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A B S T R A C T   

Convective heat transfer is a major phenomenon in different technical and natural systems. This process can be 
found in enclosures under the different temperature distributions at bounded walls. In this research, the ther
mogravitation energy transport of a non-constant viscosity medium inside a 3D region under the non-uniform or 
uniform temperature profile at one of the vertical walls is addressed. The opposite border is at a low constant 
temperature, and the remaining borders are well insulated. The control equations with the border restrictions are 
reduced into a non-dimensional form and then integrated by the finite difference procedures. The control 
characteristics are the Rayleigh number and viscosity changeable magnitude. The impacts of these characteristics 
on the energy transference and flow structures are studied.   

1. Introduction 

Process of energy transference in closed systems and blocks has a 
great importance in modern microelectronics. At these days, many re
searches of heat transfer and fluid motion in various systems can be 
found in [1–5]. For example, Akbarzadeh and Fardi [1] presented results 
of modeling of thermal convection in trapezoidal enclosures saturated 
with Al2O3/H2O nanosuspension with the varying viscosity and heat 
conductivity in 2D and 3D cases. It should be noted that thermophysical 
properties of nanofluid in this case were depended on the nanoparticles 
volume fraction. Gangawane [2] investigated MHD thermogravitational 
convection in a warmed square chamber with Lorentz force influence 
and heater employing lattice Boltzmann technique. Numerical simula
tion was worked out for different governing parameters. It was shown 
that the convective flow was depended on the Lorentz force angle. 
Javaherdeh et al. [3] studied process of thermal convection of CuO/H2O 
nanosuspension in a region having irregular borders and the magnetic 
field employing the dimensionless equations. One wavy wall of the 
cavity had a volatile high temperature while another side wall had a low 
temperature. Horizontal walls of the chamber were isothermal. In 
addition, an action of the Lorentz force was considered. The received 
data demonstrated that the local Nu was diminished owing to the 

magnetic influence near the hot wall. Miroshnichenko and Sheremet [4] 
performed a state-of-the-art analysis of turbulent free convection in 
different chambers by experimental and numerical methods. Different 
cases of energy transference were shown under the influence of various 
complicating factors. For examples, different boundary and initial con
ditions, different locations of heaters were studied. Kumar et al. [5] 
compared results of simulation for 2D and 3D convection of air near 
cylinder. The obtained data showed that the time to get the steady 
regime for the convective flow was depended on the geometric param
eters of the cavity. Rashad et al. [6] presented results of mathematical 
modeling of double-diffusive convection in a closed porous chamber 
with different boundary conditions under the chemical reaction and 
heat radiation effects. The Brinkman–Forchheimer extended Darcy 
approach was employed for the definition of the analyzed phenomena 
within the porous material. The effect of governing parameters was 
demonstrated using the isotherms, streamlines, concentration distribu
tions and dependences for the local Nu and Sh. The study on free con
vection of micropolar nanosuspension in a porous chamber with 
sinusoidal heating was performed by Ahmed and Rashad [7]. It was 
shown that the permeability ratio and the nanoparticles concentration 
had a huge influence on the flow structure and energy transference. The 
simulation of MHD thermal convection of nanofluids inside rectangular 
cavities was presented in [8]. Authors showed the impact of different 
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thermal border restrictions. Other interesting and useful results can be 
found in [9–13]. 

