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A B S T R A C T   

The metal foams are a promising candidate for the enhancement of heat transfer in latent heat thermal energy 
storage (LHTES) units. These foams can be synthesized with engineered local properties such as improved 
thermal conductivity or permeability in a specified direction. However, the impact of using anisotropic metal 
foams for thermal energy storage has not been addressed yet. In the current research, an anisotropic metal foam 
was modeled mathematically with engineered local properties in perpendicular directions. The solid-liquid phase 
transition of the copper-coconut oil LHTES unit was simulated using the finite element method. The anisotropic 
metal foam was defined by using an anisotropic parameter and angle. The simultaneous impact of the mounting 
tilt angle and the anisotropic angle of the copper foam were addressed in the phase transition behavior and 
charging time of the LHTES unit. The results revealed that the anisotropic angle could notably impact the thermal 
energy storage power. An optimum tilt angle of -45◦ or +45◦ along with a 0◦ anisotropic angle could lead to the 
maximum charging power. Thus, designing an LHTES unit using an anisotropic metal foam could save the 
charging about 15% (for a -45◦ inclination angle) and 20% (for zero inclination angle) compared to a regular 
metal foam. Such save in the charging time is without any penalty on the weight increase or capacity reduction 
for the LHTES unit.   

1. Introduction 

The increasing energy consumption has caused the global energy 
crisis and environmental damage. It draws attention to renewable en
ergy sources; nevertheless, because of their intermittent and fluctuating 
nature, notably solar energy, attempts have been made to address the 
limitations and enhance TES (thermal energy storage) systems’ energy 
efficiency have increased [1]. TES systems can be classified as chemical, 
sensible, and latent heat (LHS) [2]. Several advantages of LHS have 
drawn considerable attention, including high thermal energy storage 
density, system resiliency, low costs, and generally consistent temper
atures for charging and discharging [3]. On the other hand, long-term 
TES requires particular materials, sophisticated methods, and complex 
installations. Specific applications need materials with high thermal 
capacity and a low melting point; these materials, often referred to as 

PCMs (phase change materials), now provide broadly responsive options 
to a wide range of applications. The essence of their concept is the PCM 
charge (melting)/discharge (solidification) heat energy via latent heat 
phenomenon during the phase change process. PCM’s poor heat con
duction capability limits charging and discharge operations and fast 
heat transmission. Different approaches, such as heat pipes [4], fins and 
extended surfaces [5–7], carbon nanotubes [8], and MF (metal foam) 
[9], have been developed to overcome the mentioned limitation. 

For example, Najim et al. [10] employed fins with different cross 
sections to reduce the melting time in a triple tube shell-tube thermal 
energy storage unit. The results showed the cross-section shape of the 
fins could influence the melting time by about 8%. Tiji et al. [11] used 
frustum tubes in shell-tube thermal storage and showed using the 
frustum tubes can reduce the melting time by 25.6%. Using multiple 
PCMs [12] or wavy-elliptical shape tubes [13] could also reduce the 
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melting time. 
Previous investigations demonstrated that MF promotes melting and 

the solidification process in latent heat thermal energy storage (LHTES) 
units. Dede and Joshi [14] developed MFPCM batteries that run at lower 

temperatures and provide more power; this unique battery technology 
can produce more energy while also prolonging the battery’s lifespan. 
Ferfera et al. [15] investigated the porosity of porous composites and 
discovered that higher porosity leads to enhanced thermal conductiv
ities, while small pores lead to homogeneous melting fronts inside the 
composite. 

Heat transfer in MFs is influenced by anisotropy [16]. Gravity, 

Fig. 1. A schematic view of an LTHES unit and its modeling approach. A solar 
collector absorbs the heat and transfers it to an LHTES, where the PCM modules 
store the heat through a melting process. Each of the storage modules can be 
considered a rectangular channel which was modeled as a 2D rectangle. 

Fig. 2. A detailed diagram of the LHTES unit’s physical model and the 
boundary conditions. The vertical wall is subject to a forced convection flow of 
working fluid from the solar collector and is considered an isothermal hot 
surface. The rest of the walls are insulated. The anisotropic porous medium can 
be placed at an angle γ with respect to the horizon. 

Table 1 
Thermophysical properties of the Coconut oil and the nano additives [53,54].  

Properties  Coconut oil 
Copper foam Solid* (15 ◦C) Liquid (32 ◦C) 

ρ (kg/m3) 8900 920 914 ± 0.11% 
μ (Ns/m2) – – 0.0326 ± 3% 
k (W/m K) 380 0.228 0.166 ± 1.2% 
Cp (J/kg K) 386 3750 2010 ± 0.2%  

* The fusion temperature was 24 ◦C and Lf = 103 kJ/kg. 

