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Abstract
Deep neural networks (DNNs) are promising alternatives to simulate physical problems. These networks are capable of

eliminating the requirement of numerical iterations. The DNNs could learn the governing physics of engineering problems

through a learning process. The structure of deep networks and parameters of the training process are two basic factors that

influence the simulation accuracy of DNNs. The loss function is the main part of the training process that determines the

goal of training. During the training process, lost function regularly is used to adapt parameters of the deep network. The

subject of using DNNs to learn the physical images is a novel topic and demands novel loss functions to capture the

physical meanings. Thus, for the first time, the present study aims to develop new loss functions to enhance the training

process of DNNs. Here, three novel loss functions were introduced and examined to estimate the temperature distributions

in thermal conduction problems. The images of temperature distribution obtained in the present research were system-

atically compared with the literature data. The results showed that one of the introduced loss functions could significantly

outperformance the literature loss functions available in the literature. Using a new loss function improved the mean error

by 67.1%. Moreover, using new loss functions eliminated the pixels predictions (with large errors) by 96%.

Keywords Deep convolutional neural networks � Loss function � Heat transfer images � Physical images

1 Introduction

The two-dimensional steady-state heat condition in heat

transfer is a simple and fundamental problem. The con-

duction heat transfer is defined by r2T ¼ 0; which is the

Laplace equation, and T defines the temperature distribu-

tion. The Laplace equation is the foundation of many

physics’ phenomena. Even though it is a simple partial

differential, the analytical solution is not existing in most

cases. For heat transfer phenomena, the analytical solutions

depend on the boundary conditions and heat transfer

domain, which in most cases do not exist. While the ana-

lytical solutions are very scarce to solve heat transfer

equations, there are man

y well-known numerical solutions such as meshless, finite

volume, and finite element methods. The overall process of

this method consists of partitioning domain solutions to

subdomains, creating algebraic equations for subdomains,

and finally solving all equations simultaneously with ana-

lytical or numerical methods. These methods have two
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main drawbacks. First, they are computationally costly

methods, especially when the number of subdomains is

high. Second, the results of a solved problem cannot be

used to simplify the solution of that problem with new

boundary conditions and domains.

In recent years, researchers have shown that deep neural

networks (DNN) have tremendous power to cluster [1],

classify and generate videos, voices, and images [2–5]. The

deep neural networks have also been used for the identi-

fication of abnormal EEG signals [6], diabetic retinopathy

detection [7], and brain tumor detection [8]. A DNN con-

sists of layers, connections between layers, structure, and

trainable parameters. In order to estimate data accurately,

the trainable parameters must be adjusted. An iterating

numerical technique, training process, adjust the parame-

ters by using a dataset collection of samples. Many

approaches are suggested to increase the accuracy of deep

neural networks. Design new structure of DNNs, using

random normal distribution [9, 10], batch normalization

technique [11], and rectified linear unit (ReLU) [12] active

function are some ideas suggested to improve the accuracy

of DNNs.

Nowadays, DNNs have different applications. In 2020,

Raissi et al. [13] introduced the DNNs as an artificial

intelligence tool with the capability that they can learn

physical phenome such as flow over a cylinder. Berg et al.

[14] approximated solutions of partial differential equa-

tions with a deep feedforward neural network. They sug-

gested a pre-train step for training the network using the

available boundary data and increasing hidden layers. The

pre-train step reduced the time and required iterations of

the training network. Lin et al. [15] enhanced a heat

transfer topology optimization problem by employing a

combined deep convolutional network. The topology

optimization aimed to find an optimized distribution of

thermally conductive materials in electronic components.

They reduced some of the optimization steps by using the

neural network. With this technique, they could accelerate

and enhance the optimization process dramatically. Liu

et al. [16] constituted a novel hybrid deep neural network

to estimate wind speed. Their deep networks compose a

stacked denoising auto-encoder and a long short-term

memory network. These authors trained the network with

real-time big data from the wind farm running log.

Recently, some researchers have investigated the ability

of DNNs to simulate heat transfer. Sharma et al. [17]

applied a U-Net deep network [18] to estimate heat dis-

tribution images. The U-Net is a type of DNN that con-

siders input images locally and globally and estimates

output images. They used a middle-size dataset in order to

adjust the parameters of their network in a process called

training. Their dataset consisted of many square-shaped

geometries with various heated boundaries. The DNN was

utilized to learn the temperature distribution. In contrast to

conventional datasets, their dataset did not have output

images. Hence, there were no target images to train the

DNNs. These authors utilized a spatial convolution filter

based on the finite difference (FD) [19] method to compute

the error of estimation by convolving predicted images and

the defined filter. By using this technique, datasets were

generated at the same time as network training, and

therefore, without having a big dataset, they benefited from

the advantages of a big dataset. Nevertheless, their dataset

only contained square geometries. Moreover, the dataset

was not completely predefined, and hence, it was not

unique to be used for future investigations.

Farimani et al. [20] used a deep network to estimate heat

transfer images. They produced a dataset containing 6230

samples to adjust the parameters of their DNN. Each

sample of the dataset consisted of an image of a heated

geometry as the input and its temperature distribution as

the output image. The boundaries of geometries had dif-

ferent sizes and positions on the domain bonds. Various

geometries, including rectangle, disk, annulus, and triangle,

were also investigated. The images of the heat distribution,

which was applied as the output data, were generated by

using the finite difference (FD) method. The main draw-

backs of the mentioned dataset were poor diversity of

geometries and using few images. The dataset was made of

only 6230 images and four shapes.

Sharma et al. [17] and Barati Farimani et al. [20]

attempted to estimate temperature distribution in heated

geometries with low errors by selecting an appropriate

DNN structure. The structure of a DNN and the training

process play a significant role in the accuracy of the DNN.

So, a well-designed DNN structure and an adequate train-

ing process are essential for achieving an accurate DNN.

One of the crucial components of a training process is the

configuration of the optimizer. An optimizer is a mathe-

matical approach that tunes the parameters of DNN during

the training process. It uses a function, loss function, to

calculate the error of estimated data, and then, it changes

the value of DNN’s parameters based on the calculated

error.