In the case of modeling the cooling systems for energy sources in two- 
and three-dimensional formulations, researchers should use the physical 
properties of the working medium. Often these factors play a crucial 
role. Such approach should be used for the description of the depen
dence of the heat medium characteristics on the ambient temperature 
and the features of heating of the cavity. It should be noted that most 
often researchers consider the dependence of thermophysical charac
teristics on temperature. Thus, Izadi et al. [14] computationally inves
tigated free convection of Al2O3/H2O nanosuspension in a chamber with 
energy sources and moving upper border. Viscosity, density and heat 
conductivity of nanosuspension were assumed to be dependent on 
temperature and nanoparticles volume fraction. Authors considered 
different locations of heaters. The results showed that the location of 
energy sources has a very important meaning. Rashad and El-Hakiem 
[15] investigated effect of temperature-dependent viscosity (linear 
law) and heat radiation on convection from a vertical cylinder within 
the porous medium. Temperature profiles, velocity and local Nu were 
shown for different governing parameters. Rani and Kim [16,17] pre
sented results of simulation of transient thermal convection of liquid of 
viscosity as a function of temperature above a vertical isothermal cyl
inder. Authors scrutinized the influence of different viscosity and 
Prandtl number on heat convection in [16]. It was shown that the in
fluence of viscosity of the working fluid and Pr must be taken into ac
count for accurate prediction of the skin friction ratio. The border layer 
motion and heat transference of air were numerically studied in [17]. In 
this case the Prandtl number was considered to be constant. The ob
tained data indicated that the heat transfer for constant viscosity of 
working fluid and for variable viscosity had essential differences. 
Umavathi and Shekar [18] conducted study of thermogravitational 
convection of liquid with varying thermal characteristics including the 
viscosity and heat conductivity in a vertical enclosure. The differential 
transform technique was employed for solving the control equations. 
Authors noted that the growing of the viscosity resulted in a raise of the 
thermal convection strength whilst raising the thermal conductivity 
caused a decrease in the flow intensity. Thandapani et al. [19] carried 
out MHD unsteady convection of liquid with temperature-dependent 
viscosity above an isothermal upright cone. Non-dimensional variables 

were considered for formulation of the mathematical model. It was 
found that the velocity can be raised when the parameter of viscosity 
was increased. Further, a diminution of the viscosity of working medium 
resulted in an enhancement of the skin-friction ratio. Sivakumar and 
Sivasankaran [20] reported results of mathematical modeling of mixed 
convection in an oblique square chamber. The side walls of the cavity 
had a non-uniform distribution of temperature. The finite volume 
technique was used for solving of the dimensionless basic equations. 
Authors considered different amplitude coefficients, Richardson 
numbers, cavity inclination angles and phase deviations. The results 
demonstrated that the energy transference augmented with a rise of the 
region tilted angle for equal warming and cooling areas on vertical 
surfaces. MHD natural convection of nanofluid having variable viscosity 
together with thermal radiation was considered by Sheikholeslami and 
Rokni [21]. Isolines of temperature and stream function and Nu were 
demonstrated for various values of control characteristics including Ra, 
Ha, radiation parameter and nanoadditives concentration. 

Currently, there are many researches of heat transfer in 3D formu
lation. Such tasks include usually additional factors such as energy 
source of different types, heated walls, and nanofluids [22–29]. For 
example, Ben-Cheikh et al. [22] considered 3D problem of air thermal 
convection and dielectric fluid (Pr = 25) inside a closed parallelepiped 
with partially cooled and heated walls. The impact of Ra on the fluid 
motion within the chamber for different working fluids (air and 
dielectric medium) was shown. Fusegi et al. [23] analyzed 3D thermal 
convection in a cube region having different thermal conditions on 
horizontal walls. The vertical walls were considered at a constant tem
perature or adiabatic. The effect of boundary conditions on flow struc
ture inside a cavity was shown. Kwak et al. [24] numerally investigated 
thermogravitational convection in a cube chamber having a disk of high 
temperature. The obtained data presented that geometrical character
istics (the size and position) of the heated disk had a great influence on 
the heat transference within the region. Selimefendigil et al. [25] carried 
out free convection of nanofluid with two thermally insulated walls and 
two solid rotating blocks. The effect of the nanofluids properties, speed 
of rotating of cylinders and Rayleigh number on convection flow inside 
chamber was analyzed. Younis et al. [26] numerically studied laminar 
convection inside a cube with walls of constant temperature for large Pr. 
The impact of time on the liquid motion, the temperature fields and 