Fig. 3. Flowchart of the numerical computations. The code starts with initial 
conditions and then computes the variable properties. The governing equations 
are computed in a coupled approach. The computations were ended when the 
full melting (MVF ~ 0.999) reached. 
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compression, and viscous stresses generate conductivity anisotropy in 
MFs embedding with PCM [17]. Therefore, the structural properties of 
the porous medium are critical to the composite PCM unit’s phase 
change and heat transfer capabilities [18]. Yang et al. [19] investigated 
the melting properties of porosity gradient MFPCM numerically. They 
discovered that MF porosity increasing from bottom to top improved the 
melting rate. Zhu et al. [20] examined the effects of porosity grade and 
fin thickness by incorporating a fin into an MFPCM with graded 
porosity. According to research, the presence of fins altered the melting 
sequence, whereas graded foams enhanced the rate of heat transfer. 
Using multi-segment MFs of varying porosity revealed that cascaded 
foams produced more stable temperatures, decreasing phase change 
speed [21]. Xu et al. [22] conducted a computational study to determine 
the optimal values for several foam layers. Three samples of copper foam 
were analyzed to strike a balance between material cost and phase 
change rate. Joshi and Rathod [23] investigated the effect of optimal MF 

placement and concluded that MF positioned at higher temperature 
gradients may improve heat transfer. Consequently, a properly cali
brated MF could mitigate its detrimental impact on heat convection 
while simultaneously reducing the TES’s additional expenses. Moreover, 
a study performed by Guo et al. [24] showed mounting MF under 
contractual pressure can save the phase change time about 13.9%. 

Liu et al. [25] showed using several layers of MF with different po
rosities and creating a porosity gradient can influence the charging time. 
An aiding configuration of MF layers can reduce the charging time by 
17.9%. Vijay et al. [26] found that the inlet flow direction influenced the 
heat transfer rates associated with foam due to its anisotropy. Yang et al. 
[27] conducted a numerical study investigating MFs with non-uniform 
porosity by optimizing pore density and average porosity. A reduction 
in melting rate is caused by decreasing the porosity from the bottom to 
the top due to enhanced natural convection. In an experiment and a 
numerical study, Huang et al. [28] demonstrated that the melting rate of 
the PCM increased as the porosity of the MF decreased. Bamdezh et al. 
[29] developed a TES and studied the effect of MF anisotropy on the 
system’s performance. Findings indicated that increasing the tangential 
conductance increases the melting rate and average cell temperature; 
Also, rising axial heat conductivity has a good impact on reducing cell 
temperature differentials. Yu et al. [30] studied the anisotropic prop
erties of two kinds of pore geometries. There is evidence that when using 
MFs, it is essential to consider their anisotropic properties. The aniso
tropic thermal conduction of an MFPCM composite was explored by Ren 
et al. [31], which enhanced the thermal efficiency of a TES unit more 
than isotropic porous media. Their findings showed significant 
improvement in performance and cost savings if anisotropic woven MF 
was designed in the desired direction. Several works of literature [32, 
33] have also reached similarly definitive conclusions. 

Obtaining the best storage design, both in terms of capacity and 
charging/discharging times, requires a thorough understanding of the 
thermodynamics of PCM cavities during their development. The role 
that natural convection plays in influencing phase transitions in the 
liquid phase of the storage material is one of the major concerns. Natural 
convection is affected by geometric considerations (such as cavity 
orientation) and PCM properties. The MF reduces natural convection, 
according to experimental studies employing different inclination de
grees of the TES [34]. A cavity’s inclination angle substantially affects 
phase change efficiency since it may drastically alter natural convection 
flow governed by buoyancy [35]. Dhaidan and Khodadadi [36] dis
cussed natural convection melting in various geometries. The increase in 
heat transfer due to natural convection increases with enclosure size, 
according to Vogel et al. [37]. Iasiello et al. [38] discovered that the 
thermal conductivity of MFs with varying porosities is related to cell 
elongation [39]; Also, they tested aluminum foams combined with PCM 
under various MF characteristics (porosity, temperature, pore sizes 
(PPIs), orientation) [40]. Porosity reduction significantly reduced 
melting time, whereas PPI and orientation have little effect. Xie et al. 
[41,42] evaluated the impact of MF structure, volume percentage, and 
orientation on a new design. 

Yazici et al. [43] studied the effects of fin number and angle of 
inclination on the thermal performance of a PCM cavity heated from its 
broadside. As a result of their results, the inclination angle and the 
number of fins significantly impact the creation of convective cells in the 
liquid PCM domain, thereby influencing heat transfer and operational 
time. A study conducted by Kamkari and Groulx [44] examined the 
impact of the orientation on phase change rate in rectangular enclosures 
with 1-fin and 3-fin fins, finding that even little inclinations promote 
melting. Karami and Kamkari [45] confirmed this by statistically 
examining this type of finned cavity with inclination angles ranging 
from 0 to 180 degrees. 