Most recently, Edalatifar et al. [21] proposed a com-

prehensive dataset consisting of 44,160 samples of tem-

perature distribution data. Each sample was made of an

input and an output image of 64 9 64 pixels. The input

image contained two channels, a channel for geometrical

specifications and a channel for the thermal boundary

conditions. The output images had only one channel that

showed the temperature distribution, which was computed

by the finite difference method (FDM) [19]. The geome-

tries included square, regular hexagonal, triangular, and

regular octagonal figures; the width and height of shapes

were changed between 35 and 58 pixels. The investigation
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of Edalatifar et al. [22] showed that the design of a loss

function significantly affects the training behavior and

accuracy of a DNN to estimate the heat images. First, they

used the typical mean square error (MES) as the loss

function for the training of a DNN. The outcomes showed

that very few of the pixels in the images were estimated

with huge errors compared to the rest of the pixels. They

named these pixels the outlier pixels and their estimated

error the outlier error. Since each pixel indicates a physical

meaning, the predicted value of every single pixel could be

important in future engineering decisions and designs.

Thus, the accurate estimation of all pixels is essential.

Edalatifar et al. stated that the number of outlier pixels is

scarce, and hence, their value could not change the total

value of MSE. As a result, the optimizer could not see these

outlier pixels and adjust the network parameters accord-

ingly. To eliminate the outlier pixels, these authors intro-

duced the mean of maximum square errors (MMaSE) loss

function. They employed MMaSE instead of MSE to train

the DNN, and they found that the new loss function could

efficiently eliminate outlier pixels and their error. How-

ever, the main drawback of using MMaSE was a slight

increase in the MSE of the estimated error. Indeed, they

concluded that the estimation error of very well-predicted

pixels was raised slightly, so DNN could focus on outlier

pixels and remove them. Moreover, during the training

process, particularly at the initial training epochs, the

convergences of DNN trained by MMaSE were slow.

As seen, regardless of the structure of DNN, the design

of a loss function is a crucial task for the training of DNN

and learning the physical images. In [22], it was found that

the outlier pixels could be eliminated by introducing

MMaSE, but MSE was raised. Although MMaSE was

beneficial to remove the un-acceptable pixels and validate

the general response of DNNs, it declined the overall

accuracy of the network by the growth of MSE. The pre-

sent research aims to introduce loss functions to not only

eliminate the outlier pixels, but also increase the total

accuracy of the network.

The structure of this paper is as follows. In Sect. 2, the

new loss functions for physical images will be introduced.

Then, in Sect. 3, a convolutional deep neural structure will

be introduced. Then, the details of the training process will

be discussed in Sect. 4. In Sect. 5, some evaluation indexes

will be introduced to evaluate the robustness of the intro-

duced loss functions and the proposed novel neural net-

work structure. Section 6 concerns the database and

verification approach. The evaluation indexes will be used

in Sect. 7 to evaluate the obtained results and judge the

robustness of the introduced loss functions and network

structure. Finally, the results will be concluded in Sect. 7.

2 Loss functions

Pixels of some images, for instance, heat images, interpret

a physical meaning for a physical quantity. These images

represent a physical quantity that could be considered as

physical images. In natural images, which show a real-

world image such as an object or a landscape, a single pixel

barely could provide a meaning, while a group of pixels

could determine an object. In contrast to natural images, a

pixel of a physical image is valuable because its value

represents a physical quantity that could later influence an

engineering decision. As mentioned, when an image is

estimated, some of its pixels, outlier pixels, could be esti-

mated with an error much larger than other pixels. The

outlier pixels seldom could be visible in natural images, so

they are not important in the estimation process. However,

as mentioned, the outlier pixels in a physical image can

influence later decisions and processes. Most generative

networks are trained with MSE loss function; however,

Edalatifar et al. in [21] represented a new loss function,

MMaSE. They trained a deep network with MMaSE to

estimate heat distribution images, and the result revealed

that MMaSE could reduce outliers dramatically compared

to MSE.

Suppose Tn,c,r and Pn,c,r are the 3D matrix of target and

predicted images, respectively. Here, n determines images

in T and P matrix, and r and c are row and column indexes.

As a result, Tn,c,r determines the pixel’s value on the (c,r)

coordinate of the image n. Using this definition, the square

errors (SE) are declared as follows:

SEn;c;r ¼ Pn;c;r � Tn;c;r
� �2 ð1Þ

Here, SE is a matrix with size and dimensions equal to P

and T. The mean of the SE’s elements is denoted by MSE.

Hence, MSE is the mean of square errors of all predicted

pixels and calculated as follows [23, 24]:

MSE ¼ 1

N � C � R

XN

n¼1

XC

c¼1

XR

r¼1

Pn;c;r � Tn;c;r
� �2

¼ meanðSEÞ ð2Þ

In Eq. (2), N is the total number of the images in T,

while R and C, respectively, determine the number of rows

and columns of each image (64 for our dataset). Therefore,

MSE can be calculated following the computation of SE.

Here, SE is created for all pixels in the Tn,c,r and Pn,c,r with

Eq. (1). Then, MSE is calculated as the mean of SE. It must

be pointed out that MSE is the most common loss function

to train generative DNNs.

To reduce the training time, most deep networks are

trained with a group of data (images) instead of the single

data in a step of the training process. This group of data is

known as a batch. For a batch, MSE is the mean of square
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errors of the batch’s pixels. There is one major problem

with MSE in a batch, which is the overlooking of a few

large errors. Indeed, there is a huge number of pixels in a

batch. Hence, if few pixels of the batch are estimated with

square error very much than MSE, outlier pixels, their

variation cannot change MSE value considerably. As a

result, the optimizer of the deep network, which adapts

parameters of DNN based on the value of the loss function,

cannot reduce outlier errors.

