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Abstract: The phase change heat transfer of nano-enhanced phase change materials (NePCMs) was
addressed in a heatsink filled with copper metal foam fins. The NePCM was made of 1-Tetradecanol
graphite nanoplatelets. The heatsink was an annulus contained where its outer surface was subject
to a convective cooling of an external flow while its inner surface was exposed to a constant heat
flux. The governing equations, including the momentum and heat transfer with phase change, were
explained in a partial differential equation form and integrated using the finite element method. An
artificial neural network was employed to map the relationship between the anisotropic angle and
nanoparticles fractions with the melting volume fraction. The computational model data were used
to successfully train the ANN. The trained ANN showed an R-value close to unity, indicating the
high prediction accuracy of the neural network. Then, ANN was used to produce maps of melting
fractions as a function of design parameters. The impact of the geometrical placement of metal foam
fins and concentrations of the nanoparticles on the surface heat transfer was addressed. It was found
that spreading the fins (large angles between the fins) could improve the cooling performance of the
heatsink without increasing its weight. Moreover, the nanoparticles could reduce the thermal energy
storage capacity of the heatsink since they do not contribute to heat transfer. In addition, since the
nanoparticles generally increase the surface heat transfer, they could be beneficial only with 1.0% wt
in the middle stages of the melting heat transfer.

Keywords: computer simulation; artificial neural networks; thermal energy storage; cooling of
electronic components; nano-additives phase change material

MSC: 76R10; 80A22

1. Introduction

There are a wide variety of electrochemical batteries; however, lithium-ion batteries
with high power, energy density, and low self-discharge rates are the most common. This
battery type creates a lot of heat, particularly during the quick drain process [1]. The lack
of an effective thermal management system (TMS) could raise the battery temperature
and ultimately affect its performance, efficiency, capacity, power, safety, and life cycle [2].
Furthermore, attaining temperatures below the battery’s operating range will result in a
loss of capacity and autonomy and various other issues during setup [3]. Battery tem-
perature monitoring systems maintain the battery temperature consistently and within
a safe range [4]. As a solution, researchers have proposed combining active and passive
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approaches [5]. Air cooling [6], liquid cooling [7], and PCM cooling [8] systems are among
the approaches employed in battery TMSs.

PCM use in battery TMSs has many drawbacks, including poor heat absorption
capacity, a significant rise in battery temperature after completely melting the PCM, and the
need for re-preparation (PCM solidification). Using PCM in cold weather also reduces the
pace at which the battery heats up during the first driving period, which may deteriorate
the battery [4]. For most PCM materials, the heat conductivity coefficient is about 0.2,
which causes significant issues when using PCMs to absorb heat produced by the battery.
Once completely melted, however, PCM’s low thermal conductivity changes it into an
insulator, limiting heat transmission and causing a fast temperature rise [9]. As a result,
the PCM conductivity coefficient must be raised for the produced heat to be correctly
transmitted [10]. There are numerous ways to improve the heat transfer rate in PCMs,
including the use of nanoparticles [11-13], metal foams [14-16], and fins [17-19].

Sushobhan and Kar [20] reported that nanoparticles in volume fractions of 5 and
2.5 percent might improve PCM performance and melting rate. Another method is to
scatter metallic nanoparticles (NPs) throughout PCMs, producing nanoparticle-enhanced
PCMs (NePCMs) [21]. The inclusion of NPs may improve PCM conductivity and prop-
erties [22]. However, many studies [23] have shown that highly thermally conductive
materials improve NePCM viscosity and conduction while lowering heat convection. Load-
ing NPs can only enhance the performance of the TES system at a specific concentration. Li
et al. [24] performed an experimental study that proved the synergistic effects of a fin and
NePCM on TES unit performance and presented a technique for assessing efficiencies [25].
The researchers discovered that NPs boost TES performance when compared to clean PCM.
Using nano-encapsulated phase change particles in working fluids also exhibits lower
heat resistance than nano-encapsulated PCM, according to Ho et al. [26]. Li et al. [27]
investigated three methods for improving a triple-tube LHTES: MF addition, nanoparticle
addition, and geometry modification. The findings demonstrated that nanoparticles and a
porous medium did not influence performance. Metal foams may accelerate solidification
with decreased porosity or nanoparticles with a more significant volume.

