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The objective of the present study is to analyze the boundary layer flow and heat transfer of nanofluids
over a stretching sheet near the extrusion slit in the presence of variable thermal conductivity. The effects
of Brownian motion and thermophoresis are taken into account. The governing partial differential equa-
tions are reduced to dimensionless form and solved numerically using finite difference scheme and Point
Successive Over Relaxation algorithm. The critical Reynolds number is introduced to distinguish the non-
similar region from the self-similar region of velocity and temperature profiles. Furthermore, the effects
of dimensionless parameters such as Prandlt number, Schmidt number, variable thermal conductivity
parameter, Brownian motion and thermophoresis parameters on the velocity and temperature profiles
and also on reduced Nusselt number, reduced Sherwood number and critical Reynolds number are inves-
tigated. It is found that the critical Reynolds number for the temperature profile is significantly affected
by Prandtl number. In addition, the reduced Nusselt and Sherwood numbers found to be much higher in
non-similar regions near the extrusion slit than that of self-similar region.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid flow and heat transfer in a boundary layer flow over a
stretching sheet has been studied by many researchers; because
it has significant applications in many industries such as extrusion
of plastic, paper production, metal spinning, wire drawing, glass
blowing, hot rolling, manufacture of rubber sheet, polymer engi-
neering, cooling of metallic sheets and crystal growing [1,2].

Sakiadis [3,4] examined viscous flow over a continuous solid
surface with application of boundary layer theory. Crane [5]
was the first one who extended the work of Sakiadis [3,4] and
studied the viscous flow and heat transfer caused by a linearly
stretching sheet. After pioneer work by Crane [5], Al-Sanea and
Ali [6] studied flow and heat-transfer over a continuously moving
horizontal material in the presence of suction or injection very
close and far away downstream from the extrusion slit. They
are considered the effects of extrusion slit by solving the govern-
ing partial differential equations used finite volume method and
carried out the solutions in the non-similar and similar regions.
Further, Kiwan and Ali [7] did the same case for the flow and
heat transfer over a stretching surface in a porous medium with
internal heat generation or absorption and suction and injection.
They considered full governing equations for mapping out the
solution near the slit and far away downstream from the extru-
sion slit.

The heat transfer rate from the sheet is very important in such
application because it induces a direct impact on the quality of the
products. However, the common heat transfer fluids such as water,
ethylene glycol, and engine oil have limited heat transfer capabil-
ities owing to their low thermal conductivity whereas metals have
much higher thermal conductivities than these fluids. Therefore,
dispersing high thermal conductive solid particles in a conven-
tional heat transfer fluid may enhance the thermal conductivity
of the resulting fluid.

Nanofluid is a fluid containing nanometer-sized particles. The
term ‘‘Nanofluid’’ was proposed by Choi [8] to indicate engineered
colloids consist of nanoparticles dispersed in a base fluid. The base
fluid is usually a conductive fluid, such as water or ethylene glycol.
Other base fluids include bio-fluids, polymer solutions, oils and
other lubricants. The nanoparticles used in synthesis of nanofluids
are typically metallic (Al, Cu), metallic oxides (Al2O3, TiO2), car-
bides (SiC), nitrides (AlN, SiN) or carbon nanotubes with the diam-
eter which ranges between 1 and 100 nm. One of the outstanding
characteristic of nanofluids is their enhanced thermal conductivity
[9]. Comprehensive references on this subject can be found in the
recently published book by Das et al. [10] and in the papers by
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Nomenclature

a constant
C nanoparticle volume fraction
Cw nanoparticle volume fraction at the stretching sheet
C1 ambient nanoparticle volume fraction
Cf skin friction coefficient
DB Brownian diffusion coefficient
DT thermophoresis diffusion coefficient
H height normal to the sheet
k thermal conductivity
km,1 the effective thermal conductivity of the nanofluid

outside the boundary layer
L length of the sheet
mw wall mass flux
Nb Brownian motion parameter
Nc variable thermal conductivity parameter
Nt thermophoresis parameter
Nu Nusselt number
P pressure
Pr Prandtl number
qw wall Heat flux
ReL Reynolds number
Sc Schmidt number
Sh Sherwood number
T fluid temperature
T1 ambient temperature
Tw temperature at the stretching sheet
u,v velocity components along x and y-axes
uw velocity of the stretching sheet
x, y physical coordinates (x-axis is aligned along the stretch-

ing sheet and y-axis is normal to it)