Nomenclature 

c thermal capacity (J∙kg− 1∙K− 1) 
g gravity acceleration (m∙s− 2) 
k heat conductivity (W∙m− 1∙K− 1) 
L size of the chamber (m) 
Nu Nusselt number (− ) 
Nu mean Nusselt number (− ) 
p static pressure (Pa) 
Pr =

μ0
ρα Prandtl number (− ) 

Ra =
ρgβΔTL3

αμ0
Rayleigh number (− ) 

Sh Sherwood number (− ) 
T temperature (K) 
Tc cold border temperature (K) 
Th hot wall temperature (K) 
Tw(z) = Tc + (Th − Tc)sin(πz/L) non-uniform temperature 

distribution (K) 
t time (s) 
u,v,w velocity projections (m∙s− 1) 
u, v, w non-dimensional velocity projections (− ) 
x,y,z coordinates (m) 
x, y, z non-dimensional coordinates (− ) 

Greek symbols 
α thermal diffusivity (W∙m− 2∙K− 1) 
β heat expansion parameter (K− 1) 
∆T temperature drop (K) 
θ non-dimensional temperature (− ) 

μ(T) = μ0⋅exp
(

− ξ T− Tc
ΔT

)

varying dynamic viscosity (Pa∙s) 
μ0 reference dynamic viscosity (Pa∙s) 
μ = exp (− ξθ) dimensionless dynamic viscosity (− ) 
ξ viscosity varying characteristic (− ) 
ρ density (kg∙m− 3) 
τ dimensionless time (− ) 
ψx,ψy,ψz vector potential functions (m2∙s− 1) 
ψx, ψy, ψz dimensionless vector potential functions (− ) 
ωx,ωy,ωz dimensional projections of vorticity vector (s− 1) 
ωx, ωy, ωz dimensionless projections of vorticity vector (− ) 

Subscripts 
c cooled 
f fluid 
h heated 
w wall  
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Nusselt number was analyzed. Terekhov and Ekaid [27] investigated 3D 
laminar convection in a chamber having two vertical surfaces of hot 
temperature. They examined the influence of Ra and the enclosure size 
on the energy transference. Zhu et al. [28] reported an investigation 

about three-dimensional convection of power-law liquid within the 
porous cube with adiabatic, cooled and heated walls. Different control 
characteristics were considered. The main motion characteristics for 
different values of dimensionless numbers were shown. Purusothaman 
et al. [29] simulated 3D thermogravitational convection of a dielectric 
liquid inside a cubical region having the rectangular heater. The de
pendences of the thermal parameters of the working zone on the 
determining dimensionless characteristics and the thermophysical 
properties of the component materials were investigated. 

The current research aims to scrutinize computationally the time- 
dependent thermal convection of changeable viscosity medium in a 
cubical region under a non-uniform/uniform temperature profile at a 
sidewall. The analyzed medium is Newtonian thermally-conducting 
fluid having viscosity of temperature function. There are two cases of 
temperature patterns at one vertical surface, namely, constant high 
temperature and non-uniform temperature profile that characterizes a 
dependence on the vertical coordinate. An opposite wall is supposed to 
be cooled, while other walls are considered thermally insulated. 3D 
patterns of temperature, velocity and the dependences of Nu for various 
values of governing characteristics were obtained. It is necessary to 
highlight that results of the present study can be employed for analysis 
of heat exchangers, bio- and chemical reactors. 

2. Basic equations 

The thermogravitational convective transport and liquid motion in a 
three-dimensional chamber of size L presented in Fig. 1 has been 
considered. The liquid is thermally-conducting, Newtonian, and the 
Boussinesq approach is employed. The enclosure walls are impermeable 
with no slip boundary condition. A wall at (x = 0) is maintained at non- 
uniform temperature distribution Tw(z) = Tc +(Th − Tc)sin(πz/L) or at 
fixed hot temperature Th, whilst the opposite surface (x = L) is at low 
fixed temperature Tc and other surfaces are adiabatic. 