Recent studies on the impact of fins on energy transfer in PCM-filled enclosures have
been reported. Ji et al. [28] calculated the melting of PCM in a hollow with a metal double-
finned heat sink. PCM melting is boosted by increasing the bottom fin’s length and decreasing
the top fin’s size. According to Jmal and Baccar [29], a significant number of fins leads to
PCM confinement. Each system should have a suitable number of fins. Abdi et al. [30]
estimated the phase change performance of a PCM in a TES with and without aluminum
fins. According to research, longer fins transport energy more effectively than a considerable
number of fins. By altering the slope and number of fins, Yazici et al. [31] examined PCM
melting in a chamber. The results revealed that the number of fins and chamber angle
substantially impacted the system’s operating duration. Nakhchi and Esfahani [32] studied
heat sink fin designs. It has been shown that the structure of the fins influences PCM melting.

Among the several heat transfer enhancement options outlined above, nanoparticle
hybrid fins [33,34], metal foam fin hybrids [35], and porous foams with nanoparticles [36]
stand out. Guo et al. [37] investigated the influence of MF and foam on heat transfer via a
series of comparative studies. Each MF and fin enhanced the phase change rate of PCMs,
but various MF and fin combinations showed the most effect. In a simulated investigation,
Zhang et al. [38] evaluated three popular ways of enhancing TES performance. These
include heat pipes, copper foam, and fins. Fins and heat pipes offered the best solidification
performance, whereas heat pipes and MF enhanced melting. Joshi et al. [39] studied
how MF and fins affected heat transfer performance. The application of MF increased
solidification and melting rates by 33.33 and 16.67%, respectively, whereas fins increased
by 5.56 and 50%. Senobar et al. [40] studied the combined effects of PCM, MF, and NPs.
Hybrids increased the phase change rate by 24% compared to pure PCM.

Sheikholeslami et al. [41] studied the phase-changing properties of a triangular fin
TES containing CuO nanoparticles. Discharge and melting are minimized for NePCMs.
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When triangular fins are employed, solidification rates increase by 40.75 percent but reduce
by 44.88 percent when using NePCMs. In a finned tank, Kok [42] examined NePCM
charging and observed that increasing the number of fins enhanced TES while lowering
melt time. Passaro et al. [43] examined the impact of fins on the melting and output
temperatures of TES units and the combined effect of NePCMs and fins. Consequently,
introducing graphene nanoparticles considerably increased thermal conductivity, and
combining NePCMs with fins enhanced discharge performance.

Ren et al. [44] investigated the thermal performance of PCMs using metal foam and
nanoparticles. According to the research, integrating metal foams into the PCM improves its
heat transmission capacity more effectively than introducing nanoparticles. Singh et al. [45]
used statistics to investigate the impact of a Nanoparticle-Enhanced PCM with a finned
conical shell. There have been several studies that examine the effects of HTS tube design.
Mahdi et al. [46] examined the thermal performance of an LHS unit comprised of modules
with varying PCM melting temperatures. The LHS was enhanced by the use of a variety of
PCMs with different melting points. Together with cascaded foam metal and nanoparticles,
multi-PCMs provided the best results. Li et al. [47] developed a game-changing MFPCM
design for enhanced LHS systems that use nano-encapsulated components. They featured
foam porosity for evaluating MF-NePCM heat transmission capacities.

The literature review shows there are only a few studies utilizing NEPMCs and metal foam
fins to manage the heat transfer of electronic components. This study investigates the impact
of NePCM, fin shape, and MF on the phase change performance of a phase change heatsink.

2. Physical Model

Figure 1 shows a schematic view of a battery with a heated temperature of T;, covered
with a NePCM heatsink. The heatsink is a cylindrical enclosure partially filled with a
metal foam layer. The foam layer covered the battery section. Some fin shape metal foams
are also used to improve the heat transfer in the NePCM further. The NePCM comprises
1-Tetradecanol as the host PCM and graphite nanoplatelets (GNPs) as the nanoparticles.
Gravity acts in the horizontal direction, as depicted in Figure 1. The entire foam layers
and remaining cylindrical space are filled by a NePCM. The inside tube of the heatsink is
subject to a heat flux of power g¢. The outer perimeter of the heatsink is cooled by a natural
convection flow of convective heat transfer coefficient of /1o, and temperature Too.

