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Abstract
A deep neural network is utilized to classify the parameters of a natural convection heat transfer of a nano-encapsulated

phase change material suspension using the isotherm images for the first time. A natural convection flow and heat transfer

simulation dataset were created and used as a training and validation tool. Then, a deep neural network, consisting of three

parts, was used for the classification task. The first part was made of several conventional layers, and a rectified linear unit

activation layer supported each layer. The second part was a preparation layer for reshaping from 2D images to 1D

classification. The third layer was made of a classifier layer. The results showed that the impact of the Rayleigh number and

volume concentrations of nanoparticles could be classified by 99.8 and 93.32% accuracy, respectively. However, the Stefan

number was classified weakly. As a part of the current research, a transfer learning approach was used to improve accuracy.

The learning transfer approach was quite effective and improved the accuracy of the Stefan number classification by

16.6%.

Keywords Deep learning � Natural convection heat transfer � Physical characteristics classification � Nano-encapsulated
phase change suspension

1 Introduction

Novel engineered coolants such as nanofluids and hybrid

nanofluids are promising working fluids for many industrial

cooling systems. These enhanced coolants can be used for

natural convection cooling applications. Natural convec-

tion cooling has advantages that make it popular for

industrial applications. For example, the low cost for

maintenance compared to the systems with moving parts

and forced convection heat transfer. In addition, cooling

systems with the natural convection heat transfer concept

benefit from safety and low noise. However, these systems

suffer from low performance since the thermal conductiv-

ity of working fluids is low. Moreover, the cooling per-

formance of natural convection systems depends on the

ambient and system temperatures as well as the geometri-

cal design of the cooling system. Thus, the thermal man-

agement of such systems could be a challenging task.

Therefore, new approaches to monitoring and estimating

the system characteristics are highly demanded.

Using nanofluids is an up-to-date method to tackle the

low efficiency of systems with natural convection heat

transfer. Nanofluids are also widely used in different

thermal systems, such as porous media [1], magnetic fields

[2], and solar energy systems [3]. Using Fe3O4 [4], Al2O3-

water [5, 6], CuO-water [5], and oil-Cu-Al2O3 [7]

nanofluids lead to enhancement in the thermal performance

of different systems. The Nano-Encapsulated-Phase

Change Material (NEPCM) suspensions are a state-of-the-

art type of hybrid nanofluids in which the nanoparticles are

made of phase change capsules. NEPCMs have been

examined for improving the thermal efficiency of
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Photovoltaic systems [8, 9]. The NEPCM particles have

two parts consisting of a core and a nano-shell. They are

filled with Phase Change Materials (PCMs) and enclosed

with a nano-shell. The NEPCM particles are suspended in

the host fluid and can be exposed to temperature gradients.

When the NEPCM particles flow in a hot zone, they absorb

some of the heat in the form of latent heat, and then they

move along with the liquid and release the absorbed latent

heat to the cold regions [10]. The NEPCM suspensions are

utilized in natural convection heat transfer flows such as

[11, 12]. Using the NEPCMs nanoparticles in natural

convection heat transfer is a complex phenomenon that

makes the physics of this challenging phenomenon.

Therefore, an advanced numerical technique requires to

model the NEPCMs.

The nonlinear Partial Differential Equations (PDEs) for

the momentum and energy are required to predict particles’

flow and phase change in the computational domain. In

numerical simulations, the domain and PDEs will be dis-

cretized; and then, the linearized equations will be solved

for every computational cell. The algebraic equation sys-

tems predict the flow field by an iterative method. It is

time-consuming and has a high computational cost since it

starts with an initial condition or initial guess and repeats

solving the equations until it reaches the final solution. This

is while estimating the flow parameters requires solving

inverse problems along with the governing equations,

which computationally is much more costly.