The working medium characteristics are fixed except for the density 
and viscosity, where the temperature correlation is used as follows 

μ(T) = μ0⋅exp
(

− ξ T− Tc
Th − Tc

)

. The liquid circulation and energy trans

ference in the region are assumed to be 3D. This model is an extension to 
the 3D system of the thermogravitational convection for the problem on 
energy transference by free convection in a chamber filled with a liquid 
of variable viscosity that has been analyzed recently by Astanina et al. 
[30–32]. 

Employing these approaches the control equations are formulated as 
[33]: 

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)  

ρ
(

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)

= −
∂p
∂x

+
∂
∂y

[

μ(T)
(

∂u
∂y

+
∂v
∂x

)]

+

2
∂
∂x

(

μ(T) ∂u
∂x

)

+
∂
∂z

[

μ(T)
(

∂u
∂z

+
∂w
∂x

)]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2)  

ρ
(

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

)

= −
∂p
∂y

+
∂
∂x

[

μ(T)
(

∂u
∂y

+
∂v
∂x

)]

+2
∂
∂y

(

μ(T) ∂v
∂y

)

+
∂
∂z

[

μ(T)
(

∂v
∂z

+
∂w
∂y

)]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3)  

ρ
(

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

)

= −
∂p
∂z

+
∂
∂x

[

μ(T)
(

∂u
∂z

+
∂w
∂x

)]

+2
∂
∂z

(

μ(T) ∂w
∂z

)

+
∂
∂y

[

μ(T)
(

∂v
∂z

+
∂w
∂y

)]

+ ρgβ(T − Tc)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4)  

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+w
∂T
∂z

= αf

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)

(5) 

Fig. 1. Physical sketch.  

Fig. 2. Mean Nu at the heated wall for various meshes.  

Table 1 
Dependences of the velocity projections and Nu on the mesh parameters for Ra 
= 105.   

Present results for various 
grid sizes 

[37] 62 × 62 
× 62 

[38] 86 × 65 
× 65 

100 × 100 
× 100 

50 × 50 ×
50 

wmax for y = z 
= 0.5 

0.2466 (x =
0.94) 

0.2471 (x =
0.94) 

0.2471 (x =
0.9353) 

0.2453 (x =
0.936) 

umax for x = y 
= 0.5 

0.1389 (z =
0.15) 

0.1434 (z =
0.14) 

0.1468 (z =
0.1453) 

0.1413 (z =
0.146) 

Numin for y =
0.5 

0.727 (z =
1.0) 

0.7869 (z =
1.0) 

0.7867 (z =
1.0) 

0.675 (z =
1.0) 

Numax for y =
0.5 

8.072 (z =
0.08) 

8.474 (z =
0.08) 

7.795 (z =
0.083) 

7.9669 (z =
0.0836) 

Nu  4.378 4.494 4.361 4.339 

Numean for y =
z = 0.5 

4.667 4.802 4.646 –  
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The formulated system of governing Eqs. (1)–(5) known as 
Oberbeck-Boussinesq equations includes the continuity Eq. (1), motion 
Eqs. (2)–(4) with the buoyancy force influence and energy Eq. (5). Eq. 
(1) is the continuity equation for a fluid under the Boussinesq approxi
mation, it plays the role of an equation of state. Eqs. (2)–(4) are equa
tions of motion for the projections of the velocity vector, reflecting the 
balance between inertial forces, pressure forces, friction and mass 
forces. The main idea of the Boussinesq approximation consists in taking 
into account the temperature dependence of density and as a result in 
this system of equations, this dependence is considered only in mass 

terms in Eq. (4). In addition, the viscosity of a working fluid is 
temperature-dependent according to an exponential function, which 
leads to the appearance of additional terms. Eq. (5) is an energy equation 
that reflects the distribution of temperature field inside the chamber. 