Greek
a thermal diffusivity
b clustering parameter
u(g) dimensionless nanoparticle volume fraction
g similarity variable
h(g) dimensionless temperature
t kinematic viscosity of nanofluid
(qc)nf heat capacity of the nanofluid
(qc)p effective heat capacity of the nanoparticle material
q nanofluid density
qp nanoparticle mass density
w stream function
x vorticity function
n, f computational coordinates (n-axis is aligned along the

stretching sheet and f-axis is normal to it)

Superscript
* dimensional parameters

Subscript
C critical value
CFD PSOR result
nf nanofluid
p nanoparticles
sim similarity result
1 ambient value
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Wang and Mujumdar [11], Kakaç and Pramuanjaroenkij [12],
Chandrasekar et al. [13] and Wu and Zhao [14].

The effects of nanofluids could be considering in different ways
such as dynamic effects which include the effects of Brownian
motion and thermophoresis diffusion [15–17], and the static part
of Maxwell’s theory [18–21].

Recently, many researchers, using similarity solution, have
examined the boundary layer flow, heat and mass transfer of nano-
fluids over stretching sheets. Khan and Pop [22] have analyzed the
boundary-layer flow of a nanofluid past a stretching sheet using a
model in which the Brownian motion and thermophoresis effects
were taken into account. They reduced the whole governing partial
differential equations into a set of nonlinear ordinary differential
equations and solved them numerically. In addition, the set of
ordinary differential equations which was obtained by Khan and
Pop [22] has been solved by Hassani et al. [23] using homotopy
analysis method. After that, many researchers, using similarity
solution approach, have extended the heat transfer of nanofluids
over stretching sheets and examined the other effects such as the
chemical reaction and heat radiation [24], convective boundary
condition [25], nonlinear stretching velocity [26], partial slip
boundary condition [27],magnetic nanofluid [28], partial slip and
convective boundary condition [29], heat generation/absorption
[30], thermal and solutal slip [31], nano non-Newtonian fluid
[32], and Oldroyd-B Nanofluid [33]. In all of the mentioned studies
[22–33], it was assumed that the values of the Reynolds number
are high and the effects of extrusion slit could be neglected,
because of that, the similarity solution were used to carried out
the results. However, the analysis of the boundary layer of regular
fluids over stretching sheets reveals that for the low values of the
Reynolds number, the boundary layer approximations are not valid
in the vicinity of the slit; hence, the extrusion slit significantly
affects the boundary layer flow and heat transfer [6,7]. In addition,
the stretching velocity of the sheet is very low in many practical
applications; and hence, the practical Reynolds number is also very
low. At the present time, it is not clear when the boundary layer
approximations are adequate for analysis of flow and heat transfer
of nanofluids over a stretching sheet in the case of flow and heat
transfer of nanofluids.

As mentioned, the enhancement of the thermal conductivity of
nanofluids is the most outstanding thermo-physical properties of
nanofluids. In all of the previous studies [22–33], the effect of local
volume fraction of nanoparticles on the thermal conductivity of the
nanofluid was neglected [34,35]. However, in the work of Buongi-
orno [36], it has been reported that the local concentration of
nanoparticles may significantly affect the local thermal conductiv-
ity of the nanofluids.

The objective of the present study is to analyze the flow and
heat transfer of nanofluids near the extrusion slit and where the
Reynolds number of the flow is low. The effect of local volume frac-
tion of nanoparticles on the thermal conductivity of nanofluid is
taken into account. A critical Reynolds number, ReL,C, is introduced
to distinguish between the self-similar and non-similar regions of
the velocity and temperature profiles. The results of present study
also provide practical guidelines for the adequately of the available
similarity solutions.