Some authors tried to improve the accuracy of correla-

tions for engineering applications using ranking distance

analysis methods [13, 14], response surface methods

[15, 16], or soft computing techniques [17, 18]. Artificial

intelligence methods are alternative simulations that have

recently been the center of attention for many researchers

[19–21]. Deep Neural Networks (DNNs), as a part of

artificial intelligence, thanks to many hidden layers, can

receive images and process them to meaningful outcomes.

Moreover, the potential of DDNs to generate images makes

them unique. Until a few years ago, the NNs were unable to

utilize many hidden layers because of the limitation of the

training methods and parallel computational resources.

However, Hastad and Goldmann [22] overcame this

problem and provided a new approach to using many

hidden layers. Therefore, nowadays, the DDNs with many

hidden layers are an excellent method for a data-driven

approach.

Some authors used NNs to estimate several parameters

and variables to find a relationship between the design

variables, e.g., flow and heat transfer parameters and output

data (Nusselt number, skin fraction, or stored energy). In

such investigations, the input and output data are numbers

or vectors, but they are not images or filed variables. For

example, Ermis et al. [23] used the NNs with one hidden

layer in thermal energy storage units. The authors used

NNs and found a relationship between the design param-

eters and the amount of total thermal energy storage. The

relationship could provide estimations with a 5.58%

absolute relative mean error.

Some researchers utilized NNs to estimate the flow or

temperature fields. In such studies, the input parameters are

the material coordinates and the characteristics parameters

(design variables), and the output is an image (such as the

flow field or temperature distribution). For example,

Azwadi et al. [24] predicted the flow and temperature fields

in a lid-driven enclosure using an adaptive network-based

fuzzy inference system. They used the Lattice Boltzmann

method to produce the dataset for training the ANFIS

Neural Network. Moreover, they chose material coordi-

nates (x and y), Reynolds number, and Rayleigh number as

input parameters for NN. Akbari et al. [25] used the Jaya

optimization algorithm to predict the amount of heat

transfer (Nusselt number) in a cavity. They defined geo-

metrical specifications and the Rayleigh number as inputs

to calculate the Nusselt number.

Selimefendigil et al. [26] used NNs to predict the natural

convection in the porous cavity in the presence of magnetic

field effects. They chose the material coordinates (x and y),

the porosity of the medium, Darcy Number, Hartmann

number, and Rayleigh number as input parameters, and

velocity and temperature as output parameters. They also

used Long Short-Term Memory (LSTM) for training the

NN. Their results showed that the prediction of temperature

distribution is better than the velocity field with this

method. The temperature distribution in a cavity with a

natural convection heat transfer was calculated by Zhou

et al. [27]. They numerically calculated the velocity field

and temperature distribution to build the dataset to train the

NN.

As seen, the literature review mainly focused on using

the machine learning approaches to find a relationship

between the design variables (such as Rayleigh number and

Reynolds number) and the design goal (heat transfer rate in

the form of Nusselt number or flow/temperature fields).

However, estimating the flow characteristics parameters

through observations of temperature field or velocity dis-

tributions without prior knowledge or the physical gov-

erning equations has not been addressed. Such estimation is

advantageous in thermal management systems. Thus, the

current study aims to use the temperature field of natural

convection heat transfer (h) as an input observation and

estimate the design (the flow and heat transfer character-

istics) parameters through an intelligence classification

approach for the first time. Here, a DNN is employed to

perform a parameter classification of the natural convection

heat transfer of NEPCMs suspensions and identify the flow

and heat transfer characteristics for the first time.
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2 Mathematical model and the classification
approach

The aim of the current research is to use a DNN to identify

classes of flow and heat transfer characteristics using

temperature distribution images. Thus, a DNN is trained

using a database of input temperature images and output

classes of non-dimensional parameters. The current

research is made of two major steps. Firstly, a dataset of

images corresponding to non-dimensional flow and heat

transfer characteristics is required. This database could be

obtained using a mathematical model of free convection

flow in a square cavity. The cavity was filled by NEPCM

suspensions, and its top and bottom walls were well insu-

lated. The right and left vertical walls were kept as hot and

cold isothermal temperatures, respectively. Due to a tem-

perature difference between the vertical walls, a natural

convection flow and heat transfer could occur.