Now, the definition of the vorticity vector ω and potential functions 
ψ along with the non-dimensional parameters is employed to reduce the 
control equations to a dimensionless view 

u =
∂ψz

∂y
−

∂ψy

∂z
, v =

∂ψx

∂z
−

∂ψz

∂x
,w =

∂ψy

∂x
−

∂ψx

∂y
,
∂ψx

∂x
+

∂ψy

∂y
+

∂ψz

∂z
= 0 (6)  

vorticity projections 

ωx =
∂w
∂y

−
∂v
∂z
,ωy =

∂u
∂z

−
∂w
∂x

,ωz =
∂v
∂x

−
∂u
∂y

(7)  

and non-dimensional characteristics: 

x = (x/L), y = (y/L), z = (z/L), τ = t
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gβ(Th − Tc)/L

√
, θ = (T − Tc)

/
(Th − Tc), μ = μ

/
μ0, u = u

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gβ(Th − Tc)L

√
, v

= v
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

gβ(Th − Tc)L
√

,w

= w
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

gβ(Th − Tc)L
√

,ψx

= ψx

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

gβ(Th − Tc)L3
√

,ψy

= ψy

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

gβ(Th − Tc)L3
√

,ψz

= ψz

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

gβ(Th − Tc)L3
√

,ωx

= ωx
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L/[gβ(Th − Tc) ]

√
,ωy

= ωy
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L/[gβ(Th − Tc) ]

√
,ωz

= ωz
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L/[gβ(Th − Tc) ]

√

(8) 

Fig. 3. The 3D maps of temperature and vertical velocity fields for Ra = 104: a) – non-uniform temperature distribution, ξ = 0, b) – non-uniform temperature 
distribution, ξ = 1, c) – constant temperature, ξ = 0, d) – constant temperature, ξ = 1. 

Fig. 4. Mean Nu at the heated border for various viscosity parameters and type 
of wall heating. 
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Fig. 5. The 3D maps of temperature and vertical velocity fields for ξ = 1 in the case of non-uniform wall temperature at different Ra: a) – Ra = 104, b) – Ra = 105, c) – 
Ra = 5∙105. 

Fig. 6. 3D temperature and vertical velocity patterns for ξ = 1 in the case of uniform wall temperature at different Ra: a) – Ra = 104, b) – Ra = 105, c) – Ra = 5∙105.  
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It should be noted, that potential functions ψ characterize a relation 
for the velocity, namely, V = rot(ψ). At the same time, the vorticity 

vector can be defined using the velocity vector as follows ω = rot
(

V
)

and this vector is collinear to the vector of angular velocity of the 
elementary volume of the fluid as it moves in three-dimensional space. 
The introduction of these functions makes it possible to exclude the 
pressure field in the next calculations. 

Finally, the control equations of convective energy transference in 
dimensionless vector form are: 

∂2ψx

∂x2 +
∂2ψx

∂y2 +
∂2ψx

∂z2 = − ωx (9)  

∂2ψy

∂x2 +
∂2ψy

∂y2 +
∂2ψy

∂z2 = − ωy (10)  

∂2ψz

∂x2 +
∂2ψz

∂y2 +
∂2ψz

∂z2 = − ωz (11)   

∂ωx

∂τ +u
∂ωx

∂x
+v

∂ωx

∂y
+w

∂ωx

∂z
− ωx

∂u
∂x

− ωy
∂u
∂y

− ωz
∂u
∂z

=

=

̅̅̅̅̅̅
Pr
Ra

√ (
∂2
(μωx)

∂x2 +
∂2
(μωx)

∂y2 +
∂2
(μωx)

∂z2

)

−

̅̅̅̅̅̅
Pr
Ra

√
∂
∂x

(

ωx
∂μ
∂x

+ωy
∂μ
∂y

+ωz
∂μ
∂z

)