Symmetry line

Battery

Figure 1. The physical model of the battery and PCM heatsink, and metal foam fins.
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Flow and heat transport in a porous media are the governing equations. The Darcy—
Brinkman model, which is similar to the Navier—Stokes equation but includes a source
component (fparcy) that explains the Darcy flow resistance, is used to represent the flow
in the porous media. The convective heat transfer equation with effective thermophysical
parameters is heat transfer. The heat capacity is a function of temperature (T), which is
represented by a time-dependent source component in the heat equation (fsource). Finally,
the solid region’s velocity should be lowered to zero. To manage the velocity in solid
and liquid zones, a sink component (f k) was introduced to momentum equations. The
sink term acts as a substantial resistance force against the fluid flow in a solid location,
bringing the velocity to a stop. The governing equations for mass, momentum, and energy
conservation in the aforementioned model are as follows [48-50]:

Conservation of mass: 3
Ui
27y 1
<3xi> 0 @
Conservation of momentum:
PNePCM OUi 4 PNepCM L + 0 [ pUNePcM O
e ot €2 Jox; ox; ox;j e ox

Conservation of energy:

+ f Darcy,i + f sink,i + f b,i (2)

oT oT ] oT
(Pcp)eff,NePCMj + (0p)nepem (”iaxi> = (keff,NePCMaxi> + hsource 3)

in which u; and u; are the velocity components in the x; and x; directions. The ther-
mophysical parameters include density (o) and dynamic viscosity (y) in the momentum
equations. The heat equation contains the thermal conductivity (k) and specific heat capac-
ity (cp). The subscripts NePCM and eff denote the nano-enhanced PCM and the effective
thermophysical characteristics, respectively. In the governing equations, the source and
sink terms are presented as:

1—26(T) + 0*(T
fDarcy,i = _,uNeECM Ui, fsink,i = _Amush 2 ‘(|‘ 9)3(T) ( ) ui, (4a)
o ! (4b)
b" .
"\ BNePcMPNePCME (T - Tf) i=2
and 0(T)
hsource = eoNePcM L f T (40)

in which the thermophysical features are the heat of phase change (L), phase change tempera-
ture (Ty), and volumetric thermal expansion (B). In addition, A = 0.001, Ayy;,s, = 10'0 (Pa-s/m?),

and g = 9.81 m/s?. The liquid PCM concentration, 6, is a function of temperature and is
expressed as [50]:

0 T < (T; — AT;/2)
0(T) = (TA}?) +1 (Ti—ATe/2) < T < (Tg+ AT;/2) )
1 T > (T; + AT;/2)

In the above, the fully molten and solid PCM are denoted by 8 =1 and 0 = 0. There
is a layer of metal foam fins with a fixed value of permeability (K) and porosity (¢). The
porosity in the clear region (no metal foam) is unity, and the permeability tends to infinity.
Thus, the domain can be explained as:



Mathematics 2023, 11, 356

50f 20

. {sl metal foam, and K - {Kl meal foam ©)

1 clear space oo clear space

According to Table 1, 1-tetradecanol thermophysical characteristics in the solid and
liquid states were assumed to be constant. The thermophysical features of 1-tetradecanol-
GNPs were used based on the experimental data [51] and summarized in Table 1.

Table 1. Thermophysical features of NePCM-GNPs [51].

Thermophysical Features 3 wt% 1 wt% 0.5 wt% 0 wt% Cu Foam
Thermal expansion coefficient, 3 (1/K) 0.000987 0.001008 0.001018 0.001018
Thermal conductivity (solid) W/ (m K) 0.540 0.451 0.350 0.252 8900
Thermal conductivity (liquid) W/(m K) 0.320 0.260 0.180 0.159 380
Density (solid) kg/m3 907.9 896.9 894.1 891.4
Density (liquid) kg/m? 837.6 826.9 824.3 821.6
Dynamic viscosity mPa-s 194.01 59.5 23.45 13.23
Melting point (°C) 37 37 37 37
Specific heat capacity (solid) J/Kg K 1910 1990 2020 2040 386
Specific heat capacity (Liquid) J/Kg K 2190 2300 2330 2360
Latent heat 183.5 212.2 219.5 227.8

The composite PCM-metal foam’s effective heat capacity and thermal conductivity are
calculated as:

(PCh) etenercm = (1 =€) (PCp),, + €(PCh) nepem @)
The thermal conductivity of the composite was calculated using the following
formula [52]:

1-6
Keft NePCM = ﬁ + 0 (knepcme + km(1 —¢)) 8)
K

kNnercm

in which the coefficient ¢ takes a value of 0.35, according to [52]. The practical observations
of [53] are well supported by Equation (8). The metal foam is indicated by the subscript m.
Furthermore, [48] was used to obtain the porous permeability:

73 x107° o\
k= %(1 — 8)0224( ! pl) (%)
: 1_e\05 .
(d,d; ) - 1.18( o > [1—exp(—(1—¢)/0.04)] (9b)

in which d, = 0.0254/10PPL. The permeability of the foam layer was computed as
K =9.6536 x 1078 m? for a porosity of e = 0.95. The characteristics parameters melting
volume fraction (MVF), the average temperature at the heated surface, and stored energy
(SE), were expressed as

[, e0dA
VF = 44— 1
M fA A (10a)
J. Tds
Towe = 25— 10b
avg fs s (10b)
SE = Qlatent T Qsensible (10c)

where A is the domain surface, and s is the length of the heated wall. Qjatent and Qgensible
denote the latent and sensible heat stored in the heatsink domain.

Considering the boundary conditions, all surfaces are impermeable with zero slip. The
symmetric boundary conditions were also applied for the heat and fluid equations at the
symmetry line. The PCM-heatsink is initially at a supper cold temperature Ty = Ty — 10 °C,
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where the fusion temperature of NePCM is Tt = 37 °C. The heated tube is exposed to a
heat flux of go = 5000 W/m?, and the heatsink perimeter is exposed to a cooling fluid of
Teo = Tf — 10 °C and Moo =25 W/m? K.

3. Numerical Approach, Mesh Sensitivity Study, and Verification
3.1. The Finite Element Method

The finite element technique (FEM) [54] was used to integrate the momentum and
energy equations, as well as the related initial and boundary conditions, across a discretized
time and space. Based on the FEM, the weak form transformation was applied for the
partial differential equations. Then, the basis set was invoked to expand the filed variables.
Furthermore, the second-order shape functions were applied to the field variables. Gauss’s
quadrature elements method was then utilized to integrate the field variable and get
residual equations. As a result of using the Gauss quadrature integration to integrate the
equations over the domain of the solution, the residual functions equations at each element.
The residual equations are estimated by using the second-order Gaussian quadratic method.
The Galerkin finite-element-method details can be found in [55,56].

In a linked approach, the Newton technique, A PARDISO (PARallel DIrect SOlver
(PARDISO) solver [57-59], was used to solve the residual equations for the field variables,
with a relaxation factor of 0.9. In addition, the backward differential formula [60] with a
first-second order was then used to regulate the timesteps and precision of the calculations,
resulting in a relative error of less than 107, MVF > 0.999 met the halt criterion for
calculations, which was complete melting.

3.2. Mesh Sensitivity

An unstructured mesh was selected to discretize the domain. The boundary layer
shape meshes were used for walls to better capture velocity and temperature gradients.
Mesh sensitivity analysis was performed on a case with ¢ = 35° and w = 1% wt to check
the effectiveness of different grid sizes on the findings. A mesh control variable, Nmesh, is
introduced to control the mesh sizes. The smaller the Nmesh variable, the finer the mesh
elements. Table 2 summarizes the specific features of each analyzed mesh, including the
elements, edges, MVEF, and heated wall average temperature after 5 h of heating. Figure 2
illustrates the impact of mesh sizes on the computed MVF in the enclosure for various
Nmesh values. As seen, a mesh produced by a Nmesh value of 0.25 could provide an
accurate wall temperature and also evaluate MVF with fair accuracy. As a consequence,
the current study’s findings are calculated using a Nmesh = 0.25. Figure 3 shows a broad
and detailed perspective of the preferred mesh.

Table 2. The specification of investigated meshes.

Nmesh Elements Edges MVF @5 h Tavg — T (CCO)@5h Computational Time (s)
1.125 2263 355 0.541 12.523 321
0.875 3598 407 0.546 12.545 327
0.5 9335 629 0.550 12.625 535
0.25 34,190 1190 0.549 12.532 1442
0.125 133,266 2351 0.541 12.523 4907

3.3. Validation and Verification

The accuracy of the present model and computations were examined by comparing
the outcomes with the literature study of Gau and Viskanta [61] for PCM melting in a
rectangular shape container (63.5 x 88.9 mm). The results simulated the melting of a
super-cold PCM (28.3 °C) while the contained wall was subject to a heated temperature
of 38 °C. The shape of the melting interface is compared with the experimental study
of [61] and simulations of [62] in Figure 4. This figure represents acceptable proximity
between the results.
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- Nmesh=1.125
05F  — = — —  Nmesh=0.875

| Nmesh=0.5
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- ‘
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Figure 2. Mesh sensitivity data for various element sizes.