Samimi Behbahan et al. [46] numerically investigated the role of MF 
porosity as well as shell aspect ratio on PCM melting in an LHTES unit. 
Meng et al. [47] quantitatively investigated the effect of inclination 
angle on the thermal behavior of PCM in a hollow filled with copper 

Fig. 4. Influence of mesh resolution on liquid fraction when δ = 45◦, γ = 45◦, 
and Kn=0.3. The MVF curves are very close to each other. Thus, it can be 
concluded that the utilized mesh size along with automatic time step control 
can solve the model with good accuracy. A mesh size of 100 × 100 is adopted 
for the computations. 

Fig. 5. A comparison between the isotherms of [66] and current computations. 
The results for temperature curves show excellent agreement with the literature 
studies for natural convection in an anisotropic porous medium. 
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foam fins. The results demonstrated that the inclination angle signifi
cantly impacted PCM thermal performance. Bouzennada et al. [48] 
studied the thermal behavior of a PCM filling a rectangular capsule with 
and without including a mid-separating fin with varied inclination 
angles. 

Tian et al. [49] investigated the influence of enclosure inclination on 

Fig. 6. The empirical [67] and theoretical melting fronts for phase transition of uniform composite copper foam – paraffin. The comparison between the observed 
(experimental images) melting front and the simulation results show good agreement for melting PCM in metal foams. 

Fig. 7. A comparison between the empirical [67] measurements and simulated 
temperature in the present study. A good agreement between the present 
simulation and literature experiment can be observed. 

Table 2 
The simulated cases and corresponding total stored energy (ES), charging time, 
and charging power when MVF = 0.99.  

Cases γ (deg) δ (deg) ES (kJ) Charging time 
(min) 

Charging power 
(W) 

C1 -90 -45 283.0 105.9 44.5 
C2 -90 -22.5 281.0 115.4 40.6 
C3 -90 0 274.6 167.5 27.3 
C4 -90 22.5 281.1 115.4 40.6 
C5 -90 45 283.0 105.9 44.5 
C6 -45 -45 288.9 91.3 52.7 
C7 -45 -22.5 287.1 94.5 50.6 
C8 -45 0 285.0 110.2 43.1 
C9 -45 22.5 285.3 89.4 53.2 
C10 -45 45 287.3 81.1 59.0 
C11 0 -45 292.7 71.4 68.4 
C12 0 -22.5 291.5 74.5 65.2 
C13 0 0 277.4 97.1 47.6 
C14 0 22.5 291.5 74.5 65.2 
C15 0 45 292.7 71.3 68.4 
C16 45 -45 287.3 81.1 59.0 
C17 45 -22.5 285.3 89.4 53.2 
C18 45 0 284.9 110.2 43.1 
C19 45 22.5 287.1 94.5 50.6 
C20 45 45 288.9 91.3 52.7 
C21 90 -45 283.0 105.9 44.5 
C22 90 -22.5 281.1 115.4 40.6 
C23 90 0 281.1 115.4 40.6 
C24 90 22.5 281.1 115.4 40.6 
C25 90 45 283.0 105.9 44.6  
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melting behaviors using computational models with tilted settings. Ac
cording to the results, independent of inclination angles, the time 
needed for complete melting of metal foam increased significantly with 
porosity. The variation in pore density had less of an effect on the total 
melting time. Kasper et al. [50] examined the impact of various 
aluminum proportions and fin spacings on charging/discharging speeds 
in different PCM cavity orientations. Angle significantly affects the 
thermophysical melting behavior, while natural convection has little 
effect on solidification. Li et al. [51] calculated the heat storage capacity 
of seven graded MFPCM composite models with 0, 30, 60, 90, 120, 150, 
and 180 degrees inclinations. Under the impact of changing inclination 
angles, Lu et al. [52] assessed the phase change rate of a TES with a 
rectangular encapsulation. Although the MF ligaments significantly 
reduced natural convection, heat behavior and melting capabilities 
varied with tilt degree. 

A literature survey found that TES systems in phase transition need 
further attention. It is known that graded MF can accelerate PCM 
melting; however, there has not been much research on the melting 
behavior of graded MF composite PCM with anisotropic properties 
(varied orientations). The present work models anisotropic MF and ad
dresses the influence of various orientations on the heat transfer per
formance of an inclined LHTES unit for the first time. 

2. Model description and mathematical formulation 

In this section, first, the physical model and the mathematical gov
erning equations are introduced. Then, the corresponding boundary 
conditions are provided. Finally, the parameters of interest (the design 
parameters) are introduced mathematically. 

2.1. Physical model 

Fig. 1(a) shows a schematic view of a solar water heating system with 
a latent heat thermal energy storage unit. The excess solar heat can be 
stored in the LHTES unit and released later for heating applications on 
demand. A section of a pack of storage unit’s internal design is depicted 
in Fig. 1(b), and a specific 2D view of a storage unit is plotted in Fig. 1(c). 
Fig. 2 illustrates a detailed view of Fig. 1(c), including the boundary 
conditions. The enclosure is a channel of size L = 120 mm filled with 
copper foam coconut oil and heated from a side wall. Copper foam is an 

anisotropic metal foam. The heated heat transfer fluid (HTF) leaves the 
solar collector at a hot temperature Th and enters the LHTES, and it flows 
through the HTF flow channels from the front to the back of the storage 
tank. There is a convective heat transfer between the HTF and the walls 
of the composite-PCM enclosure. The convective heat transfer can be 
enhanced by increasing the flow rate through the channels. For a high 
flow rate, the channel wall temperatures tend to the HTF fluid temper
ature, and an isothermal channel wall can be assumed. The size of the 
storage tank depends on the intended application and can be increased 
by using several PCM enclosures along the channel walls. 