Moreover, the phase change nanoparticles also con-

tribute to the convection heat transfer by absorbing the

latent heat and migrating along with the liquid flow. The

mathematical model and its verification have been dis-

cussed and reported in our previous investigation [10]

using the finite element method. Thus, a code and model

similar to [10] are utilized to build a dataset of temperature

distribution images for a class of input non-dimensional

parameters. The non-dimensional parameters for the data-

set and numerical code were Rayleigh number (Ra), Stefan

number (Ste), non-dimensional phase change temperature

TTF, and the volume fraction of nanoparticles Fi. The

developed dataset includes 3290 sets of records with tem-

perature distribution for various non-dimensional

parameters.

Secondly, a DNN should be developed to receive the

temperature distribution as the input and the classes of non-

dimensional parameters as the outputs. Then, a training

procedure should be executed to teach the DNN how to

classify the non-dimensional parameters for a temperature

distribution image. The training procedure manipulates the

DNN coefficients to map the temperature images fairly to a

class of non-dimensional parameters. An essential step in

the training process is defining a loss function, which will

be discussed later.

2.1 Dataset

The dataset of Edalatifar et al. [28], which consisted of

3290 samples, is utilized with some changes to generate a

new dataset in this study. The previous dataset of Edalatifar

et al. [28] is accessible at: https://data.mendeley.com/data

sets/jp96vj3frz [29]. Each sample of the base dataset has

four images of 128 9 128 as output data consisting of

x and y direction velocity (x, y), distribution of temperature

(h), and pressure field (P). In order to generate a new

dataset, only temperature distribution (h) was added to the

current dataset as input. The dataset of Edalatifar et al. [28]

has four inputs in each sample, including the Rayleigh

number (Ra), Stefan number (Ste), non-dimensional phase

change temperature (TTF), and volume fraction of

nanoparticles (Fi). The inputs were quantized from zero to

four in five levels and added to the new dataset as outputs.

The inputs were resized between 0 and 5 linearly in the

quantization process and then rounded to lower integer

numbers.

In summary, a sample of the new dataset has one nor-

malized temperature image between 0 and 1 as input and

four outputs consisting of Fi, TTF, Ra, and Ste. Here, a

normalized function is utilized to scale the input images in

the range of zero to one as:

x0 ¼
x0 �min x0ð Þ

max x0ð Þ �min x0ð Þ ð1Þ

where x0 is the input image and x0 is the normalized image.

The range of non-normalized values of the original (base)

dataset [28] and the range of data in the new dataset are

represented in Table 1. It should be noted that in [28], the

model parameters were available; and then, a DNN was

used to estimate the solution. Thus, a direct approach was

used to estimate the physical solution. However, in the

present study, a few physical solution aspects were

assumed available, and then, the DNN estimates the model

Table 1 a Range of non-normalized values of the original dataset

Edalatifar et al. [28] and b the range of data in the new dataset

(a)

Variable Min Max

Output V - 74.39 74.39

U - 40.35 40.35

h 0.00 1.00

P - 366,527.83 336.08

Input Fi 0.00 0.05

Ste 1.00 5.00

TTF 0.05 0.95

Ra 1,000 100,000

(b)

Output (natural number) Fi 1 4

Ste 1 4

TTF 1 4

Ra 1 4

Input h 0.00 1.00
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parameters. This is an important step in physical problems,

known as inverse problems, where the physical signs and

phenome are available, but the original set of parameters

and setting for such a physical observation is not available.

As a part of the present manuscript, the generated new

dataset is published and is available at the following

address: https://data.mendeley.com/datasets/jp96vj3frz/

draft?a=52cc5952-de3c-4106-acb8-c03df9459dc7 [30].