(b) (c) (d)

Figure 3. A view of utilized mesh for case Nmesh = 0.25. (a) An overall mesh view, (b) mesh details
over the fins and PCM domain, (c) mesh details at the tube wall and metal foam layer, and (d) the
mesh details at the fin edge and PCM domain outer wall.

=
5]

Experiment Gau and Viskanta
Numerical Brent et al.
- Current research

6 8

cm

Figure 4. The melting interface simulated in the current study and [62] against the experiment of [61].
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Moreover, the melting of paraffin wax in a copper metal foam, as explained in [63],
was simulated. The simulations were performed for melting paraffin-embedded in Cu
foam (e = 0.975) enclosed in a square container with a height of 10 cm. The PCM was heated
from below. The results are reported in Figure 5. This figure also denoted fair proximity
between the simulated data of the current research and [63].

1.5h 3h 4.5h

Figure 5. The melting interface shapes simulated in the current study and the experimental reports
adapted with permission from Ref. [63]. 2018, Elsevier.

4. Results and Discussion

In the current study, the impact of the fin’s angles and the weight concentration of
nanoparticles on the cooling performance of the heatsink was investigated.

4.1. Impact of Fin Angle

Here, four fin placement angles of 30, 32.5, 35, and 37.5° were investigated. The impact
of the fin’s placement angle, §, was addressed on MVE, surface temperature difference
(Tave — T¢), and the stored energy in Figure 6. From now on, for the sake of simplicity, we
call the surface average temperature difference the surface temperature.

As seen, the change of 6 induces almost no impact on the MVF and the stored energy.
This could be expected since the amount of energy that enters the heatsink is equal to
the heat flux power (qo) times the surface area of the heated wall. Thus, the net amount
of heat rate is a fixed value, and the change of § does not change the heat capacity of
the heatsink. Therefore, the net amount of stored energy in the enclosure should remain
constant regardless of the value of J. Since there is a negligible temperature gradient in the
solid PCM, the amount of MVF also follows the trend of stored energy.

Moreover, the variation of J slightly changes the surface temperature. A larger J results
in a smaller surface temperature in the middle of the melting process. This is because the
larger the ¢, the better the fin distribution in the entire heatsink. Thus, for a fixed amount
of metal foam, a heatsink with a larger § could work well.

Figures 7 and 8 illustrate the maps of MVF and temperature differences in the heatsink
for four timesteps of one (3600 s), two (7200 s), three (10,800 s), and four (14,400 s) hours.
Initially, the MVF patterns for both cases of 6 = 30° and § = 37.5° are similar. As time
progresses, and since the effective thermal conductivity of the composite fins is enhanced
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compared to the rest of the medium, the MVF has a tendency to extend along the directions
of the fins. Moreover, at the final melting times (four hours) for the case of § = 37.5, there is
a larger molten area at the top regions of the enclosure compared to the case of 5 = 30°. The
bottom region for both cases looks similar. The temperature patterns for both cases also
show similar patterns. The most notable difference between the isotherms is at the final
stages of the melting process (four hours). In the case of § = 30°, a large plume of heated
PCM (+10 °C) can be seen in the upper region of the enclosure. This is a Rayleigh-Bénard
shape natural convection shape that forms toward the top cold regions of the heatsink
container. In the case of § = 37.5°, the melting interface is more advanced toward the top,
and there is a larger gap between the heated surface and the top region (melting interface);
thus, the heated plume is smaller.

0.6 15
05
0.4}
S 0ol o
0.3F B
z Hﬂ
02}
0.1F
07 Lo 1 1 T R -10 TR TSR T ' 1 M "
0 60 120 180 240 300 0 60 120 180 240 300
Time (s) Time (s)
(a) (b)
140
120 5=30
-------------- 5=32.5
Bigof | mee———= 8=35
S [ |—-——-—- =375
&
> 80
o0
S
=
2 60
-
&
e 40
20
0 | I T () 1 M f
0 60 120 180 240 300
Time (s)
(©)

Figure 6. The (a) melting volume fraction, (b) surface heat transfer rate, and (c) stored energy as a
function of time when ¢ = 0.95 and w = 1%.