The other enclosure’s surfaces are well insulated. The enclosure 
could be mounted with a tilt angle δ. Thus, the gravity vector (g) acts as a 
body force with an inclination angle δ. The anisotropic metal foam with 
a porosity ε shows anisotropic permeability (K) and thermal conduc
tivity (k) in x and y directions. Enforcing the metal foam in a direction 
increases the thermal conductivity but reduces the permeability. The 
anisotropic intensity is controlled by a parameter (Kn) and an aniso
tropic angle (γ). Thus, the permeability and thermal conductivity of the 
metal foam are introduced as 

K =

[
K1(cosγ)2

+ K2(sinγ)2
(K1 − K2)(sinγ)(cosγ)

(K1 − K2)(sinγ)(cosγ) K2(cosγ)2
+ K1(sinγ)2

]

(1)  

k =

[
k1(cosγ)2

+ k2(sinγ)2
(k1 − k2)(cosγ)(sinγ)

(k1 − k2)(cosγ)(sinγ) k1(sinγ)2
+ k2(cosγ)2

]

(2)  

where K1 = (1 − Kn) × Km, K2 = (1 + Kn) × Km, k1 = (1 + Kn) × km, and 
k2 = (1 − Kn) × km. Here, Km and km denote the average permeability and 
average thermal conductivity of the metal foam. 

Initially, the enclosure is at a supper cold temperature (Tc) while the 
heated wall is at an isothermal hot temperature of Th. The aim is to melt 
the PCM inside the enclosure as fast as possible and shorten the ther
mally charging process. Thus, the parameters of interest are the tilt angle 
(δ) and the anisotropic angle (γ). The thermophysical specifications of 
the copper foam and PCM are summarized in Table 1. 

2.2. Governing equations 

The control equations for the continuity, conservation of mo
mentum, and heat of the PCM embedded in anisotropic metal foam are 

Fig. 8. Effect of inclination angle on; (a) Melting volume fraction and (b) Total energy stored in the anisotropic porous medium with γ = − 90◦ (Cases C1–C5). Cases 
δ = +45◦ and − 45◦ provide the shortest melting time and the highest rate of thermal energy storage. Case δ = 0◦ corresponds to the longest melting time and lowest 
rate of thermal energy storage. 
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Fig. 9. Effect of inclination angle on the contour of isotherms: C1 (top row, δ = − 45◦), C3 (middle row, δ = 0◦), and C5 (bottom row, δ = +45◦) for an anisotropic 
porous medium with γ = − 90◦. Cases C1 and C5 show similar isotherm patterns but in a mirror fashion. Case 3 shows a stratified isotherm distribution. 
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expressed as [55]: 
Continuity equation: 

∂u
∂x

+
∂v
∂y

= 0 (2) 

Momentum equations: 
(ρp

ε

) ∂u
∂t

+
(ρp

ε2

)(

u
∂u
∂x

+ v
∂u
∂y

)

= −

(
∂P
∂x

)

+

(
∂
∂x

(μp

ε
∂u
∂x

)

+
∂
∂y

(μp

ε
∂u
∂y

))

−

( μp

κ(x, y)

)

u − S(α).u + ρpgβpcos(δ)
(
T − Tf

)

(3)  

ρp

ε
∂u
∂t

+
ρp

ε2

(

u
∂v
∂x

+ v
∂v
∂y

)

= −
∂P
∂y

+

(
∂
∂x

(μp

ε
∂v
∂x

)

+
∂
∂y

(μp

ε
∂v
∂y

))

−
μp

κ(x, y)
v − S(α).v + ρpgβpsin(δ)

(
T − Tf

)
(4)  

Heat equation: 

(
ρcp

)

eff
∂T
∂t

+
(
ρcp

)

p

(

u
∂T
∂x

+ v
∂T
∂y

)

=
∂
∂x

(

keff,p(x, y)
∂T
∂x

)

+
∂
∂y

(

keff,p(x, y)
∂T
∂y

)

− ερpLf
∂α(T)

∂t

(5)  

where the enthalpy-porosity approach was used for the phase transition 
and velocity control terms. The field variables are the velocity compo
nents (u and v), temperature (T), pressure (P), and liquid fraction (α). 
The material (x and y) and temporal (t) are the independent variables. 
The momentum equations contain a sink S(α), which mandates the ve
locities to zero in solid areas. The gravity force (g) acts with an incli
nation angle δ, where in the case of δ = 0, the gravity is imposed 
horizontally (perpendicular to the heated wall). For δ = 90◦, the gravity 
is vertically (parallel to the heated wall) and in the downward direction. 
The thermophysical properties are distinguished using subscripts, 
including the fusion property (f), effective properties (eff), phase change 
material (p), solid (s), and liquid (l) phases. 