A new loss function, MMaSE, is introduced in [21] to

overcome such a drawback. This loss function is the mean

of the maximum square error of each image (maximum

outlier error) in a group of predicted images. MMaSE

calculates as:

MMaSE ¼
XN

n¼1

1

N
max

0;1
Pn;c;r � Tn;c;r
� �2

� �

¼ mean max
0;1

ðSEÞ
� �

ð3Þ

in which, max0,1 determine maximum elements on the

first and second dimensions of a 3D matrix. Thus,

max0,1(SE) denotes the maximum outlier error of each

image in SE. MMaSE could be computed using simple

steps as 1—Compute SE matrix for all pixels in Tn,c,r and

Pn,c,r using Eqs. (1), 2—Extract the maximum of square

errors of each image within SE, and 3—Compute the mean

of extracted square errors in step 2 as MMaSE.

It should be noted that MMaSE, which was introduced

in [21], is an appropriate parameter to investigate outlier

errors in all predicted pixels. Its value depends only on the

biggest outlier errors of each predicted image. Therefore,

the variation of all pixels in an image instead of the

maximum of them does not influence the value of MMaSE.

The variation of the outliers is clearly visible by using

Eq. (3) as the loss function. Thus, the optimizer could

easily adapt the trainable parameters of DNN to reduce the

outlier errors, i.e., in [15], a DNN was trained with MMaSE

loss function and was shown that the outlier errors were

reduced dramatically.

As mentioned, MMaSE was defined as the mean of the

biggest square error of each estimated image, and there-

fore, only one pixel with the biggest estimation error will

be used in the computation of MMaSE. This led to a major

drawback that most pixels with large errors did not con-

tribute to the computation of MMaSE. Hence, many pixels

with moderate and large errors did not have any role in

MMaSE’s value. Consequently, the optimizer could not

follow the variation of all pixels’ errors, and they could

freely adopt any error value. Hence, as shown in [15], both

the mean of errors (MSE and MAE) and variation of errors

during the training process were increased. To overcome

this drawback, three new loss functions are introduced in

this paper. The first one is the mean of multiple maximum

square errors (MMuMaSE). It could be computed by using

the following four steps:

1. Compute SE for all pixels in Tn,c,r and Pn,c,r using

Eq. (1).

2. Sort square errors in SE for each image separately.

3. Extract M maximum square errors of each image.

4. Calculate the mean of selected errors in step 3 as

MMuMaSE.

where M is the number of the maximum square errors of

each image, which was extracted to calculate MMuMaSE.

A comparison between MMaSE and MMuMaSE reveals

that if M = 1, then MMuMaSE is equal to MMaSE. When

the loss function is MSE, all pixels of images participate in

the training process. If the loss function is MMaSE, only

one pixel of each image will participate in the computation

of the loss function and takes part in the training process.

However, MMuMaSE extracts M square errors of each

image to calculate the loss value. Thus, MMuMaSE as the

loss function reveals more pixels with large errors to the

optimizer during the optimization process compared to

MMaSE. At the same time, MMuMaSE just feeds the

impact of the important pixels to the optimizer. As a result,

a significant reduction in outlier errors could be expected.

The second loss function, introduced here, could be

considered the sum of MSE and MMuMaSE, which can be

referred to as MSE ? MMuMaSE. This loss function has

two main properties. First, the estimation error of all pixels

participates in the training process. Second, in contrast to

MSE, the variance of outlier errors could be seen. There-

fore, by using MSE ? MMuMaSE, a notable decrease in

mean and outlier errors could be expected compared to any

previous loss functions, i.e., MSE, MMaSE, and

MMuMaSE.

Finally, the sum of MSE and MMaSE is the third loss

function, referred to as MSE ? MMaSE. This loss function

has properties similar to MMaSE, but it also has its unique

features. Indeed, MMaSE focuses on outlier errors more

than MMuMaSE, and thus, MSE ? MMaSE can be

expected to reach lower errors than MSE ? MMuMaSE

and a higher mean error. In the next section, a novel DNN

structure will be proposed. The structure will benefit from a

feature with information transfer between its layers.

3 Deep neural network structure

In order to test the impact of various loss functions on the

performance of DNNs, a convolutional neural network

(CNN) with an auto-encoder [24] structure was adopted as

the test case. The CNN will be trained with MSE, MMaSE,

MMuMaSE, MSE ? MMuMaSE, and MSE ? MMaSE
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loss functions, and the outcomes will be analyzed. An auto-

encoder is a typical type of neural network, which its

structure is suitable for a variety of purposes such as noise

reduction, dimensionality reduction, and generation data.

The auto-encoder has two main parts, an encoder and a

decoder. The encoder extracts features from input data, and

the decoder re-constructs output data using extracted

features.

The layers of a neural network could be either dense or

convolutional. A neural network with convolutional layers

has less trainable parameters than the same network with

dense layers. Neural networks with convolutional layers

are known as Convolutional Neural networks (CNN). If

CNN contains an auto-encoder structure, it could be called

a convolutional auto-encoder [25]. Here, a convolutional

auto-encoder will be used as the test CNN. The structure of

this CNN is shown in Fig. 1. As seen, this CNN consists of

two parts, encoder and decoder. The encoder is made of ten

convolution layers where a rectified linear unit (ReLU)

[12] as the active function and a batch normalization [11]

were added before each layer. The decoder structure is

similar to the encoder, but its layers are deconvolutional

layers, and they act as an inverse function of convolutional

layers. After the last layer of the decoder, a sigmoid acti-

vation function was added. This network contains

1,769,729 trainable parameters that must be adapted in the

training process.

In summary, the encoder gets input images with a size of

64 9 64 9 2, where two in notation indicates the number

of the input channels of an image. The encoder extracts 512

features of 4 9 4, and then the decoder gets the features

and generates output heat distribution in the form of a

64 9 64 9 1 image. The next section represents the details

of the training process for the proposed DNN.

4 Training process

Here, the back-propagation method was used to evaluate

the loss functions. However, training neural networks with

the gradient base approaches will suffer from several lim-

itations in terms of accuracy, processing time, overfitting,

quickly falling into local minima, etc. Some recent

researchers proposed nature-inspired algorithms such as

[26–30] to train neural networks robustly and efficiently.