2. Formulation of the problem

Consider the two dimensional laminar steady flow of an incom-
pressible nanofluid caused by stretching of the sheet, where the
x�-axis is measured along the sheet and the y�-axis is measured
normal to the sheet (see Fig. 1). It is assumed that the temperature
(T�) and the nanoparticles volume fraction (C�) are constant at the
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surface. The temperature of sheet and volume fraction of nanopar-
ticles on the surface is denoted by T�w and C�w, respectively. The
temperature and volume fraction of nanoparticles outside the
boundary layer (ambient) is denoted by T�1 and C�1, respectively.
Following the work of Buongiorno [36] and Khan and Pop [22],
the basic steady state equations for the conservation nanofluid,
momentum, thermal energy and conservation of nanoparticles
are written as:
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The boundary conditions at the extrusion slit, surface of the
sheet, out flow and far from the sheet are respectively written as:

u� ¼ 0; v� ¼ 0; T� ¼ T�1; C� ¼ C�1 at : x� ¼ 0 ð6Þ

u� ¼ u�W ¼ ax�; v� ¼ 0; T� ¼ T�W ; C� ¼ C�W at : y� ¼ 0 ð7Þ

@u�

@x�
¼ 0;

@v�
@x�
¼ 0;

@T�

@x�
¼ 0;

@C�

@x�
¼ 0 at : x� ¼ L ð8Þ

u� ¼ 0;
@v�
@y�
¼ 0; T� ¼ T�1; C ¼ C�1 at : y� ¼ H ð9Þ

Here, u� and v� are the velocity components along the x� axis and
y� axis, respectively. T� is the temperature, C� is the volume frac-
tion of nanoparticles, P� is the fluid pressure, q is the density of
the nanofluid, t is the kinematic viscosity of the nanofluid, DB is
the Brownian diffusion coefficient, DT is the thermophoresis diffu-
sion coefficient, (qc)p is the effective heat capacity of the nano-
particles, (qc)nf is the heat capacity of the nanofluid and km(C�)
is the thermal conductivity. The thermal conductivity is assumed
as a linear function of nanoparticles volume fraction as follow:

kmðC�Þ ¼ km;1 1þ Nc
ðC� � C�1Þ
C�w � C�1

� �
ð10Þ

where km,1 is the thermal conductivity of the nanofluid outside the
boundary layer and Nc denotes the variable thermal conductivity
parameter. Nc is function of C�1 and the thermal conductivity of
nanofluid. However, Nc can be assumed constant for a specified
type of nanofluid and fixed value of ambient volume fraction. In
order to perform a general non-dimensional analysis, Eqs. (1)–(9)
are written in the non-dimensional form using the following non-
dimensional parameters:
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ð13Þ

Introducing stream (w) and vorticity (x) functions, the pressure
terms can be eliminated from the momentum equations.
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Now, using Eqs. (10)–(15), the non-dimensional form of the
governing equations, Eqs. (1)–(5), is obtained as follows:
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Similarly, the non-dimensional boundary conditions are
obtained as follows:

w ¼ 0; x ¼ � @
2w
@x2 ; T ¼ 0; C ¼ 0 at : x ¼ 0 ð20Þ
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where the parameters of ReL, Pr, Sc, Nb and Nt are defined as:
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aL2

t
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Here, ReL, Pr, Sc, Nb and Nt denote the Reynolds number, Prandtl
number, Schmidt number, Brownian motion parameter and ther-
mophoresis parameter, respectively.