+

+2
̅̅̅̅̅̅
Pr
Ra

√ [
∂v
∂z

∂2μ
∂y2 +

∂u
∂z

∂2μ
∂x∂y

−
∂w
∂y

∂2μ
∂z2 −

∂u
∂y

∂2μ
∂x∂z

+
∂2μ
∂y∂z

(
∂w
∂z

−
∂v
∂y

)]

+
∂θ
∂y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)   

∂ωy

∂τ +u
∂ωy

∂x
+v

∂ωy

∂y
+w

∂ωy

∂z
− ωx

∂v
∂x
− ωy

∂v
∂y
− ωz

∂v
∂z
=

=

̅̅̅̅̅̅
Pr
Ra

√ (
∂2( μωy

)

∂x2 +
∂2( μωy

)

∂y2 +
∂2( μωy

)

∂z2

)

−

̅̅̅̅̅̅
Pr
Ra

√
∂
∂y

(

ωx
∂μ
∂x

+ωy
∂μ
∂y

+ωz
∂μ
∂z

)

+

+2
̅̅̅̅̅̅
Pr
Ra

√ [
∂v
∂x

∂2μ
∂y∂z

−
∂v
∂z

∂2μ
∂x∂y

−
∂u
∂z

∂2μ
∂x2+

∂w
∂x

∂2μ
∂z2 +

∂2μ
∂x∂z

(
∂u
∂x
−

∂w
∂z

)]

−
∂θ
∂x

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)   

∂ωz

∂τ +u
∂ωz

∂x
+v

∂ωz

∂y
+w

∂ωz

∂z
− ωx

∂w
∂x

− ωy
∂w
∂y

− ωz
∂w
∂z

=

=

̅̅̅̅̅̅
Pr
Ra

√ (
∂2
(μωz)

∂x2 +
∂2
(μωz)

∂y2 +
∂2
(μωz)

∂z2

)

−

̅̅̅̅̅̅
Pr
Ra

√
∂
∂z

(

ωx
∂μ
∂x

+ωy
∂μ
∂y

+ωz
∂μ
∂z

)

+

+2
̅̅̅̅̅̅
Pr
Ra

√ [
∂w
∂y

∂2μ
∂x∂z

−
∂w
∂x

∂2μ
∂y∂z

+
∂u
∂y

∂2μ
∂x2 −

∂v
∂x

∂2μ
∂y2 +

∂2μ
∂x∂y

(
∂v
∂y

−
∂u
∂x

)]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)  

∂θ
∂τ + u

∂θ
∂x

+ v
∂θ
∂y

+w
∂θ
∂z

=
1
̅̅̅̅̅̅̅̅̅̅̅̅
Ra⋅Pr

√

(
∂2θ
∂x2 +

∂2θ
∂y2 +

∂2θ
∂z2

)

(15)  

here Rayleigh number and Prandtl number are introduced as Ra = ρgβ 
(Th − Tc)L3/(αμ0)and Pr = μ0/(ρα). The temperature-dependent variable 
dynamic viscosity is introduced as μ = exp (− ξθ). This law was proposed 
by O. Reynolds [34]. The Rayleigh number shows the effect of a tem
perature gradient on the fluid flow. The Prandtl number reflects the 
influence of the physical properties of the working fluid on heat transfer. 

The fluid is motionless for the initial moment of time and as a result 
vorticity vector and vector potential functions are equal to zero at initial 
time. Taking into account the no-slip conditions for velocity at all walls, 
vorticity vector components can be defined using the following defini

tion ω = rot
(

V
)

. As for the vector potential functions, the used condi

tions are typical and characterize the relation between vector potential 
functions and velocity vector [35,36]. In addition, it is assumed that one 
of the vertical walls heats up according to a sinusoidal law, while the 
opposite wall has a constant temperature. Other surfaces are adiabatic. 
The dimensionless initial and boundary conditions for heat and fluid 
flow are introduced as:   

The governing characteristics are the local Nusselt number Nu at the 
heated border and the mean Nusselt number Nu: 

Nu = −
∂θ
∂x

⃒
⃒
⃒
⃒

x=0
, Nu =

∫1

0

∫1

0

Nu dydz (16) 

This parameter characterizes the intensity of heat transfer between a 
working fluid and a solid surface. 