Here, our codes are ready with typical back-propagation,

and for the sake of convenience, we used the following

approach. It could be a good idea if future researchers use

nature-inspired algorithms and discuss the impact of the

training approach on the performance and accuracy of

DNNs in learning physical images.

A DNN can be mathematically modeled as a function of

free parameters (weights of DNN) that maps input data

(signal) to output. Hence,

Y ¼ f ðW ;B;XÞ ð4Þ

That W and B are the weights of DNN so-called train-

able parameters, which must be adapted during an iteration

procedure called the training process. Here, B is known as

bias, while X and Y are input and output of DNN, respec-

tively. DNNs are constructed from many layers; each layer

is a mathematical function that can be defined as:

zl ¼ f Wl;Bl; al�1
� �

ð5Þ

where zl and al-1 are output and input data of layer l,

respectively, and Wl and Bl are their weights. In Eq. 4, W

and B are a collection of all Wi and Bi for 1� i� L; where

L is the number of layers. Calculating the output of DNN is

a single-phase procedure consisting of calculating the

output of each layer from the first layer to the last one.

However, before using DNN, their weights must be tuned

to estimate data accurately. Gradient descent is one of the

most used machine-learning algorithms to train a DNN.

Gradient descent (GD) represents the first time by Cauchy

in 1847 [31]. A loss (cost) function is needed for using it,

which is a function to calculate the distance between an

estimated value and actual value. The cost function can be

modeled as:

C ¼ f W ;B; YT ; Yp
� �

ð6Þ

where YT is the actual (target) value, and YP is the esti-

mated value with DNN. The training goal is the adaption of

weights (W, B) to minimize as possible as C. The smaller

C, the more similar YT and YP. Hence, the problem of the

training process is defined as:

minimize C ¼ f W ;B; YT ; Yp
� �

W ;B
ð7Þ

Figure 2 shows the relationship between the cost func-

tion gradient with respect to a weight and cost function.

According to GD method (as shown in Fig. 2), the weights

must be changed in the opposite way of the gradient to

decrease the loss function value. GD method is a well-

accepted approach for training neural networks where its

convergence was addressed by Patrick Cheridito et al. [32].

Unfortunately, GD method does not determine the size of

the movement of weights, and it only shows the direction

of the movement. Therefore, optimization could be

achieved only in an iteration process (training process). In

each step of the training process, the weights are changed

based on the below equations:
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wi;new ¼ wi;old � g
oC

owi
ð8Þ

bi;new ¼ bi;old � g
oC

obi
ð9Þ

In Eqs. 8 and 9, g is the learning rate, which is a

hyperparameter to control the length of movement. Here,

wi and bi are ith element of W and B. Then, qC/qwi is the

gradient of the loss function with respect to wi. Similarly,

qC/qbi is the gradient of the loss function with respect to bi.

The main part of Eqs. 8 and 9 is the gradient that must be

calculated correctly. Back-propagation is a well-known

algorithm to calculate gradients in a training process

[33, 34].

Fig. 1 Structure and characteristics of the deep network used in this paper
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The training process has two main phases. The first

phase is the forward propagation which consists of passing

input data (signal) throughout the DNN and calculating its

output (YP), and then calculating the loss function. The

second phase is the back-propagation. During the back-

propagation phase, the estimation error passes from the last

to the first layer, and the gradients can be calculated. When

the gradients are determined, the weights are changed

according to Eqs. 8 and 9. The relationship between loss

function and gradients will be addressed in the next

section.

4.1 Relationship between loss function
and gradients

The full-connection (dense) layer and convolutional layer

are more popular layers that make the structure of DNNs.

Each layer has its properties and mathematical model.

Therefore, the forward propagation and back-propagation

are related to the layer’s type. For simplicity, suppose a

DNN with L dense layers, which is shown in Fig. 3.

Here, zLn is the output of nth neuron of Lth layer. aLn is

the output of the active function of Lth so, aLn = f(zL
n)

where f is the active function. For simplicity, suppose the

active function is identity. So zL
n = aL

n and qaL
n/qzL

n = 1.

According to Fig. 3, the gradient of loss function C with

respect to wL
11 is defined as follows:

oC

owL
11

¼ oC

oaL
1

�
oaL

1

ozL
1|{z}

¼1

�
ozL

1

owL
11

ð10Þ

where wL
11 is the weight between the first neuron of layer

L-1 and the first neuron of layer L. According to properties

of dense layers, zL
1 is calculated as:

zL
1
¼

X

i

aL�1
i � wL

i;1

� �
þ bL1 ð11Þ

Therefore,

ozL
1

owL
11

¼ aL�1
1 ð12Þ

oC

owL
11

¼ oC

oaL
1

�
oaL

1

ozL
1|{z}

¼1

�aL�1
1 ð13Þ

By recalling Eq. 8:

wL
1;1;new

¼ wL
1;1;old

� g
oC

owL
1;1

¼ wL
1;1;old

� g
oC

oaL1
�
oaL

1

ozL1
� aL�1

1

ð14Þ

In general, the gradient of loss function C with respect to

a weight between neuron m of layer L-1 and neuron n of

layer L is equal to:

oC

owL
m;n

¼ oC

oaL
n

� oaLn
ozLn

� aL�1
m ð15Þ

By recalling Eq. 7:

wL
m;n;new

¼ wL
m;n;old

� g
oC

owL
m;n

¼ wL
m;n;old

� g
oC

oaL
n

�
oaL

n

ozLn
� aL�1

m

ð16Þ

4.2 Influence of new loss functions

In Eqs. 13–16, there is a key part, qC/qaL
n, that plays the

main role in changing the weights. It is the gradient of the

loss function with respect to the output of the last layer.