In the similarity solution approach [22–31], the Reynolds num-
ber ReL, presents in Eqs. (17)–(19), is eliminated by introducing the
similarity variable, g = (a/t)1/2y�, that leads to neglecting the effects
of extrusion slit. In order to consider the effects of extrusion slit,
the full governing partial differential equations, Eqs. (16)–(19),
should be solved and then the results for the velocity, temperature
and concentration profile can be changed to the similarity coordi-
nates by using the following equations:
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g ¼ yðReLÞ
1
2; f 0ðgÞ ¼ uðx; yÞ

x
; hðgÞ ¼ Tðx; yÞ; /ðgÞ ¼ Cðx; yÞ

ð26Þ

The important non-dimensional parameters of heat and mass
transfer, the quantities of the skin friction coefficient, Nusselt num-
ber and Sherwood number, are introduced as follow:
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where qw is the wall heat flux and mw is the wall mass flux. Using
dimensionless parameters, Eqs. (11)–(13), and the definition of
the values qw (qw = �k@T�/@y�) and mw (mw = �DB@C�/@y�), Eq. (27)
become,
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The reduced skin friction coefficient, Nusselt and Sherwood
numbers are introduced as follows:
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For estimating the valid self-similar region, the results of the
present study should be compared with the results of the similarity
solution. The following equation is used to compute errors
between the results of similarity solution which belongs to the
self-similar region and CFD results that relate to the solution of
partial differential equations.

error ¼ max
vsim � vCFD

vsim;max

�����
�����

 !�����
n

j¼1

� 100 ð30Þ

where v is u, T or C for the momentum equation, energy equation or
concentration equation respectively. v also can be Nur for the
reduced Nusselt number and Shr for the reduced Sherwood number.
The subscript of sim indicates the solution obtained by similarity
approach and CFD indicates the computational fluid dynamic
solution.

3. Grid generation and numerical method

In the boundary layer flows, which include large gradients in a
specific region, additional resolution of the flow properties is nec-
essary. Likewise, there are large gradients which are centralized
near the surface of the sheet and near the extrusion slit; thus, an
accurate computation requires a large number of grid points.
Therefore, grid points can be clustered in the region of high gradi-
ents rather than using a uniform grid points distributed in the
physical domain. Clustering the grid points would significantly
reduce the total number of required grid points and thus boost
the efficiency and accuracy of the numerical approach. The sim-
plest grid generation technique, that is capable of generating the
non-uniform grid point, is the algebraic method. The major benefit
of this scheme is the speed in which a grid can be generated. In the
algebraic method, an algebraic equation is needed to relate the grid
points in the computational domain to those of the physical
domain. The algebraic equations, used in the present study, are
introduced as follows:
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where bx and by are the clustering parameters in x and y directions,
respectively. The ranges of these parameters are between 1 and 1.
More grid points are clustered near the surface of the sheet when
the values of b getting close to 1.

The chain rule for partial differentiation yields the following
expressions:
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where nx = @n/@x, nxx = o2n/@x2 and fy = @f/@y, fyy = o2f/@y2. Because n
is independent from y and f is independent from x, the values of ny,
nyy, fx and fxx are zero. Using Eqs. (31)–(34), the dimensionless gov-
erning partial differential equations, Eqs. (16)–(19), are transformed
to the computational domain as follows:
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Likewise, the boundary conditions, Eqs. (20)–(23), are trans-
formed as:
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Fig. 1. Physical model and boundary conditions.

Fig. 2. Effects of ReL number on the velocity profile and comparisons with
Noghrehabadi et al. [27].
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In order to execute an accurate computation, the non-
dimensional top boundary condition (at H/L) should be located in
an appropriate large distance from the surface of the sheet
(y = 0). It is clear that the location of the non-dimensional top
boundary condition depends on the thickness of boundary layer.
Considering Eq. (26), the top boundary condition can be approxi-
mated by the following relation:

H
L
¼ g1ðReLÞ�

1
2 ð43Þ

where g1 is 12.
The transformed non-dimensional equations, Eqs. (35)–(38),

subject to the boundary conditions, Eqs. (39)–(42), are numerically
solved using Point Successive Over Relaxation (PSOR) algorithm. As
seen in Eqs. (35)–(38), the vorticity and stream function, Eqs. (35)
and (36), are independent from the energy and concentration
equations, Eqs. (37) and (38). In order to reduce the computational
time, first the vorticity-stream function was solely solved. Then,
the energy and concentration equations were solved. The convec-
tive terms are discretized using upwind scheme. The numerical
results are checked to assure reliably grid independent. In this
way, the number of grid nodes was increased until the solution
shows insignificant change by increasing the number of grid nodes.