4.2. Impact of Nanoparticles Concentration

The impact of the weight fraction of GNPs (w) on the MVF, surface temperature, and
stored energy is depicted in Figure 9. With the increase of w, the MVF rises. Indeed, the
GNPs do not contribute to the phase change heat transfer, and since the amount of heat
rate from the heated surface is fixed, the MVF increases. This means more NePCM should
be melted to absorb the input heat from the heated surface. The amount of stored energy
per unit weight of the heatsink reduces by increasing the weight fraction of nanoparticles
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because the GNP is much heavier than the base PCM and does not contribute to the
phase change heat transfer. Thus, the heavy and low heat capacity GNPs reduced the
overall normal heat capacity of the heatsink. Finally, the presence of GNP nanoparticles
raises the temperature of the heated surface at final times. However, a small decrease
in surface temperature in the middle of the melting process can be observed for the case
w = 1.0%. It should be noted that the heat flux at the heated surface is constant; thus, the
surface temperature is directly related to the heat transfer rate. The reduction of surface
temperature for w = 1.0% could be the result of improved thermal conductivity caused
by the presence of GNPs. In the initial stages of melting heat transfer, the convection
heat transfer mechanisms are negligible, and conduction is the dominant mechanism of
heat transfer. However, as the melting advances, the amount of molten NePCM increases,
and natural convection effects appear. The dynamic viscosity NePCM is an important
parameter in controlling the strength of the natural convection flows. The presence of
NePCM particles increases the dynamic viscosity of the NePCM mixture and thus reduces
the strength of the natural convection flows. Therefore, an increased surface temperature
can be observed at the final stages of melting heat transfer.

3600s 7200s 10800s 14400s
30° i i
37.5° E i
o 0 N m N
< O o o ©O o o o

- 1 0.6
- 4 0.5

<
o

Figure 7. The MVF maps at different time steps for two cases of 6 = 30° and ¢ = 37.5° when
e=0.95and w = 1% wt.

Figures 10 and 11 show the influence of nanoparticle concentrations on the contours
of MVF and temperature for two weight fractions of 0% and 3.0%. It is interesting that
the melting front extends more uniformly in the presence of GNPs compared to the case
with no GNPs. For example, the edge of the top fin (f = 14,400 s) is completely melted
when w = 0, whereas a fair portion of the top fin is still in the solid region when w = 3.0%.
This could be due to a pure PCM’s lower dynamic viscosity, which results in a stronger
natural convection circulation. Moreover, attention to the temperature contours shows
the heated surface and its neighbor regions are generally at a higher temperature when
w = 3.0% wt compared to the case of w = 0%. This observation agrees with the average
surface temperature, i.e., Tan — T¢, noted in Figure 9.
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Figure 8. The temperature difference distribution (°C), T — T, maps at different time steps for two
cases of 6 = 30° and 6 = 37.5° when £ = 0.95 and w = 1% wt.
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Figure 9. The (a) melting volume fraction, (b) surface heat transfer rate, and (c) stored energy as a
function of time when € = 0.95 and J = 35.



Mathematics 2023, 11, 356

12 of 20

3600s

®=0 g
®=3% E

7200s 10800s 14400s
i -
— o o

T T T T
1 1 1

-

o
Figure 10. The MVF maps at different time steps for two cases of w = 0 and w = 3% wt when
e=0.95and ¢ = 35°.
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4.3. Neural Network Analysis

The study of complex, intelligent calculations similar to those regularly carried out by
the human brain is known as artificial intelligence (Al), and it is a branch of computer sci-
ence. It encompasses techniques, tools, and systems designed to mimic how people acquire
knowledge logically and inductively and use their brains to reason through difficulties. Al
advancements fall into two primary groups. The first category includes techniques and
programs, such as expert systems, that mimic the human experience and derive conclusions
from a set of rules. The second category consists of devices that simulate how the brain
functions, including artificial neural networks (ANNS).