In the above equations, the molten PCM was considered as a laminar 
incompressible and Newtonian fluid. The thermophysical properties are 

Fig. 10. Effect of inclination angle on the streamlines C1 (top row), C3 (middle row), and C5 (bottom row) for an anisotropic porous medium with γ = − 90◦. Cases 
C1 and C15 show similar isotherm patterns but in a mirror fashion. Case 3 shows a stratified isotherm distribution. 
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constant except during the phase change. The buoyancy effects were 
included using the Boussinesq model. The sink term is a function of melt 
liquid and was computed as: 

S(α) = 1010[1 − 2α+ α2] / [0.001+ α3] (6a) 

The physical properties are μ, Lf, ρ, β, k, and Cp, representing the 
dynamic viscosity, latent heat, density, thermal expansion coefficient, 
thermal conductivity, and specific heat. The phase transition takes place 
in a small temperature interval (δTf) around the phase change temper
ature (Tf). Considering a linear temperature distribution in the phase 
transition interval, the liquid fraction is formulated as 

α(T) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 T < Tf −
(
ΔTf

/
2
)

1
2
+

(
T − Tf

ΔTf

)

Tf −
(
ΔTf

/
2
)〈

T < Tf +
(
ΔTf

/
2
)

1 T > Tf +
(
ΔTf

/
2
)

(6b)  

in which δTf = 4.7 ◦C. The thermal conductivity and heat capacity at the 
phase transition zone is a function of liquid fraction and were introduced 
as: 
(
ρCp

)

p = α
(
ρCp

)

l + (1 − α)
(
ρCp

)

s (7a)  

kp = αkl + (1 − α)ks (7b) 

Moreover, the copper foam – coconut oil effective heat capacity is 
computed as the average of PCM and porous phase (indicated by mf 
subscript) as: 
(
ρCp

)

eff,p =
(
ρCp

)

p + (1 − ε)
(
ρCp

)

mf (8a) 

The thermal conductivity for composite metal foam-PCM could be 
evaluated utilizing several literature models including [56–58]. Here, 
the relationship explained in [58] agrees well with the empirical data 
[59], and hence, it has been used here to calculate the effective thermal 
conductivity of the composite-PCM: 

keff,p =
1 − A

(
ε
kp
+ 1− ε

kmf

)+ A
(
εkp +(1 − ε)kmf

)
(8b)  

in which the first and second terms of the equation show a serial and 

parallel configuration of PCM and foam, respectively. The parameter A 
shows a weight between the two configurations which should be 
considered as A = 0.35 based on [58]. The heat equation assumes that 
the temperature of PCM and metal foams at each representative element 
are close to each other. Besides, the density variations during the phase 
transition are assumed to be insignificant. The MF’s permeability for a 
specified pore density and porosity can be evaluated utilizing the liter
ature studies [60–63]. Considering a fixed porosity ε = 0.95 and a pore 
density of 10 PPI, the metal foam permeability was estimated as 9.654 ×
10− 8 m2 [61–63]. The anisotropic parameter was also fixed as Kn = 0.3. 

2.3. Boundary conditions 

The enclosure surfaces are solid and impermeable; thus, the velocity 
components at the wall surfaces were considered zero. Besides, all sur
faces were treated with zero heat flux, except the heated wall treated as 
an isothermal surface at Th = 70 ◦C. A uniform temperature (Tc = 25 ◦C) 
was employed as the initial condition. 

2.4. Design parameters 

The total liquid fraction (MVF) and total stored energy as the design 
parameters were expressed as: 

MVF =

∫

A εαdA
∫

A εdA
(9a)  

and 

Total stored energy = sensible energy + latent energy (9b) 

The latent energy was also computed as latent energy =
∫

A εαLf dA, 
where dA is the surface element of the enclosure. 

3. Numerical method, mesh sensitivity, and verification 

This section concerns the numerical approach to solving mathe
matical equations. Then, the impact of mesh resolution is addressed on 
the computation’s accuracy. Finally, the mathematical model and sim
ulations are verified through comparison to literature studies. 

Fig. 11. Effect of inclination angle on; (a) Melting volume fraction and (b) Total energy stored in the anisotropic porous medium with γ = − 45◦ (Cases C6 to C10). 
The case δ = − 45◦ provides the lowest melting time and highest heat transfer rate. The highest melting time and lowest rate of heat transfer correspond to the case δ 
= 0◦. 
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3.1. Numerical method 

The control equations and their initial and boundary conditions were 
solved by invoking the finite element method [64]. The equations were 
integrated over mesh elements using the Gauss quadrature method and 
the quadratic Lagrange discretization to produce a set of residual 
equations. The residual equations were solved in a coupled way utilizing 
the Newton method by employing the PARDISO parallel solver. A 
damped factor of 0.8 and a relative tolerance of 0.0001 was employed. 
The first-second order backward differential formula (BDF) was applied 
to adjust the time step automatically and control the solutions’ accuracy 
with the relative tolerance [65]. The MVF was monitored as the stop 
condition, and the computations were terminated when MVF < 0.999. 
Fig. 3 illustrates a flowchart of the applied computational algorithm. 