When the maximum values of the normalized absolute residu-
als across all nodes are less than 10�10, the iterative solution is con-
sidered to be converged. The smallest value of relaxation
parameter, which is considered for convergence, for the velocity
equation is 0.9 and for the temperature and concentration equa-
tions is 0.65.

4. Result and discussion

The governing equations are solved for different values of non-
dimensional parameters, Pr, Sc, Nb, Nt and Nc. The effects of non-
dimensional parameters such as Pr, Sc, Nb, Nt and Nc on the critical
Reynolds Number at the end of the sheet (i.e. x = 1), and also the
effects of these parameters on the fluid flow and heat transfer of
nanofluid as well as reduced Nusselt and Sherwood numbers near
the slit are examined. The critical Reynolds Numbers, which distin-
guish the non-similar region from the self-similar region, for the
velocity and temperature profiles are carried out at each x and
for selected presents of errors.

In order to perform a realistic analysis on the effect of non-
dimensional parameters on the boundary layer, the practical range
of nanofluid parameters should be analyzed [37,38]. For the water
base nanofluids at room temperature with nanoparticles of 100 nm
diameters, the Brownian diffusion coefficient (DB) as well as the
thermophoresis coefficient (DT) ranges from 1 � 10�10 to
1 � 10�12 [36–38]. By substituting above values and thermo-
physical properties of common base fluids and nanoparticles in
Eqs. (24) and (25), the practical ranges of these parameters is
obtained. The results shows that the Schmidt number ranges from
1 � 103 to 1 � 106 and Brownian motion and thermophoresis
parameters ranges from 1 � 10�9 to 1 � 10�4.

Khan and Pop [22] and Noghrehabadi et al. [27] examined the
boundary layer heat and mass transfer of nanofluids over a stretch-
ing sheet using similarity solution. The previous studies [22,27]
selected the non-dimensional parameters of Prandtl number,
Schmidt number, Brownian motion and thermophoresis parame-
ters in the range of 1 < Pr < 15, 5 < Sc < 25, 0.1 < Nb < 0.5 and
0.1 < Nt < 0.5, respectively. The similarity equations can be found
in Eqs. (8)–(10) in the work of Khan and Pop [22]. We need the
solution of similarity equations for any combination of non-dimen-
sional parameters. Therefore, in the present study the similarity
equations, proposed by Khan and Pop [22], are solved numerically
using the Rung-Kutta forth order and Newton–Raphson methods
with a systematic guessing of f00(0), h0(0) and u0(0) by the shooting
technique. It is worth noticing that f00(0), h0(0) and u0(0) are
non-dimensional similarity variables of velocity, temperature and
concentration gradients at the surface. The results of similarity
solution in the present study are compared with the results
reported by Khan and Pop [22] and Noghrehabadi et al. [27] in
Figs. 2 and 3.

In order to verify the validity and the accuracy of the finite dif-
ference code, the results of PSOR method for the velocity, temper-
ature and nanoparticles concentration profiles as well as the
reduced Nusselt and Sherwood numbers far enough from the
extrusion slit are compared with the results in the self-similar
region which is obtained by similarity solution and those results
reported by Khan and Pop [22] and Noghrehabadi et al. [27]. Tables
1 and 2 show a comparison between the results of similarity solu-
tion and PSOR method (with selected grid size) and the results
which carried out by Khan and Pop [15]. According to results of
these tables, the grid sizes 50 � 100, 50 � 300 are appropriate for
numerical calculations. Hence, the grid size of 50 � 300 is selected
to ensure the accuracy of the solution for different combination of
non-dimensional parameters. 50 � 300 indicates 50 grid points
along the x-axis and 300 grid points along the y-axis.