Expert systems, also known as knowledge-based systems or the fifth generation of
computing, are a development of conventional computing. This knowledge base gives an
expert the ability to specify the rules that imitate a thought process and offers a straight-
forward method for coming to decisions and finding solutions by adhering to a set of
rules. Expert systems propose that logical reasoning may be represented by creating lists of
logical propositions and applying logical operations to them. Expert systems help address
diagnostic problems in medicine and other fields [64,65]. It offers a roadmap for making
predictions and decisions in ambiguous and uncertain situations.

ANNSs come in a wide variety of forms, some of which are more well-known than
others. The feedforward neural networks are well-suitable for mapping simple nonlinear
inputs to nonlinear outputs [66].

Here, a feedforward artificial neural network (ANN) with a hidden layer (made of
ten neurons), one input layer, and one output layer was adopted. The sensitivity analysis
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=0

®=3%

and network structure analysis can be used to select the effective parameters [67,68] and
adequate network structure [69]. However, here, the input parameters are clear from the
numerical step, and the impact of these design parameters on the storage design is notable.

10800s 14400s

)
)

o

o<+t no VTR

Figure 11. The difference distribution (°C) and T — T, maps at different time steps for two cases of
w =0and w = 3% wt when ¢ = 0.95 and 6 = 35°.

O < N O
~ o - o

The ANN maps the physical relationship between the control and target parameters.
Three inputs of angles (J), nanoparticles fractions (w), and time (f) were considered as the
control parameters, whereas the melting volume fraction (MVF) was adopted as the target
parameter (output). The computational data were recorded every two mins. A schematic
view of the utilized ANN is depicted in Figure 12a. The hyperbolic tangent function was
used for the activation function of neurons [70]. A dataset made of 1057 sample data was
used to train the ANN using the mean of squared errors (MSE) [71]. All investigated cases
in Sections 4.1 and 4.2 were adopted to make the sample data.

The details of the training setup are reported in Figure 12b. The sample data were
randomly divided into 15% test, 15% validation, and 70% train data. Figure 13 shows the
performance history for the train, test, and validation data. As seen, epoch 39 provides
the best validation data; hence, the ANN after 39 training epochs was adopted for further
simulations. Figure 14 provides a histogram for the error distributions. The figure divides
the range of the predicted errors into 20 intervals (bins), and it then shows the number of
samples for each bin. As seen, the error range for the prediction of MVF is quite small.
Most of the samples were placed at the center with an error next to zero. Only a few
samples were placed on the edges of the figure with an absolute error of 0.0063 or lower.
Finally, Figure 15 depicts the regression data for the training, test, validation, and all cases.
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The results show an excellent R-value next to unity. There is an excellent match between
the target and predicted MVF values. Only a few sample data next to the origin show a
slight error. These data are related to the initial melting when the storage unit has strong
conduction heat transfer gradients. The initial temperature gradients vanish after a few
minutes, and the neural network recovers its full accuracy.

The basis and the weights of the neural network are reported in Table 3. The weights
for the input layer to the hidden layer (IW), the weights from the hidden layer to the output
(LW), and the basis for the hidden layer and the output layer are summarized in Table 3.
Since there are three inputs and ten neurons in the hidden layer, the size of IW is 3 x 10.
There are ten neurons in the hidden layer and one output layer. Thus, the size of LW is
10 x 1, and the size of the basis is equal to the neurons in the hidden layer, i.e., ten. There
is a basis for the output neuron with a value of 0.20576.

Table 3. The weights and the basis of the trained neural network.

Iw LW Basis
—1.75662 —2.87270 —1.37869 —0.07141 2.67276
—0.77097 0.59404 —0.38713 —0.25546 0.96215
—3.08972 —0.29039 0.20247 0.07288 1.34066
0.06595 —0.04451 —1.03930 —0.82122 0.02993
—2.84475 1.69511 0.64577 0.02496 —0.50272
0.81239 2.27725 —1.81946 0.01689 0.32215
0.04182 —0.04045 —2.86907 —0.16864 —1.93782
—1.38479 —2.23744 —0.91333 —0.03850 —1.95756
0.29314 —0.29432 —1.85788 —0.22229 2.00081
1.53578 —0.67536 2.60817 0.00454 2.74161
Input
3
L]
@ Training Progress
' Unit Initial Value Stopped Value |Target Value
\ 10) Epoch 0 45 1000
Elapsed Time - 00:00:01 -
VR T Performance 0.214 6.6e-07 0
i Gradient 0.452 3.22e-05 1e-07
m Mu 0.001 1e-08 1e+10
@ Validation Checks 0 6 6
Training Algorithms
1 Data Division: Random dividerand
Training: Levenberg-Marquardt trainim
; S Performance: Mean Squared Error mse
Calculations: MEX
(a) (b)

Figure 12. The structure of the utilized ANN and the applied settings. (a) the structure of the ANN
with a hidden layer and input and output layer. (b) the training parameters and convergence criteria.