The data are available in DAT (MATLAB) and NPZ

(NumPy of Python) format; each file consists of 70%

training data, 15% testing data, and 15% validation data.

2.2 Deep neural network (DNN) structure

As mentioned above, a sample of the new dataset has a

distribution of temperature image (h) as input and four

numeric parameters (Fi, TTF, Ste, Ra) as output. Each

output separately predicts with a distinct DNN to have an

accurate prediction. Figure 1 depicts the structure of the

DNN. As shown in Fig. 1, the DNN is constructed in three

parts. The first part consists of 12 convolutional layers.

A Batch Normalization (BN) [31] layer and a Rectified

Linear Unit (ReLU) [32] were added after each convolu-

tional layer. Deep convolutional neural networks with

ReLU active functions could be trained several times faster

than their equivalents with tanh units. Krizhevsky et al.

[33] stated that ReLUs have the desirable property of not

requiring input normalization to prevent them from satu-

rating. Following the impressive results of the ImageNet

[33], the structure of the present deep neural network used

the same principal structure as ImageNet. Thus, after each

convolution and dense layer of ImageNet a ReLU active

function was added.

A convolutional layer mathematically is a collection of

small matrixes, i.e., filters that convolve with the layer’s

input data. The filters’ size and stride are two main char-

acteristics of the BN layers. The common size of 3 9 3 or

5 9 5 was used in filters, and the stride was the size of

movement of filters in the process of convolution as well.

For all convolutional layers in this study, the size of filters

was set on 3 9 3, as given in Fig. 1. In addition; the stride

was set to 1 when outputs and inputs of a layer must have

the same size; otherwise, it was set on 2 to reduce the

output size to half.

Fig. 1 DNN architect and block parts utilized in the current research
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The features are extracted from the input data in Part 1.

Since the inputs are images, the 2D convolutional layers

require. This kind of layer results in 2D features. Part 2

prepares the output of Part 1 for entrance to Part 3 by

reshaping the 2D features into a 1D array. Part 3 is a

classifier, which gets the extracted features from Part1 and

determines a data’s class. It makes the two dense layers

with 64 neurons, followed by a 5 neurons dense layer with

a softmax activation function. Similar to Part 1, a BN and

ReLU were added after the first and second dense layer of

Part 3.

The dense layers, i.e., fully connected layers, mathe-

matically are a matrix containing free parameters. The

following equation computes the output of a dense layer:

Yl;k ¼
Xm

i¼1

Wl;i;k � Xl;i þ bl;k ð2Þ

where W and b are free parameters. Also, Xl and Yl are the

input and output of layer l, respectively. The equation of

ReLU is as below:

Y ¼ max 0;Xð Þ ð3Þ

The relationship between X and Y is shown in Fig. 2.

From Eq. 2, infer that Y is X when the minus values of

X are replaced with zero.

3 Results and discussion

This paper generates a new dataset with one image of the

temperature distribution (h) as input and four non-dimen-

sional parameters of Fi, TTF, Ste, and Ra as outputs.

Afterward, a new DNN is used to predict the output

parameters according to the input image (Fig. 1). Each

parameter is predicted with a distinct DNN for better

accuracy. Therefore, four DNNs with similar structures are

trained so that each DNN predicts one of the outputs.

DNNs have free parameters, which should be adapted to

predict accurately. It is done in a procedure called the

training process. The training process starts with the ran-

dom initialization of free parameters, but when two

datasets have interdependency, transfer learning [34]

enhances the estimation accuracy. Transfer learning refers

to the process of taking knowledge or skills learned in one

domain and applying them to a related but different

domain. It is a simple but effective technique for trans-

ferring knowledge from a well-trained DNN to another

DNN in a similar domain. The process of transfer learning

consists of the initial adjustment of all or some free

parameters of a new DNN according to an excellent trained

DNN instead of the random initialization. All or part of the

first layers can be used to provide better training for DNNs.