τ = 0 :⎧
⎨

⎩

ψx = 0,
ψy = 0,
ψz = 0

⎧
⎨

⎩

ωx = 0,
ωy = 0,
ωz = 0

θ = 0 at 0 ≤ x, y, z ≤ 1

but θ = θw = sin(πz) or θ = 1 at x = 0

τ > 0 :⎧
⎨

⎩

∂ψx/∂x = 0,
ψy = 0,
ψz = 0

⎧
⎨

⎩

ωx = 0,
ωy = − ∂w

/
∂x,

ωz = ∂v/∂x

⃒
⃒
⃒
⃒
⃒
⃒

at x = 0 and x = 1,
0 ≤ y, z ≤ 1

θ = θw = sin(πz) or θ = 1 at x = 0, 0 ≤ y, z ≤ 1
θ = 0 at x = 1, 0 ≤ y, z ≤ 1

τ > 0 :

at y = 0 and y = 1, 0 ≤ x, z ≤ 1

∂θ

/

∂y = 0 and

⎧
⎨

⎩

ψx = 0,
∂ψy
/

∂y = 0,
ψz = 0

⎧
⎨

⎩

ωx = ∂w/∂y,
ωy = 0,
ωz = − ∂u/∂y

at z = 0 and z = 1, 0 ≤ x, y ≤ 1

∂θ

/

∂z = 0 and

⎧
⎨

⎩

ψx = 0,
ψy = 0,
∂ψz/∂z = 0

⎧
⎨

⎩

ωx = − ∂v/∂z,
ωy = ∂u

/
∂z,

ωz = 0   
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3. Numerical procedures 

The finite difference technology has been used for the solution of the 
main Eqs. (9)–(15) with additional restrictions using the structured 
uniform mesh. The relations of parabolic kind (12)–(15) were integrated 
by Samarskii locally 1D technique [30–33]. The approximation of the 
convective terms has been performed by the monotonic Samarskii al
gorithm [30–33]. Diffusion terms have been reduced using the central 
differences. The received set of difference relations has been worked out 
by the Thomas method. The equations of elliptic type (9)–(11) were 
reduced by the central differences. The ultimate discretized relations 
were resolved iteratively by the over-relaxation technique. 

The mesh independence validation has been carried out for ξ = 1, Pr 
= 7.0, and Ra = 105. The impact of different selected grid dimensions on 
the mean Nu at the hot border is demonstrated in Fig. 2. Taking into 
account the results of Fig. 2 the uniform mesh of 100 × 100 × 100 el
ements was adopted for the basic simulation. The jump in the mean Nu 
at the initial time presented in this figure can be explained by the 
transition between the thermal conduction mode when the mean Nu 
decreases with time owing to diminution of the thermal gradient at this 
vertical surface and the heat convection mode when the surrounding 
fluid becomes hotter and ascends along this surface. A periodic tem
perature law characterizes an appearance of maximum temperature at 
the middle of this wall while the temperature decreases from the middle 
till the upper and lower ends of this surface. Such temperature distri
bution also reflects the mentioned jump in the average Nusselt number 
at initial time level when various fluxes can interact at this time level. 
Further raise in time illustrates the mean Nu increment owing to internal 
mixing of the working fluid whilst the development of convective flow 
characterizes an achievement of the steady state. 

The created program has been validated employing the available 
results from literature [37,38] for the problem of thermal convection 
inside a differentially warmed 3D enclosure. Table 1 demonstrates the 
velocity projections and average Nu for various mesh parameters. In 
addition, detailed validation of the developed 3D computational code 
has been performed previously and presented in [30]. 