Suppose the last layer has M neurons (M outputs). As MSE

is the most popular lost function to optimize generator

DNN, suppose again loss function C is MSE:

Fig. 2 A scheme of the relation between GD and cost function

Fig. 3 A DNN consists of L dense layers
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C ¼ 1

M

XM

i¼1

aLi � Yi;T
� �2 ð17Þ

aL
i is the output of ith neuron of the last layer, and then

it is the output of DNN on neuron i and can be denoted as

Yi,P. Hence,

aLi ¼ Yi;P

C ¼ 1

M

XM

i¼1

Yi;P � Yi;T

� �2 ð18Þ

Consequently,

oC

oaLi
¼ 2

M

XM

i¼1

aLi � Yi;T
� �

¼ 2

M

XM

i¼1

Yi;P � Yi;T
� �

ð19Þ

Recalling Eq. 16:

wL
m;n;new

¼ wL
m;n;old

� g�
oaL

n

ozLn
� aL�1

m � 2

M

XM

i¼1

Yi;P � Yi;T
� �

ð20Þ

Yi,P - Yi,T is the error of estimation of ith neuron and is

shown with ei. Then,

ME ¼ 2

M

XM

i¼1

Yi;P � Yi;T
� �

¼ 2

M

XM

i¼1

eið Þ ð21Þ

According to Eqs. 20 and 21, if the loss function is

MSE, the new value of weights is dependent on the mean

of estimation errors (ME). For an image, as discussed

before, the number of outlier occurrences is small (less

than 1% of all samples), while M is a large value. Thus,

these outlier errors cannot change ME notably. Conse-

quently, when the error values are small, the gradient of

such errors diminishes, and as a result, the weights cannot

change in a direction to further reduce the outlier errors.

Now, let us suppose MMaSE is the loss function. In

such a case, for an image according to MMaSE definition,

M = 1, and hence Eqs. 20 and 21 are changed to the fol-

lowing equations:

wL
m;n;new

¼ wL
m;n;old

� g�
oaL

n

ozLn
� aL�1

m � 2 Yk;P � Yk;T
� �

ð22Þ

MaE ¼ 2 Yk;P � Yk;T
� �

¼ 2ek ð23Þ

in which, k index is an output index with a maximum

error (outlier error). From these equations, it is clear that

the gradient solely relies on the output with the maximum

error (MaE) regardless of the error of other outputs. As a

result, the change of weights will be in a direction to reduce

the maximum error while leaving the other smaller errors

alone. This is the reason for an increase in the mean of

estimated errors when the loss function is MMaSE. From

another point of view, there is a significant difference

between the maximum error (outlier error) and mean of

errors, and thus the gradient of errors is high. When the

gradient of errors is large, the loss function and mean of

errors could be reduced slowly. The same conclusion could

be valid of MMuMaSE. Now let us suppose the loss

function is MSE ? MMaSE. In such a case, Eqs. 20 and 21

can be written as follows:

wL
m;n;new

¼ wL
m;n;old

� g�
oaL

n

ozLn
� aL�1

m

� 2
1

M

XM

i¼1

Yi;P � Yi;T
� �

þ Yk;P � Yk;T
� �

" #

ð24Þ

ME&MaE ¼ 2
1

M

XM

i¼1

Yi;P � Yi;T
� �

þ Yk;P � Yk;T
� �

" #

¼ 2
1

M

XM

i¼1

eið Þ þ ek

" #

ð25Þ

It is clear that using MSE ? MMaSE, the gradients are

a function of both the mean of errors and the outlier errors.

In this case, since the error is the summation of the mean

error and maximum error, when the mean of errors

becomes small, the overall error, e.g., ME&MaE, could

significantly change with the change of outlier errors.

Consequently, the weights could be changed in a direction

to reduce the outlier errors. In a case when the mean error

is large, it can change the gradients and reduce the mean

errors as well. The same conclusion is true for MSE ?

MMuMaSE. Now, some evaluation parameters are

required to evaluate the benefit of the proposed loss func-

tion, which is the subject of the next section.

5 Evaluation parameters

This section aims to study the performance of the trained

neural networks. Here, the trained DNNS learned the

concept of the temperature distribution due to conduction

heat transfer from a dataset of temperature distribution.

The conduction heat transfer temperature distributions

were produced by solving many cases of conduction heat

transfer problems using the well-known finite difference

method, which is a numerical solution approach. The

dataset contains 44,160 samples of temperature distribution

data, in which each sample image was made of an input

and an output image of 64 9 64 pixels. The details of this

dataset and solution approach are discussed in [21].

Thus, some parameters are needed to investigate mean

and outlier errors. In previous sections, MMaSE and MSE

were represented as a function to calculate loss estimation.

They could also be used as evaluation parameters as well.
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Indeed, MSE indicates the mean square of all estimated

pixels errors; therefore, it is suitable as an index to explore

the mean error. Moreover, MMaSE is the mean of the

maximum square error of each estimated image, and thus,

it is proper to investigate outlier errors. However, the

square error is a nonlinear function and changes the scale

of errors. Hence, the absolute error that is a linear function

for positive and negative numbers could be a better indi-

cator that was used here. Absolute Error (AE) is defined as

follows:

AEn;c;r ¼ Tn;c;r � Pn;c;r

�� �� ð26Þ

Here, AEn,c,r is the absolute error of a pixel on the (c,r)

coordinate of the image n. A comparison between Eqs. (1)

and (26) shows that the absolute and square operators are

the only difference between them. Mean absolute error

(MAE) [24] and mean of maximum absolute error

(MMaSE) are defined as:

Fig. 4 Some samples of dataset.

A: input, channel 1. B: input,

channel 2. C: output

Neural Computing and Applications

123



MAE ¼ 1

N � C � R

XN

n¼1

XC

c¼1

XR

r¼1

Pn;c;r � Tn;c;r
�� ��

¼ meanðAEÞ ð27Þ

MMaAE ¼ 1

N

XN

n¼1

max
0;1

Tn;c;r � Pn;c;r

�� ��� �
ð28Þ

MAE, similar to MSE, is suitable for checking the mean

of estimation error, and MMaAE, similar to MMaSE, is

useful for comparing outlier errors. The utilized dataset and

verification method will be discussed in the next section.