3.2. Mesh sensitivity 

The influence of the mesh size on the accuracy of numerical 

computations was addressed by recomputing the results for various 
mesh resolutions. Thus, a case with δ = 45◦, γ = 45◦, and Kn=0.3 was 
considered and solved for various mesh resolutions of 75 × 75, 100 ×
100, 125 × 125, 150 × 150, and 175 × 175. The computed MVF during 
the solid-liquid phase transition is plotted in Fig. 4. As seen, the curves 
overlap each other, which shows the excellent accuracy of the compu
tations. It should be noted that the time step was automatically 
controlled by the BDF method to keep the relative tolerance below 
0.0001. It was noted that by using a mesh size of 75 × 75, the required 
time step sizes were reduced notably to keep the computations accurate, 
and thus, the overall computational time can be increased. Therefore, as 
a trade between the computational accuracy and computational costs, 
the mesh size of 100 × 100 was chosen to perform the computations in 
the results section. 

3.3. Verification 

Fahs et al. [66] investigated the natural convection follow and heat 

Fig. 12. Effect of inclination angle on the isotherm C6 (top row, δ = − 45◦), C8 (middle row, δ = 0◦), and C10 (bottom row, δ = +45◦) for the anisotropic porous 
medium with γ = − 45◦. The isotherms are well dispersed for case C10. 
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transfer in an anisotropic porous medium while there was a thermal 
conductivity gradient in x and y directions, i.e., k(x, y), which was 
dependent on a distribution parameter ζ. For a case with ζ = 2.0, the 
dimensionless temperatures of [66] are compared to the numerical re
sults of the present research in Fig. 5. The results of Fig. 5 illustrate a 
good agreement between the current computations and the literature 
study. 

The results of current research are compared with the measured data 
provided in the study of Zheng et al. [67] for melting of paraffin wax in a 
uniform copper foam at a 95% porosity and 5 PPI pore density. Fig. 6 
illustrates the empirical and simulated data at three time-steps of 5400 s, 
10,800 s, and 16,200 s. The experiments were performed in a cavity of 
size 100 mm × 100 mm and depth of 30 mm. The enclosure was exposed 
to a heat source at the side wall with a heat rate of 3.45 W, which was 
equal to 1150 W/m2 for a 2D model. The PCM was initially as a super 
cold temperature of 14 ◦C with a pick melting temperature of 55.3 ◦C. 
The effective thermal conductivity and permeability were computed as 
6.955 W/(m K) and 3.8614E− 7 m2, respectively. Fig. 6 demonstrates an 

agreement with the experimental images. Moreover, the average tem
perature at a vertical line with a 25 mm distance from the element 
(heated wall) was computed and plotted in Fig. 7. Fig. 7 depicts a 
comparison between the empirical [67] and numerical temperatures. 
This figure shows a good agreement between the simulated results of the 
present study and the literature experiment for melting heat transfer in 
metal foam. 

5. Results and discussions 

The current research aimed to investigate the influence of aniso
tropic angle (γ) and tilt angle (δ) on the charging process of an LHTES 
design. Here, 25 cases, according to Table 2, were simulated. The stored 
energy (ES), charging time, and charging power were also reported 
when MVF = 0.99. The charging power was computed as ES(J)/charging 
time(s). 

Fig. 8 depicted the MVF and total stored energy for various tilted 
angles (δ) when the anisotropic angle was fixed at γ = − 90. In this case, 

Fig. 13. Effect of inclination angle on the streamlines C6 (top row, δ = − 45◦), C8 (middle row, δ = 0◦), and C10 (bottom row, δ = +45◦) for the anisotropic porous 
medium with γ = − 45◦. Three circulation flows can be seen for case C10 at initial times, while there is only one general circulation flow for other cases. 
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the thermal conductivity in the x-direction is reduced by 30% and 
increased in the y-direction by 30%. The permeability was increased and 
decreased by 30% in the x- and y- directions, respectively. The results 
are reported from the initial time with a super cold temperature until 
complete melting. The results show a case with zero tilt angle (δ = 0 for 
C3) results in the slowest charging rate. The isotherms and streamlines 
for cases C1, C3, and C5 are depicted in Figs. 9 and 10. As seen in Fig. 9, 
the isotherms are distributed linearly from the heated surface toward the 
melting interface. Thus, the temperature distribution shows a stratified 
behavior. Fig. 10 also shows no streamlines. In this case, the heated 
surface is placed on top, the heated liquid stays next to the heated sur
face, and no natural convection circulation occurs. Thus, this case cor
responds to the slowest heat transfer rate, and the anisotropic angle 
could only contribute to the conduction heat transfer mechanism by 
influencing the local thermal conductivity. The shortest charging time 
corresponds to the cases of δ = +45◦ and δ = − 45◦. In these cases, the 
natural convection circulation starts from the enclosure’s bottom or top 
regions. The energy storage curves show a trend of behavior similar to 
the MVF curves since the dominant mechanism of thermal energy 
storage is the latent heat thermal energy storage derived by the liquid 
fraction. 