In this study, two scenarios are considered for training

DNNs. First, the free parameters of each DNN are ran-

domly initialized with the Glorot uniform technique [35].

In the second scenario, the transfer learning technique is

exanimated since the outputs of the dataset are interde-

pendent. Therefore, the second scenario starts with training

a DNN to predict Ra with initial free parameters using the

Glorot uniform technique. Then their weights are trans-

ferred into three new DNNs before starting the training

processes. Finally, those DNNs are trained to predict TTF,

Fi, and Ste.

All data in this study are generated with Python and the

DNNs built-in Keras [36] as well. The settings for training

are illustrated in Table 2. All results reported in this section

are extracted from an epoch with maximum accuracy of

validation data. Therefore, it guarantees that those results

are not associated with an overfit epoch.

Figures 3 and 4 show the variation of accuracy and loss

error of the validation data throughout the training process

when it does not use transfer learning (TL). These plots

show while Ra, TTF, and Fi rapidly reach the almost final

accuracy and less loss value, the accuracy of Ste slowly

moves to the ultimate value. However, Ste and TTF could

never reach the accuracy and loss of Ra and Fi. These

phenomena reveal that the prediction of Ste is harder than

others, and input information is not enough to accurately

predict Ste and TTF. Moreover, Ra is the most pre-

dictable parameter, and DNN could predict it with high

accuracy of about 100%. Similar results can be obtained

from Fig. 4.

Tables 3 and 4 represent the accuracy and loss of DNNs

when the processes of training are started with TL and

randomly initialized weights (No TL). These results show

that the accuracy of testing data enhances by using TL at

about 3.65%, 0.4%, and 16.6% for TTF, Fi, and Ste,

respectively. Therefore, the lack of information for training

DNNs is compensated with transfer knowledge of training

Ra to other DNNs using the transfer learning technique.

Moreover, transfer learning considerably influences the

prediction of TTF and especially Ste, but it cannot signif-

icantly change the accuracy of Fi. Table 3 shows that

represented DNNs have acceptable accuracy in predicting
Fig. 2 Performance of ReLU activation function. X is input, and Y is

output
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Ra and Fi, but Ste and TTF predict with low accuracy,

especially when the training process starts without TL. As a

result, more input information is needed to train DNNs of

TTF and Ste. Note that the value of the training data in

Table 3 for Ste and TTF are very lower than their values in

Fig. 3 since the value of Table 3 is reported for an epoch

with maximum validation data accuracy.

Figure 5 gives a better view of the transfer learning

influences on the training. Figure 5 shows the variation of

the training data for TTF, Fi, and Ste from epoch 10 to 300.

This plot reveals that the information of DNN of Ra that

transfers to other DNNs with the TL technique increases

the rate of accuracy improvement for Ste, but this

improvement is not significant for TTF and Fi. However,

according to Table 3, the TL can increase ultimate results.

Table 4 illustrates some samples of test data randomly

picked from the dataset. From the left, column 1 shows the

input image to the DNN, and columns 2 to 4 show the real

values of outputs, predicted values without TL, and with

TL, respectively.

4 Conclusion

This study provides insights into the capability of DNNs in

estimating the characteristics and parameters of the natural

convection heat transfer of NEPCM suspension. A dataset

containing 2,390 samples was generated. Each sample of

the dataset had one temperature distribution (h) as input,

and four non-dimensional parameters consisted of the

Rayleigh number (Ra), Stefan number (Ste), non-dimen-

sional phase change temperature (TTF), and volume frac-

tion of nanoparticles (Fi) as the outputs. Since the goal of

this paper was classification, the outputs were quantized

into five levels, and a new DNN was utilized to predict

these classes by using the temperature distribution image.