6 Numerical method and verification

In this paper, we use a dataset introduced in [21] to train

our DNN. It consists of 44,160 samples of heat transfer.

Each sample has an input and an output image of 64 9 64.

The input images have two channels; the first channels

have a triangle, square, regular hexagon, or regular octagon

shape. They are binary images that introduce the geometry

of the input shape; therefore, the output of shapes is filled

with zero, and the shapes are plotted with one. The second

channels consist of the boundary of the shapes in the first

channel that randomly slices between two and five pieces,

and each piece has a random value between 0 and 1. The

inside and outside of the boundaries are filled with 0 and 1,

respectively. These boundaries are called heat boundaries.

The output images have only one channel that shows the

heat distribution image. Each output image is similar to its

second input channel; its inside of heat boundaries is filled

with heat distribution calculated with the finite volume

method (FVM). Some samples of this dataset are shown in

Fig. 4, where each row indicates one sample. Columns A

and B respectively show channel one and two input images,

and column C shows output images. All heat boundaries

have random width between 35 to 58 pixels, and the center

of boundaries are matched to the center of the domain. This

dataset has three parts include training, testing, and vali-

dation. The training part is 70 percent of all samples that

are selected randomly. Each one of the testing and vali-

dation parts is 15 percent of all samples, selected randomly,

too. The value of input and output images pixels is between

zero and one, so we do not have any normalization on the

dataset. The dataset is accessible here: https://doi.org/10.

17632/rw9yk3c559.2 [21, 22].

DNN of this paper was implemented with TensorFlow

[35] and Python. This DNN was trained with Adam

Table 1 Evaluation parameters for five networks

Evaluation parameter Net_MSE Net_MMa Net_MMuMa Net_MSE & MMa Net_MSE & MMuMa

Training data MAE 0.0011 0.0052 0.0021 0.0025 8.964e-4

MMaAE 0.0611 0.0409 0.0237 0.0172 0.0284

MSE 1.010e-5 5.975e-5 8.8471e-6 1.261e-5 2.88e-6

MMaSE 0.0044 0.0019 6.3366e-4 3.115e-4 0.0011

Validation data MAE 0.0013 0.0052 0.0023 0.0026 0.0011

MMaAE 0.0762 0.0512 0.0377 0.0239 0.0372

MSE 1.455e-5 6.270e-5 1.12649e-5 1.508e-5 4.931e-6

MMaSE 0.00748 0.0033 0.0022 0.0008 0.0022

Testing data MAE 0.0013 0.0052 0.0023 0.0026 0.0011

MMaAE 0.0760 0.0509 0.0374 0.0233 0.0366

MSE 1.438e-5 6.218e-5 1.1032e-5 1.475e-5 4.732e-6

MMaSE 0.0074 0.0032 0.0021 7.093e-4 0.0020

Fig. 5 Variation of MSE of training data within the training process.

Left: Epoch 0 to 250. Right: Epoch 0 to 15
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optimizer [36] with a learning rate of 0.001. b1 and b2 are

two main parameters of Adam that in this paper they were

set to 0.9 and 0.999, respectively. The trainable parameters

of our DNN were initialized with the Glorot Uniform

technique [37]. Each training process for each network was

done for 2000 epochs. Instead of using a single sample,

batches of 32 samples were used to train DNN. Validation

parameters of validation and training data were calculated

for each epoch and saved as a history of the training pro-

cess. The history of the process is useful to explore the

speed of reducing error parameters during the training

process and comparing loss functions. Due to loss error

having irregular variance during the training process, the

best training point is when the loss error of validation data

has less value, and the DNN parameters were saved at this

point.

In this paper, DNN was independently trained five times

with MSE, MMaSE, MMuMaSE, MSE ? MMaSE, and

MSE ? MMuMaSE that for simplification refer to them as

Net_MSE, Net_MMa, Net_MMuMa, Net_MSE&MMa,

Fig. 6 MSE of train data for the

last 200 epochs of the training

process

Fig. 7 MMaSE of train data for

the first 350 epochs of the

training process
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and Net_MSE&MMuMa. In this study, M = 82 was used

when the lost function was MMuMaSE or MSE ?

MMuMaSE that it is equal to 4 percent of all predicted

pixels. The benefit of DNNs trained with proposed loss

functions will be evaluated in the results section.

Fig. 8 MMaSE of train data for

the last 200 epochs of the

training process

Fig. 9 Frequency distribution

chart for predicted test images

base on MAE. Each point

represents the number of images

predicted by MAE in the range

5.7e-05
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Fig. 10 Frequency distribution

curve for predicted testing

images base on MSE. Each

point represents the number of

images predicted by MSE in the

range 4.29e-07

Fig. 11 Pie charts to compare

outlier errors. These charts show

the number of predicted test

data pixels with AE equal and

bigger than A: 0.05, B: 0.0988,

C: 0.1638, and D: 0.245
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7 Results and discussion

In this section, the impact of training DNN using different

loss functions will be discussed. The accuracy of the

trained DNNs for introduced evaluation indexes is the

subject of the first subsection. Then, the speed of training,

error evaluation, maximum error evaluation, and quality of

predictions will be discussed.

7.1 Evaluation parameters comparison

After finishing the training process, the training, testing,

and validation data were estimated, and validation param-

eters including MSE, MAE, MMaSE, and MMaAE were

computed. Table 1 shows these results. Some interesting

notes can be extracted from Table 1:

1. Net_MSE&MMuMa, DNN that trains with MSE ?

MMuMa lost function, has the least MSE error.

Besides, Net_MSE&MMuMa has fewer MMaAE and

MMaSE errors than Net_MSE; therefore, Net_M-

SE&MMuMa has a smaller outlier error than

Net_MSE. Hence, a DNN, which is trained by

MSE ? MMuMaSE lost function, estimates the results

with not only lower outlier errors but also lower mean

error compared to a DNN trained with MSE. As a

result, MSE ? MMuMaSE is the best-introduced loss

function and could be employed instead of MSE lost

function. Interestingly, these results reveal that MSE ?