Each numerical experiment takes a long time (see Table 2). Thus, exploring the design
space is computationally expensive. Hence, the simulated neural network was used to
produce a map of melting behavior as a function of the design parameter of angle (J)
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and nanoparticles fraction (w). In order to produce these maps, the trained ANN was
simulated for the angle in the range of 30° to 38° with an interval of 0.25°, whereas the
nanoparticles fraction was changed in the range of 0 to 3 with an interval of 0.1. Thus,
for each contour, 1023 simulations were performed by the ANNSs. The results for each
hour are reported in Figure 16. After one hour of the melting process, most melting
(MVF = 0.12) occurs for a case with the highest nanoparticles fraction (1.8 < w < 3) at an
angle in the range of 30° < 6 < 34°. The lowest melting corresponds to an angle of 36° and
a nanoparticles fraction of about 2%. In the second hour of the melting process, the best
melting (MVF = 0.24) occurs in the range of 1.7 < w < 3 and 30° < § < 34°. Angles higher
than 35° are not suitable. For the third hour, the maximum melting (MVF = 0.38) can be
observed for the highest nanoparticles fraction (w ~ 3) and an angle of § ~ 33.5°. A high
nanoparticles fraction and low angle provide a fair MVF = 0.36. For high angles and
low nanoparticles fractions, the MVF drops to 0.34. For the fourth hour, the maximum
MVF = 0.5 takes place for a similar case as the third hour. Thus, it can be concluded that a
design with w ~ 3 and § ~ 33.5° can provide the maximum melting fraction during the
whole melting process.

Best Validation Performance is 7.3569e-07 at epoch 39

10°¢

E ——Train
——Validation
——Test
Best

-
S
[N}

N
S
S

Mean Squared Error (mse)

-
<
)

®

L | | | | | | | | |
0 5 10 15 20 25 30 35 40 45
45 Epochs

Figure 13. The performance curves during the training process. Epoch 39 provided the best validation
performance and was selected for simulations.
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Figure 14. Error histogram with 20 bins for the training, test, and validations. Error ranges between
—0.0034 to +0.0063. Most samples were predicted with a tiny error next to zero. There are only a few
samples’ data with an absolute error of about 0.0063.
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Figure 15. Regression reports for the training, validation, test, and all data. The R-value for each case

is reported above each subfigure.
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Figure 16. Contours of MVF for each melting hour as a function of angle () and nanoparticles fraction (w).

5. Conclusions

The cooling capability and thermal storage of phase change heatsinks were filled by a
1-tetradecanol-GPNs and copper metal foam fins. The heatsink was exposed to a constant
heat flux source at its heated surface. The natural convection effects in the liquid NePCM
were taken into account. The thermophysical properties of NePCM were adopted directly
from the actually measured properties. The finite element method was applied to solve
the governing equations. An automatic time step based on BDF was invoked to control
the solution accuracy. The melting heat transfer was simulated for different porous fin
angles and mass fractions of GPNs. It was found that using fins with large mounding
angles (37.5°) is better than close angles (30°). Moreover, the GNPs could increase the
surface temperature since they increase the dynamic viscosity and suppress the natural
convection flows. A 1.0% wt GPNs could add some advantage in reducing the surface
temperature in the middle of the melting process. The presence of GPNs reduces the
amount of stored energy per unit weight of the heatsink since these heavy nanoparticles do
not contribute to the latent heat thermal energy storage. An ANN was trained to map the
relationship between the melt fraction and the design variable. The computed data were
used to train the ANN. The results showed that the ANN could accurately estimate the
MVF at various times for any set of design variables. Finally, the ANN was used to provide
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contours of MVF as a function of angle and nanoparticles fractions at different times during
the melting process. Using the MVF maps produced by ANN, it was concluded that a
design with w ~ 3 and J ~ 33.5° provided the highest melting fraction during the entire
melting process.
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