Figs. 11 and 14 depicted the influence of the tilt angle on the MVF 
and energy storage when the anisotropic angle was γ = − 90 and γ = 0◦, 
respectively. As was observed in previous images, the case with δ =
0◦ corresponds to the lowers heat transfer rate and energy storage rate 
since the isotherms are stratified. Attention to the energy curves shows 
they end at almost identical values of stored energy because the amount 
of PCM and metal foam is fixed in the enclosure regardless of tilted and 
anisotropic angles. Fig. 11 shows the highest heat transfer rate belongs 
to the case with δ = 45◦, while Figs. 14 and 7 show both cases of δ = 45◦

and δ = − 45◦ could equally provide the best heat transfer rate. From 
these images, it is evident that cases δ = 45◦ and δ = − 45◦ are good 
potential cases for heat transfer improvement by enhancing the natural 
convection circulation flows. For cases γ = 0◦ (Fig. 7) and γ = − 90◦

(Fig. 14), the anisotropic distributions are aligned with the enclosure 
walls. Thus, for the tilting angles δ = 45◦ and δ = − 45◦, the anisotropic 
distributions would contribute to enhancing the heat transfer and flow 
circulation in one direction and deteriorate the heat transfer in the other 
perpendicular direction. Thus, the thermal behavior for both cases γ =

0◦ and γ = − 90◦ are similar when δ = 45◦ and δ = − 45◦. However, case γ 
= 45◦ (Fig. 11) is different. In this case, there is a 45◦ anisotropic local 
distribution, and tilting the enclosure by 45◦ would improve the natural 
convection circulation and benefit from the local enhancement of heat 
transfer and the conduction heat transfer. Figs. 12, 13, 15, and 16 show 
the isotherms and streamlines for two cases of γ = 0◦ and γ = − 90◦. 
Figs. 15 and 16 confirm similar melting front, temperature distribution, 
and streamlines for cases δ = 45◦(C15) and δ = − 45◦ (C11), with the 
only difference that the convection is downward for C11 and upward for 
C15. As discussed, the stratified case (C13) streamlines were not plotted. 
Attention to the shape of the melting front for case C15 shows a sharp 
convection heat transfer at the top region (compared to Figs. 8 and 9) 
due to the improved thermal conductivity in the x-direction and 
improved permeability in the y-direction. The improved x-thermal 
conductivity better diffuses the heat deep into the enclosure, while 
improved y-permeability allows a better flow circulation. 

The streamlines were also plotted for case C8 since the anisotropic 
behavior of the metal foam breached the perfect stratification, and a 
slight convection flow was observed. Besides, attention to the isotherm 
and streamlines of Figs. 12 and 13 show the melting front is advancing 
from the bottom for C6, which is typical due to the natural convection 
effects and gravity direction. However, case C10 shows almost a uniform 
melting front with a good circulation flow. This is due to isotherms also 
showing good curvatures, which indicates strong temperature gradients. 
In this case, the alignment of the anisotropic angle contributes to the 
conduction heat transfer mechanism and convective heat transfer 
mechanism. It adequately advances the melting front from top to bot
tom. It can be seen that the whole enclosure is in liquid states at the last 
time snap of 5000 s. 

Fig. 17 depicts the results of Table 2 in a graphical format. This figure 
illustrates the impact of tilt and anisotropic angles on the charging time 
(17a) and power (17b). A general view of the curves shows the charging 
power follows the charging time trend but in a reverse direction. 

It is clear that an anisotropic angle can significantly change the 
melting time and power. The maximum power can be achieved for γ at 
tilt angles of − 45◦ or +45◦. The minimum power can be seen for γ =
− 90◦ and zero tilt angle. In this case, there is no natural convection 
(stratified temperature distribution), and the thermal conductivity is 
minimal perpendicular to the heated surface. Thus, the thermal 

Fig. 14. Effect of inclination angle on; (a) Melting volume fraction and (b) Total energy stored in the anisotropic porous medium with γ = 0◦ (Cases C11 to C15). 
Cases δ = +45◦ and -45◦ provide the shortest melting time and the highest rate of thermal energy storage. Case δ = 0◦ corresponds to the longest melting time and 
lowest rate of thermal energy storage. 
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conductivity distribution significantly weakens the only mechanism of 
heat transfer, which is the conduction heat transfer mechanism. The 
difference between the maximum power (C11 and C15) with 68.4 and 
the minimum power (C3) with 27.3 W is 41.1 W. 