MMuMaSE is suitable for training a deep network to

estimate not only physical images but also natural

images.

2. The only loss function that estimates data with mean

error (MSE and MAE) less than MSE loss function is

MSE ? MMuMaSE. Net_MSE ? MMuMa reduced

MSE by 67.1% compared to Net_MSE.

3. Net_MSE&MMa has the least outlier error (MMaSE

and MMaAE). However, its mean error (MSE and

MAE) is more than Net_MSE and Net_MSE&M-

MuMa. It predicts test images with an MSE 2.57%

larger than Net_MSE. As a result, if the decrease in

outlier error is more significant than the mean error, we

could use MSE ? MMaSE instead of MSE ? MMa-

MuSE and MSE loss functions.

7.2 Speed of training

The main parameter to evaluate training parameters is the

speed of reducing errors during the training process. The

history of the training process will be used to investigate

the rate of reduced errors. Using history, the variation of

MSE of training data for the first 250 epochs is shown in

Fig. 5 and for the last 200 epochs in Fig. 6. Also, Figs. 7

and 8 show the value of MMaSE for training data in the

first 350 and last 200 epochs, respectively.

Figures 5 and 7 show that Net_MMa reduces errors

slowly, especially in the first 200 epochs. Also, Fig. 5

shows that Net_MSE&MMuMa is the fastest network in

the first 15 epochs to reduce errors.

Moreover, Figs. 6 and 8, which were plotted for the last

200 epochs, show the same results as the previous sec-

tion. Figure 8 clearly shows the influences of the intro-

duced loss functions on outlier errors. Interestingly,

Net_MSE&MMuMa has a small MSE, and Net_M-

SE&MMa has a small MMaSE. It is worth noticing that

MSE and MMaSE (outlier errors) are the highest for

Net_MSE.

7.3 Population and distribution of testing
images errors

As mentioned, testing data contains 6624 samples that each

sample contains an input image and an output image.

Evaluated parameters (MSE, MAE, etc.) could be calcu-

lated for either all predicted images or each image sepa-

rately. In Table 1, evaluation parameters are computed for

all estimated testing, training, and validation images. Now,

a comparison is made based on MSE and MAE errors for

each predicted test image separately. Figures 9 and 10

show the frequency distribution curve. In Fig. 9, each

marker shows the number of test images predicted with

MAE in a range of 5.7e-5. This chart is plotted for MAE

between zero and 0.004. Figure 10 is similar to Fig. 9, but

it is plotted for MSE from 0 to 3e-5; each marker show

number of testing images estimated with MSE in a range of

about 4.29e-07.

Figure 9 shows that Net_MSE&MMuMa has estimated

a large number of test images with MAE in the distance

between 0.0005 and 0.0012. It could also estimate a small

number of test images in a range bigger than 0.0012.

However, Net_MSE merely has a bit better performance

than Net_Mse&MMuMa in the distance of 0 to 0.0004. It is

concluded that Net_MSE&MMuMa estimates most images

with small errors, while Net_MSE estimates some images

bFig. 12 A sample of dataset predicted with all five networks. It has

the worst MAE among all images in test data when predicting with

Net_MSE. The input and output of these images are shown in the last

row of Fig. 2. From left to right, columns 1 to 3 are predicted images

with the network, absolute difference of predicted image and actual

image in the dataset (AE), and square difference of predicted image

and actual image in the dataset (SE). Rows 1 to 5 belong to Net_MSE,

Net_MMa, Net_MMuMa, Net_MSE&MMa, and

Net_MSE&MMuMa
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with near-zero error and some of the images with big

errors. Hence, Net_MSE&MMuMa could estimate outputs

with small errors, while Net_MSE estimates some images

very well with near-zero error and some of them with big

errors. Note that Net_MMa predicts almost all images with

MAE with values bigger than 0.0035, and hence, they are

almost out of scale in Fig. 9.

Unlike MAE that all errors have an equal influence on

their value, bigger errors have more influence on MSE

value. For instance, consider two set of data, (0.3, 0.3, 0.6)

and (0, 0, 1.2). Though they have equal MAE, their MSE

are 0.18 and 0.48, respectively. Hence, large errors affect

MSE more than small errors, and MSE is a suitable pa-

rameter for comparing the magnitude of two network

errors. Similar to Figs. 9, 10 shows the better performance

of Net_MSE&MMuMa. According to Fig. 10, Net_M-

SE&MMuMa predicts almost 98% of testing images with

MSE between 0 and 1e-5.

In summary, Net_MMa, Net_MSE&MMa, and

Net_MMuMa do not have a proper performance to

decrease mean error compared to Net_MSE and Net_M-

SE&MMuMa. In contrast, Net_MSE&MMuMa has better

performance than Net_MSE to reduce mean and outlier

errors.

7.4 Maximum errors

As mentioned, for physical images, correct estimation of

even one pixel is important. In this section, all introduced

loss functions are compared based on maximum estimation

errors of test data. In Fig. 11, four pie charts are illustrated;

each of them shows how many pixels are predicted equal

and bigger than an AE value for different loss functions.

The pie charts are plotted for AE of 0.05, 0.0988, 0.1638,

and 0.245. For instance, Fig. 11D shows that Net_M-

SE&MMuMa predicts only four pixels of the test image

with an absolute error equal and bigger than 0.245.

Attention to Fig. 11 shows that using Net_MSE&MMa

reduced the number of pixels with a high error of 0.1638

and more by 96%.

In the same way, Net_MSE&MMuMa reduced such

errors by about 88%. The charts of Fig. 11 beautifully

illustrate the influence of the introduced loss function on

the outlier errors. These results show that Net_MSE&MMa

was more successful than Net_MSE&MMuMa in reducing

the outlier errors. However, as reported in Table 1,

Net_MSE&MMuMa reduced not only the outlier errors,

but also MSE in comparison with Net_MSE. It is while

Net_MSE&MMa increases MSE. Therefore, MSE ?