Fig. 2 illustrates the effects of Reynolds number on the velocity
profiles. As seen, an increase of Reynolds number would



Fig. 3. Comparisons between the current results and the results that reported by
Khan and Pop [22] for temperature and concentration profiles.

Table 2
The values of reduced Sherwood number Shr at the end of the sheet x = 1, when
bx = 2.0, by = 1.01, Sc = Pr = 10 and ReL = 1000.

Nb = 0.1

Nt = 0.1 Nt = 0.2 Nt = 0.3 Nt = 0.4 Nt = 0.5

Khan and Pop
[22]

2.1294 2.2740 2.5286 2.7952 3.0351

Similarity
solution

2.129395 2.274021 2.528636 2.795166 3.035143

PSOR 50 � 100 2.118090 2.248390 2.495599 2.761388 3.005559
Error% 50 � 100 0.5 1.1 1.3 1.2 1.0
PSOR 50 � 200 2.122728 2.259689 2.510216 2.775991 3.017920
Error% 50 � 200 0.3 0.6 0.7 0.7 0.6
PSOR 50 � 300 2.123178 2.261983 2.513108 2.778642 3.018960
Error% 50 � 300 0.3 0.5 0.6 0.6 0.5

Fig. 4. The critical Reynolds number for velocity profile in each x for different
values of error.
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decreases the velocity profiles in the boundary layer. Moreover, for
ReL P 100, when x = 1, velocity profiles unify on one curve that
means, ReL � 100 is a critical Reynolds number to specify the
non-similar region from self-similar region of velocity profiles. In
addition, the velocity profiles in the self-similar region are com-
pared with the results of similarity solution and those reported
by Noghrehabadi et al. [27].

Fig. 3 shows a comparison between the temperature and con-
centration profiles at the end of the sheet, obtained in the present
study and those reported by Khan and Pop [22]. Fig. 3 clearly
depicts that when the Prandtl, Brownian motion, thermophoresis
and Schmidt numbers take constant values, the results at the end
of the sheet, i.e. x = 1, are very similar to those of Khan and Pop
[22].

The PSOR results of Tables 1 and 2 and Figs. 2 and 3 regarding to
the self-similar region, show very good agreement with the results
of similarity solution and the results reported by previous studies
[22] and [27].

Fig. 4 shows the values of critical Reynolds numbers of hydro-
dynamic boundary layer as function of x for selected values of error
percent. Fig. 4 reveals that the velocity profiles in the whole
domain of the boundary layer are in the self-similar region with
less than 5% error when ReL P 94. The results of Fig. 4 can be
directly utilized to show the boundary of self-similar region. For
example, assuming a practical case with t = 10�5 (m2/s), aL = 0.01
(m/s) and L = 0.1 (m), Reynolds number is equal to 100, which
means the velocity profile is in self-similar domain for every length
of the sheet (x) with less than 5% error; in the same situation, when
Table 1
The values of reduced Nusselt number Nur at the end of the sheet x = 1, when bx = 2.0, by

Nb = 0.1

Nt = 0.1 Nt = 0.2

Khan and Pop [22] 0.9524 0.6932
Similarity solution 0.952376 0.693174
PSOR 50 � 100 0.980001 0.719430
Error% 50 � 100 2.9 3.8
PSOR 50 � 200 0.966613 0.706702
Error% 50 � 200 1.5 2.0
PSOR 50 � 300 0.962820 0.702998
Error% 50 � 300 1.1 1.4
x = 0.5 the critical Reynolds number is almost equivalent to 50
which show there is about 20% error between similarity solution
and full solution of governing equations (PSOR).

Fig. 5 shows the effects of Reynolds number on the reduced skin
friction coefficient. It is found that increasing the Reynolds number
from 100 to 250 would decrease the values of the reduced skin fric-
tion coefficient, however, increasing the Reynolds number from
250 to 1000 does not significantly affect the reduced skin friction
coefficient. For Reynolds number larger than 250 the values of
Cfr become close to �2, which is the result of the reduced skin fric-
tion coefficient of similarity solution.
= 1.01, Sc = Pr = 10 and ReL = 1000.