4. Results and analysis 

The convective heat transfer and natural convection circulation in 
the 3D enclosure are analyzed in this section. Computational analysis is 

reported for Ra = 103–5∙105, Pr = 7.0, viscosity varying characteristic 
(ξ = 0, 1), and non-dimensional time (0 ≤ τ ≤ 200). Impacts of these 
characteristics on the liquid motion and energy transference have been 
scrutinized. The maps of the vector potential functions and temperature 
and distributions of mean Nu are demonstrated in Figs. 3–7 for a com
bination of the non-dimensional control parameters. 

Fig. 3 presents 3D patterns of vertical velocity component and tem
perature for various heating models of vertical surface and various vis
cosity parameters. In any case, the obtained results clearly illustrate the 
region of heating of the cavity on one of the vertical surfaces. A tem
perature minimum is found on the opposite border of the chamber. 
Convective flows are generated near the heated side wall. The fluid flow 
with cold temperature is located in the bottom part of the cabinet, whilst 
the hot liquid flow rises higher. The transition from a liquid with a fixed 
viscosity (Fig. 3a, c) to a liquid with a changeable viscosity (Fig. 3b, d) is 
reflected in the enhancement of convective motion and energy trans
ference for any type of cavity heating. 

The dependence of mean Nu at heated surface of chamber for various 
heating, viscosity parameter and Ra = 104 is demonstrated in Fig. 4. At 
the initial stages of time, the heat exchange occurs more intensively for 
the mode of constant warming of the border, and the Nusselt number 
reaches large values in comparison with sinusoidal distribution of 
temperature. A rise of time results in a reduction of the Nusselt numbers 
for any magnitudes of the control characteristics. The maximum value of 
the considered integral parameter in the stationary flow (τ = 200) is 
achieved for the mode of a liquid with variable viscosity with non- 
uniform distribution of temperature. Moreover, in the mode of fixed 
surface temperature, the employing of a medium with varying viscosity 
also results in an augmentation of Nu at the heated border. The same 
effect of variable viscosity for natural convection problems (in 2D case) 
was shown earlier in [30]. 

Fig. 5 illustrates 3D patterns of θ and w of variable viscosity fluid for 
various magnitudes of Ra in the mode of non-uniform heating of 
chamber. A rise of Ra is reflected in the enhancement of the energy 
transference process in the cavity. The fluid flow rate increases signifi
cantly with increasing Ra from 104 (Fig. 5a) to 5∙105 (Fig. 5c). Almost 
all the heat from the heated wall is redistributed in the cavity and 
transferred to the environment due to the cooling effect of the opposite 
surface. In the case of isothermal surface (Fig. 6), increasing the Ray
leigh number has a similar effect on convective fluid flows. Magnitudes 
of the velocity component for constant heating are higher than for the 
sinusoidal temperature distribution. 

Fig. 7 reflects an influence of Ra and wall heating effect for ξ = 1 on 
the mean Nu at hot surface of the cavity. As it was noted above, a jump in 
Ra results in a growth of energy transference strength within the region. 
This is especially noticeable for a region having a uniformly warmed 
wall (red lines). Moreover, the differences in the Nusselt values increase 
with Rayleigh number growth. 

5. Conclusions 

In this study the data of numeral simulation of transient convective 
energy transference of the fluid with variable viscosity in the cubical 
enclosure having hot vertical wall of non-uniform/uniform temperature 
distribution have been presented. The impact of the viscosity parameter, 
Rayleigh number and type of wall heating effect on energy transport and 
liquid circulation has been illustrated via the distributions of isotherms, 
vertical velocity component and mean Nu at the hot wall. Comparison 
between two types of wall temperature patterns of vertical surface 
shows maximum energy transference in the cabinet for constant tem
perature. More intensive energy removal from the hot surface can be 
achieved for temperature-dependent viscosity liquid for high Ra. 
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Fig. 7. Mean Nu at the heated border for various Ra and various heating of 
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