MMuMaSE is a better loss function than MSE ? MMaSE.

7.5 A sample of prediction

A sample of testing data predicted with the five networks is

shown in Fig. 12. The input and output of this sample are

represented in the last row of Fig. 4. It has the worst MAE

value among all test images when they are predicted with

Net_MSE. This image is predicted by Net_MSE,

Net_MMa, Net_MMuMa, Net_MSE&MMa, and Net_M-

SE&MMuMa and then illustrated in rows 1 to 5 of Fig. 12,

respectively. Column 1 shows the predicted image, column

2 is the absolute difference of actual and predicted image

(Absolute Error: AE), and column 3 is the square differ-

ence of the actual and predicted image (Square Error: SE).

As mentioned in the last section, a square error is a non-

linear function, and it blurs small errors and big ampli-

tudes. Below each column, the color map and range of

colors are shown. Evaluation parameters for the predicted

image on each row are shown on the right side of Fig. 12.

8 Conclusion

The present study explored the impact of loss functions on

the performance and accuracy of DNNs to estimate phys-

ical images. A DNN was introduced and trained with MSE

loss function to estimate heat transfer images. Estimated

images with this network showed that few pixels were

predicted with unacceptable errors. These pixels are called

outlier pixels, and their errors are called outlier errors.

Although there are a few outlier pixels in a group of esti-

mated images, they can lead to huge errors and mistakes in

a decision process that uses these estimated images. In this

paper, three new loss functions, including MMuMaSE,

MSE ? MMuMaSE, and MSE ? MMaSE, were sug-

gested to reduce outlier errors. Thus, the proposed DNN

was trained with these new loss functions as well as

MMaSE, which is presented in [22]. The following out-

comes are extracted from estimation’s results of DNN:

1. The network that was trained with MSE ? MMuMaSE

(Net_MSE&MMuMa) was estimated images with the

minimum mean error compared to other networks. It

reduced the MSE of estimation by about 67.1% in

comparison to Net_MSE. So, it can be replaced with

MSE.

2. The network that was trained with MSE ? MMaSE

(Net_MSE&MMa) had the least outlier errors. How-

ever, Net_MSE&MMuMa had more outlier errors than

Net_MSE&MMa. Utilizing Net_MSE&MMa dimin-

ished prediction of pixels with large errors about 96%.

3. Comparing results revealed that MSE ? MMuMaSE

could estimate images with appropriate mean and

outlier errors. A Net_MSE&MMa reduced the outlier
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errors better than Net_MSE&MMuMa. However,

Net_MSE&MMuMa reduced MSE in comparison with

Net_MSE. This is while Net_MSE&MMa increases

MSE by 2.57% compared to Net_MSE. Hence,

Net_MSE&MMuMa is the best loss function that can

be used to train deep networks to estimate both

physical and natural images.

4. The heat distribution images that were estimated with

Net_MSE&MMuMa had sufficient accuracy, and all of

the pixels were estimated with small errors.

5. Outcomes of this paper reveal that MSE ? MMuMaSE

has a powerful ability to train DNNs. It could be used

to train deep networks of physical and natural image

estimators. A physical dataset was utilized in this

paper, so using MSE ? MMuMaSE to train DNNs

with new structures and big datasets of natural images

can be subject to future researches.
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8. Woźniak M, Siłka J, Wieczorek M (2021) Deep neural network

correlation learning mechanism for CT brain tumor detection.

Neural Comput Appl. https://doi.org/10.1007/s00521-021-05841-

x

9. He K, Zhang X, Ren S, Sun J (eds) (2015) Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In: Proceedings of the IEEE international confer-

ence on computer vision

10. Han K, Mun YY, Gweon G, Lee J-G (eds) (2013) Understanding

the difficulty factors for learning materials: a qualitative study. In:

International conference on artificial intelligence in education.

Springer

11. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv:

150203167.2015

12. Agarap AF (2018) Deep learning using rectified linear units

(relu). arXiv:180308375.2018

13. Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid

mechanics: Learning velocity and pressure fields from flow

visualizations. Science 367(6481):1026–1030

14. Berg J, Nyström K (2018) A unified deep artificial neural network

approach to partial differential equations in complex geometries.

Neurocomputing 317:28–41

15. Lin Q, Hong J, Liu Z, Li B, Wang J (2018) Investigation into the

topology optimization for conductive heat transfer based on deep

learning approach. Int Commun Heat Mass Transf 97:103–109

16. Liu X, Zhang H, Kong X, Lee KY (2020) Wind speed forecasting

using deep neural network with feature selection. Neurocom-

puting 397:393–403

17. Sharma R, Farimani AB, Gomes J, Eastman P, Pande V (2018)

Weakly-supervised deep learning of heat transport via physics

informed loss. arXiv:180711374.2018

18. Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (eds)

(2012) Deep neural networks segment neuronal membranes in

electron microscopy images. Advances in neural information

processing systems

19. Bergman TL, Incropera FP, Lavine AS, DeWitt DP (2011)

Introduction to heat transfer. John Wiley & Sons, USA

20. Farimani AB, Gomes J, Pande VS (2017) Deep learning the

physics of transport phenomena. arXiv:170902432.2017

21. Edalatifar M, Tavakoli MB, Ghalambaz M, Setoudeh F (2020) A

dataset for conduction heat transer and deep learning. Mendeley

Data 1:10–7632

22. Edalatifar M, Tavakoli MB, Ghalambaz M, Setoudeh F (2020)

Using deep learning to learn physics of conduction heat transfer.

J Therm Anal Calorim 146:1435–1452

23. Nadipally M (2019) Optimization of methods for image-texture

segmentation using ant colony optimization. In: Hemanth DJ,

Gupta D, Emilia Balas V (eds) Intelligent data analysis for

biomedical applications. Academic Press, Cambridge, pp 21–47

24. Botchkarev A (2018) Performance metrics (error measures) in

machine learning regression, forecasting and prognostics: prop-

erties and typology. arXiv:180903006.2018
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