦ anisotropic angle yields optimal heat transfer dy
namics due to its favorable thermal conductivity and permeability 
attributes.  

• An essential breakthrough in this study comes from adopting neural 
network-based analytics. The computational demands associated 
with phase change heat transfer analyses are notably high, often 

Table 2 
List of input and outputs of ANNs.  

Input parameters Range 

Symbol Description 

Kn Heterogenous parameter 0 < Kn < 0.3 
ε Average porosity 0.9 < ε < 0.975 
ω Anisotropic angle in metal foam (◦) 0 < ω < 90◦

t Physical time (s) 0 < t < 17,000  

Output parameters 
MVF Melting volume fraction 0 < MVF < 1 
Qt Stored energy (MJ) 0 < Qt < 7.5  

Fig. 20. Validation and training and data across various epochs.  

Fig. 21. Contrast of the actual test data with the predicted values.  
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making intricate investigations laborious. By integrating a neural 
network model, the researchers elucidated detailed heat transfer 
dynamics without the traditionally associated computational over
heads. After rigorous training and validation phases, the model 
showcased its prowess by presenting the contours of MVF concerning 
varying control parameters, as highlighted in illustrative figures. 

• Neural network analysis provided deeper understanding, high
lighting the highest melting efficiencies at an anisotropic angle of ω 
= 0◦. This analysis revealed a clear area where MVF reaches its 
lowest point at a porosity level of approximately ε = 0.925. The 
advantages of a greater porosity, especially at ε = 0.94, were notably 
apparent for the extended observation period of t = 3000 s. 

In essence, this comprehensive investigation merges traditional 
analytical methodologies with the prowess of neural networks, forging a 

deeper understanding of phase change heat transfer dynamics in PCM 
containers with embedded metal foam layers for thermal energy storage 
units. The revelations, especially about the nuanced effects of porosity 
and anisotropic angles, promise significant implications for designing 
advanced thermal energy storage systems, paving the way for more 
efficient and sustainable energy solutions. 

CRediT authorship contribution statement 

Hakim S. Sultan: Writing – review & editing, Supervision, Meth
odology, Formal analysis, Data curation, Conceptualization. Moham
med Hasan Ali: Writing – review & editing, Writing – original draft, 
Visualization, Software, Investigation, Formal analysis, Data curation. 
Jana Shafi: Writing – review & editing, Writing – original draft, Visu
alization, Software, Investigation, Formal analysis, Data curation. 

Fig. 22. Predicted MVF for various values of the heterogeneous parameter (Kn) and anisotropic angle (ω) when ε = 0.9 and for (a) t = 2000s and (b) t = 3000 s.  

Fig. 23. Predicted MVF for various values of porosity (ε) and anisotropic angle (ω) when Kn = 0.3 and for (a) t = 2000s and (b) t = 3000 s.  

H.S. Sultan et al.                                                                                                                                                                                                                                



Journal of Energy Storage 85 (2024) 110954

15

Mehdi Fteiti: Writing – review & editing, Writing – original draft, 
Methodology, Investigation, Formal analysis. Manuel Baro: Writing – 
review & editing, Methodology, Investigation, Formal analysis. Faisal 
Alresheedi: Writing – original draft, Supervision, Methodology, Inves
tigation, Formal analysis. Mohammad S. Islam: Writing – review & 
editing, Writing – original draft, Investigation, Formal analysis, Data 
curation. Talal Yusaf: Writing – review & editing, Investigation, Formal 
analysis. Mohammad Ghalambaz: Writing – review & editing, Meth
odology, Investigation. 

Declaration of competing interest 

The authors clarify that there is no conflict of interest for report. 

Data availability 

No data was used for the research described in the article. 

Acknowledgments 

The authors would like to thank the Deanship of Scientific Research 
at Umm Al-Qura University for supporting this work by Grant Code: 
(23UQU4310414DSR010). 

References 

[1] J.M. Panchal, K.V. Modi, V.J. Patel, Development in multiple-phase change 
materials cascaded low-grade thermal energy storage applications: a review, Clean. 
Eng. Technol. 8 (2022) 100465. 

[2] N.I. Ibrahim, F.A. Al-Sulaiman, S. Rahman, B.S. Yilbas, A.Z. Sahin, Heat transfer 
enhancement of phase change materials for thermal energy storage applications: a 
critical review, Renew. Sust. Energ. Rev. 74 (2017) 26–50. 

[3] W. Cui, T. Si, X. Li, X. Li, L. Lu, T. Ma, Q. Wang, Heat transfer enhancement of 
phase change materials embedded with metal foam for thermal energy storage: a 
review, Renew. Sust. Energ. Rev. 169 (2022) 112912. 

[4] H.A. Ahmadi, N. Variji, A. Kaabinejadian, M. Moghimi, M. Siavashi, Optimal 
design and sensitivity analysis of energy storage for concentrated solar power 
plants using phase change material by gradient metal foams, J. Energy Storage 35 
(2021) 102233. 

[5] W. Liu, Y. Bie, T. Xu, A. Cichon, G. Królczyk, Z. Li, Heat transfer enhancement of 
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