Nt = 0.3 Nt = 0.4 Nt = 0.5

0.5201 0.4026 0.3211
0.520079 0.402581 0.321054
0.543927 0.423719 0.339601
4.6 5.3 5.8
0.532372 0.413524 0.330658
2.36 2.7 3.0
0.529042 0.4105583 0.328182
1.7 2.0 2.2



Fig. 5. Effects of ReL number on the reduced skin friction coefficient. Fig. 7. Effects of variable thermal conductivity Nc on the temperature profile.
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Fig. 6 illustrates the effects of Prandtl number on the tempera-
ture profiles for various values of Reynolds number. Obviously, the
temperature profiles overlap on one curve when x = 1 and
Reynolds number ReL P 50. Therefore, it can be concluded that
ReL �50 is the critical Reynolds number for the temperature
profiles (in the case of Pr = 5). In addition, it is clear that an
augmentation of Prandtl number would reduce the critical
Reynolds number. For example, the critical Reynolds number is
about 50 when Pr = 5, and it is about 20 when Pr = 15. The same
trend of behavior was reported previously by Al-Sanea and Ali
[6] and Kiwan and Ali [7] in the case of pure fluid.

The effect of variable thermal conductivity parameter on the
temperature profiles are depicted in Fig. 7. Obviously, an increase
of the variable thermal conductivity would increase the thickness
of thermal boundary layer. A reason for this behavior is that an
increase of Nc would increase the thermal conductivity of the
nanofluid in the vicinity of the wall where the local concentration
Fig. 6. Effects of ReL number and Prandtl number Pr on the temperature profile.
of nanoparticles is comparatively high; thereby, the temperature
profiles would increase.

The values of critical Reynolds number for temperature profiles
at each x are illustrated in Fig. 8. This figure reveals that the most of
the sheet length is in the self-similar region when ReL �50 and
Pr = 5 within the error of less than 5%. In addition, an increase of
the Prandtl number would decrease the critical Reynolds number
which is in good agreement with the results of Fig. 6. It is worth
noticing that the temperature profiles in the whole domain of
the boundary layer would change to the self-similar region for
comparatively high values of Reynolds number. Therefore, as seen
in Fig. 8, the boundary layer approximation, at the beginning of the
sheet (0 < x < 0.034), is not valid for a large ranges of Reynolds
number (ReL < 2600) when Pr = 5.

The values of reduced Nusselt number for different values of
Reynolds number, Prandtl number and variable thermal conductiv-
ity parameters are displayed in Figs. 9–11. It can be observed that
Fig. 8. The critical Reynolds number for temperature profile in each x when error
<5%.



Fig. 9. Effects of Reynolds number ReL on the reduced Nusselt number Nur.

Fig. 10. Effects of Prandtl number Pr on the reduced Nusselt number Nur.

Fig. 11. Effects of variable thermal conductivity parameter Nc on the reduced
Nusselt number Nur.

Fig. 12. Effects of Reynolds number ReL on the reduced Sherwood number Shr.
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the reduced Nusselt number is a decreasing function of Reynolds
number and variable thermal conductivity parameter; however,
it is an increasing function of Prandtl number. The same conclusion
for the effects of Prandtl number on the reduced Nusselt number in
the self-similar region was reported in works by Khan and Pop [22]
and Hassani et al. [23]. These figures show that the values of
reduced Nusselt numbers at the end of the sheet tend to converge
to the values of reduced Nusselt number obtained by the similarity
solution. It is worth noticing that the reduced Nusselt number
obtained by the similarity solution (when Nb = Nt = 1.0E�5,
Sc = 1000 and Pr = 5) is equal to 1.57 while the results of Fig. 9
demonstrate that the values of reduced Nusselt number at the
end of the sheet (i.e. x = 1) for ReL = 30, 50, 90, 150 are respectively
equal to 1.69, 1.59, 1.57, 1.57. Therefore, it can be concluded that at
the end of the sheet the values of the reduced Nusselt number
when ReL P 50 are very close to the values of self-similar region.
However, at the beginning of the sheet, the values of the reduce
Nusselt number are very far from the values of self-similar region.
For example when Nb = Nt = 1.0E�5, Sc = 1000 and Pr = 5, the
reduced Nusselt number is equal to 314 for the range of Reynolds
number between 30 and 150. The same trend of the results was
observed in Fig. 8 for the temperature profiles.