For better accuracy, each output was predicted with a

DNN. Therefore, four DNNs were used to predict outputs.
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Fig. 3 Accuracy of validation data during training procedures while

the training processes start without TL
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Fig. 4 Validation data loss during the training procedures while the

training processes start without TL

Table 3 Accuracy of DNNs using TL and not using TL (No TL)

Data type Ra (%) TTF (%) Fi (%) Ste (%)

Training No TL 99.96 72.99 100.00 44.94

TL – 77.38 99.96 67.43

Validation No TL 100.00 72.41 93.51 40.97

TL – 78.09 91.68 60.65

Testing No TL 99.80 73.48 93.32 44.74

TL – 77.13 93.72 61.34

Table 2 Training settings
Optimizer Other settings

Name Adam Batch 32

Learning rate 0.001 Epoch 300

b1 0.9 Initializer Glorot uniform technique [35] and transfer weights

b2 0.999 Loss function Categorical cross-entropy
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The training processes were done in the form of two sce-

narios. The first scenario randomly started training with

initial free parameters (DNNs weights). Since outputs had

interdependency, free parameters were initialized with the

transfer learning technique in the second scenario. The

main finding of the current study can be listed as follows:

1. The present DNN predicts Ra and Fi testing data with

high accuracy, about 99.8, and 93.32%, respectively.

For TTF, the accuracy was not very high, at 73.48%.

However, this DDN is not able to predict Ste with

acceptable accuracy.

2. The transfer learning improved accuracy by about 3.65,

0.4, and 16.6% for TTF, Fi, and Ste, respectively.

Therefore, the lack of information for trained DNNs

was compensated by transferring the knowledge of

training Ra to other DNNs using the transfer learning

technique.

3. The results reveal that DNNs need more input infor-

mation to enhance the accuracy of TTF and Ste as well.

The present study assumes the availability of only a few

physical solution aspects, and the DNN is used to estimate

the model parameters. This step is crucial in solving

inverse problems, which deal with physical observations

where the physical signs and phenomena are known, but

the original parameters and setting for such observations

are not available. The current research shows a DNNs can

be utilized for physical parameter classification using input

flow and heat transfer patterns. The flow and heat transfer
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Fig. 5 Variation of training data accuracy while using TL and not using TL (No TL)

Table 4 Predicted samples of

the dataset with DNNs
Input (h) Real output No TL predict output TL predict output

Ra = 0

TTF = 3

Fi = 3

Ste = 3

Ra = 0

TTF = 3

Fi = 3

Ste = 3

Ra = 0

TTF = 3

Fi = 3

Ste = 3

Ra = 1

TTF = 3

Fi = 0

Ste = 1

Ra = 1

TTF = 3

Fi = 0

Ste = 0

Ra = 1

TTF = 0

Fi = 0

Ste = 1

Ra = 0

TTF = 3

Fi = 4

Ste = 3

Ra = 0

TTF = 3

Fi = 4

Ste = 0

Ra = 0

TTF = 3

Fi = 4

Ste = 3

Ra = 4

TTF = 0

Fi = 1

Ste = 4

Ra = 4

TTF = 0

Fi = 1

Ste = 2

Ra = 4

TTF = 0

Fi = 1

Ste = 4

Neural Computing and Applications (2023) 35:19719–19727 19725

123



patterns are nonlinearly coupled to the physical parameters;

and hence, their classification is a difficult task without any

prior knowledge about their governing differential equa-

tions. The low accuracy of the DNN for classifying Stefan

number was improved by using the transfer learning

approach. Thus, it is evident that a dataset with a higher

number of images could be the subject of future studies.

Moreover, the DNN classification could be done on a

desktop computer in a few seconds. Thus, the current

approach could be promising to be used in monitoring

systems applications to detect and control the physical

characteristics parameters. In the present study, a ReLU

activation function was used. However, other types of

activation functions, such as tanh, can be employed in the

DNN design. The type of activation function can impact

the DNN speed and performance. Thus, this subject can be

investigated comprehensively in future studies.
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