The results were also computed for five inclination angles of − 45◦, 
− 22.5◦, 0◦, 22.5◦, and 45◦ when Kn = 0 (isotropic MF). The full charging 
time was computed as 83min (− 45◦), 88 min (− 22.5◦), 116 min (0◦), 88 
min (22.5◦), and 83 min (45◦). As seen, there is asymmetry between the 
results around 0◦, which is due to the presence of isotropic MF. A 
comparison of these data to the results of Fig. 17(a) for Kn = 0.3 and γ =
0◦ shows the charging time was decreased by (83 min-71 min)/83 min 
= 15% for δ = − 45◦, (88 min-74 min)/83 min=16% for δ = − 22.5◦, and 
(116 min-97 min)/97 min = 20% for δ = − 22.5◦. Almost similar results 
can be found for inclination angles of δ = +22.5◦ and δ = +45◦. How
ever, using not well-designed anisotropic angle γ = − 90 could increase 
the melting time by 28%, 32%, and 45%, respectively for inclination 
angles of δ = − 45◦, δ = − 22.5◦, and δ = 0◦ compared to a similar 
isotropic MF. Thus, proper design and selection of anisotropic angle is a 
crucial task. 

6. Conclusions 

The phase change flow and heat transfer in an anisotropic metal 
foam were modeled using an enthalpy-porosity approach. The aniso
tropic properties, including the thermal conductivity and permeability, 
were defined using 2D tensors and controlled by an anisotropic 
parameter and angle. The finite element method with automatic time 
step control was applied to solve the governing equations. The weight of 
the metal foam was constant, and the anisotropic distribution changed 
the properties in perpendicular directions. The influence of a tilt angle 
was also addressed on the phase transition behavior in the presence of 
anisotropic properties. The isotherms and streamlines were also re
ported to reveal the impact of anisotropic and tilt angles on the phase 
transition process and thermal energy storage.  

• The result showed an anisotropic angle could significantly influence 
the phase transition time and charging power. Placing the metal 
foam with a zero anisotropic angle results in the best heat transfer 
rate and shortest charging time when the tilt angle is +45◦ or − 45◦. A 

Fig. 15. Effect of inclination angle on the isotherm C11 (top row, δ = − 45◦), C13 (middle row, δ = 0◦), and C15 (bottom row, δ = +45◦) for the anisotropic porous 
medium with γ = 0◦. Cases C11 and C15 show similar isotherm patterns but in a mirror fashion. Case 13 shows a stratified isotherm distribution. 
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zero anisotropic angle increases the thermal conductivity along the 
x-direction and the permeability along the y-direction. Thus, the 
anisotropic alignment facilitates the liquid motion parallel to the 
heated wall and improves thermal diffusion perpendicular to the 
heated surface. As a result, the heat could be transferred into the 
enclosure by the conduction mechanism and then carried out in a 
perpendicular direction more easily for an anisotropic metal foam. In 
contrast, a not well alignment of anisotropic properties could dete
riorate the conduction heat transfer in an essential direction and 
decreases the overall heat transfer rate. Thus, selecting the aniso
tropic angle is a crucial parameter in designing an LHTES unit. An 
anisotropic metal foam with an anisotropic angle γ = 0 could save the 
thermal charging time about 15% when δ = − 45◦ and − 20% when δ 
= 0◦ compared to a uniform isotropic MF. However, using an 
anisotropic angle γ = − 90◦ could increase the charging time by 28% 
(δ = − 45◦), 32% (δ = − 22.5◦), and 45% (δ = − 0◦).  

• A tilt angle can also influence the heat transfer rate. Mounting the 
units with a tilted angle of +45◦ or − 45◦ results in the maximum 

charging power. A tilted angle of 0◦ results in stratified temperature 
distribution, significantly reduces the heat transfer rate, and in
creases the charging time.  

• A combination of +45◦ or − 45◦ tilt angle and 0◦ anisotropic angle 
leads to the maximum charging power. It should be noted that 
variation of the tilt and the anisotropic angles does not change the 
amount (weight) of the metal foam and the LHTES unit. Thus, heat 
transfer improvement could be achieved with no weight increase or 
capacity reduction penalty. 

The results of the present study show that using anisotropic metal 
foam can considerably save the melting time and improve the thermal 
energy storage rate. The future works can consider using anisotropic 
metal foams in fin MF shapes or anisotropic MF layers in LHTES designs. 
Moreover, the solidification time is another important aspect of LHTES 
systems which can be investigated for anisotropic MFs in future studies. 

Fig. 16. Effect of inclination angle on the streamlines C11 (top row, δ = − 45◦), C13 (middle row, δ = 0◦), and C15 (bottom row, δ = +45◦) for the anisotropic porous 
medium with γ = 0◦. Cases C11 and C15 show similar streamline patterns but in a mirror fashion. Case 13 shows no significant circulation due to the stratified nature 
of isotherms. 
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