Figs. 12 and 13 show the effects of Reynolds and Schmidt num-
ber on the reduced Sherwood number. The reduced Sherwood
number is a decreasing function of Reynolds number while it
is an increasing function of Schmidt number. Schmidt number
(t/DB) shows the ratio of the diffusion of viscosity and the diffusion
of nanoparticles. Increasing the Schmidt number would increase
the convection of the nanoparticles along the boundary layer.
Hence, mass transfer is an increasing function of Schmidt number.
Previously, the same conclusion was reported by Khan and Pop
[22] and Hassani et al. [23] for the effects of Schmidt number on
the reduced Sherwood number in the self-similar region. It is
worth noticing that the values of the reduced Sherwood number
at the end of the sheet (i.e. x = 1) when ReL P 50 are very close to



Fig. 13. Effects of Schmidt number Sc on the reduced Sherwood number Shr.
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the values of self-similar region. In addition, it can be seen from
Fig. 12, for ReL P 90, the Sherwood number for x > 0.25 become
close to 24 which shows the value of the Sherwood number for
self-similar region. As an example, considering a nanofluid with
t = 10�5 (m2/s), stretching velocity aL = 0.001(m/s) and sheet
length L = 1, the Reynolds number is equal to 100 which can be
concluded, the mass transfer (Shr) from the beginning of the sheet
x = 0 to x = 0.25 is not in the self-similar region.

The effects of Brownian motion and thermophoresis parameters
in practical ranges (1 � 10�9 to 1 � 10�4) on the critical Reynolds
number are also investigated. However, because the values of
Brownian motion and thermophoresis are small, these effects can
be neglected and the results are not presented here to conserve
space. In addition, the variable thermal conductivity increase the
thickness of the thermal boundary layer but it has not any effect
on the critical Reynolds number.

5. Conclusion

The boundary layer flow and heat transfer of nanofluids over a
stretching sheet near the extrusion slit is investigated numerically
using the finite difference scheme and PSOR algorithm. The gov-
erning partial differential equations, which incorporate the effects
of Brownian motion and thermophoresis, were transformed to the
dimensionless form. A critical Reynolds number, which distin-
guishes the non-similar region from the self-similar region, is
introduces. Moreover, the effects of dimensionless parameters
namely Prandtl namber Pr, Schmidt number Sc, variable thermal
conductivity parameter Nc, Brownian motion number Nb and ther-
mophoresis parameter Nt on the thermal boundary layer, reduced
Nusselt and Sherwood numbers and critical Reynolds number ReL,C

are analyzed. The most important findings of the present study can
be summarized as follows:

� The critical Reynolds number for the velocity profiles is
ReL,C = 94. For ReL P 94 the whole domain of velocity profile
has less than 5% error compared to the results of similarity
solution.
� It is found that the temperature profiles in the most parts of the

sheet are in the self-similar region when ReL,C � 50 and Pr = 5
with less than 5% error. However, the temperature profiles for
the whole domain, change to self-similar region in very high
Reynolds number. In addition, Prandtl number significantly
affects the critical Reynolds number for temperature profile.
� An increasing of the variable thermal conductivity parameter

would increase the thickness of the thermal boundary layer.
� The reduced Nusselt Nur and reduced Sherwood Shr numbers

near the extrusion slit are much higher than those downstream
from the extrusion slit. Moreover, the reduced Nusselt Nur and
reduced Sherwood Shr numbers are a decreasing function of
Reynolds number; however they are an increasing function of
Prandtl and Schmidt numbers, respectively.
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