
Vol.:(0123456789)1 3

Journal of Thermal Analysis and Calorimetry
https://doi.org/10.1007/s10973-020-09875-6

Using deep learning to learn physics of conduction heat transfer

Mohammad Edalatifar1  · Mohammad Bagher Tavakoli1 · Mohammad Ghalambaz2,3  · Farbod Setoudeh4

Received: 9 February 2020 / Accepted: 22 May 2020
© Akadémiai Kiadó, Budapest, Hungary 2020

Abstract
In the present study, an advanced type of artificial intelligence, a deep neural network, is employed to learn the physic of
conduction heat transfer in 2D geometries. A dataset containing 44,160 samples is produced by using the conventional finite
volume method in a uniform grid of 64 × 64. The dataset includes four geometries of the square, triangular, regular hexagonal,
and regular octagonal with random sizes and random Dirichlet boundary conditions. Then, the dataset of the solved problems
was introduced to a convolutional Deep Neural Network (DNN) to learn the physics of 2D heat transfer without knowing the
partial differential equation underlying the conduction heat transfer. Two loss functions based on the Mean Square Errors
(MSE) and Mean of Maximum Square Errors (MMaSE) are introduced. The MMaSE is a new loss function, tailored for the
physic of heat transfer. The 70%, 15%, and 15% of images are used for training DNN, testing DNN, and validation of the
DNN during the training process, respectively. In the validation stage, the 2D domain with random boundary conditions, in
which DNN has never seen them before, is introduced to DNN. Then, DNN is asked to estimate the temperature distribution.
The results show that the DNNs are capable of learning physical problems without knowing the underlying fundamental
governing equation. The error analysis for various training methods is reported and discussed. The outcomes reveal that
DNNs are capable of learning physics, but using MMaSE as a tailored loss function could improve the training quality. A
DNN trained by MMaSE provides a better temperature distribution compared to a DNN trained by MSE. As the 2D heat
equation is a Laplace equation, which is practical in multiple physics, the results of the present study indicate a new direc-
tion for future computational methods and advanced modeling of physical phenomena, using a big dataset of observations.

Keywords  Conduction heat transfer · Deep convolutional neural networks · Deep learning · Laplace equation · Large
dataset

List of symbols
T	� Temperature (K)
Ti	� Isothermal boundary conditions at the bounda-

ries of the domain (K)
x	� x-Cartesian coordinate (m)
y	� y-Cartesian coordinate (m)
T	� Temperature field, actual temperature distribu-

tion image (target images)
P	� Predicted temperature distribution image (K)
N	� Number of images in a collection of images
R	� Number of rows in an image
C	� Number of columns in an image

Greek symbols
β	� Parameters of Adam optimizer
β1	� First parameter of Adam optimizer
β2	� Second parameter of Adam optimizer

 *	 Mohammad Bagher Tavakoli
	 m‑tavakoli@iau‑arak.ac.ir

	 Mohammad Edalatifar
	 m.edalatifar@gmail.com

	 Mohammad Ghalambaz
	 mohammad.ghalambaz@tdtu.edu.vn

	 Farbod Setoudeh
	 f.setoudeh@arakut.ac.ir

1	 Department of Electrical Engineering, Arak Branch, Islamic
Azad University, Arak, Iran

2	 Metamaterials for Mechanical, Biomechanical
and Multiphysical Applications Research Group, Ton Duc
Thang University, Ho Chi Minh City, Vietnam

3	 Faculty of Applied Sciences, Ton Duc Thang University,
Ho Chi Minh City, Vietnam

4	 Faculty of Electrical Engineering, Arak University
of Technology, Arak, Iran

http://orcid.org/0000-0003-4610-9522
http://orcid.org/0000-0003-0965-2358
http://crossmark.crossref.org/dialog/?doi=10.1007/s10973-020-09875-6&domain=pdf

	 M. Edalatifar et al.

1 3

Subscripts
i	� The segment of the boundary condition
n	� Sigma index for summation on a collection of

images
r	� Sigma index for summation on all rows
c	� Sigma index for summation on all columns

Abbreviations
SE	� Square Error
MSE	� Mean Square Errors
MMaSE	� Mean of Maximum Square Errors
MaSE	� Maximum of Square Errors
AE	� Absolute Error
MAE	� Mean Absolute Errors
MMaAE	� Mean of Maximum Absolute Errors
MaAE	� Maximum of Absolute Errors

Introduction

The two-dimensional steady-state heat conduction is a sim-
ple typical problem in the context of heat transfer designs.
The Laplace equation introduces the conduction heat transfer
in the form of ∇2T = 0 where T is the temperature distribu-
tion. The Laplace equation not only represents the conduc-
tion heat transfer phenome but also introduces much more
physical phenomena such as pressure distribution in a fluid
or mass diffusion.

Although the Laplace equation is a simple partial dif-
ferential equation, there is not a general analytical solution
for this equation. The availability of any analytical solution
depends on the geometry of the heat transfer domain and
the boundary conditions. Despite the lack of analytical solu-
tions, there are various numerical approaches, which can
easily solve the heat equation. Well-known methods such
as the finite difference method, finite volume method, finite
element method, or the meshless methods can deal with this
problem robustly. However, numerical methods generally
discretize the domain of solution into subdomains (grid or
mesh), and then they construct an algebraic equation for
each subdomain. Finally, the set of algebraic equations has
to be solved either analytically or iteratively. Solving the set
of algebraic equations is a computationally costly procedure,
mainly when the number of grid points (algebraic equations)
is high.

Moreover, for each new problem, the set of algebraic
equations has to be solved from an initial guess, and the
knowledge of the calculations cannot be passed to a new
domain and problem. It means that for each different prob-
lem, the algebraic equations shall be contracted and solved
individually. The iterative numerical approaches are typical
for solving heat equations. Such methods have been utilized

in many engineering applications. Using interactive numeri-
cal methods, various aspects of heat transfer such as heat
transfer in phase change materials for domestic applications
[1], heat transfer of nanomaterials in porous spaces [2], heat
transfer in channels [3] and helical pipes [4], heat transfer in
nanofluids [5], and heat transfer in biofluids [6] have been
investigated in recent years.

In recent years, Deep Neural Networks (DNNs) have
shown enormous ability to extract features and generate
images, using many hidden layers. Until 2006, the available
neural networks suffer a lack of many hidden layers due to
inadequate techniques to train the many hidden layers. How-
ever, Hastad and Goldmann [7] demonstrated the importance
of an increased number of layers in a neural network.

In contrast to conventional neural networks, the deep neu-
ral networks are capable of producing realistic solutions and
achieve state-of-the-art computational performance by using
a data-driven approach [8]. Hinton et al. [9] represented the
restricted Boltzmann machine (RBM) method, which was
an unsupervised layer-by-layer learning algorithm. After a
short time, Bengio et al. [10] introduced a process to train
multilayer deep networks. They used RBM as a pre-training
method before starting supervised training process. The
RBM acts as a regularizer and initial parameters of the net-
work [11]. After that, deep networks were used to classifica-
tion [12], regression [13], dimensional reduction [14], and
many other issues.

The classification and generation are two main types of
DNN applications. Image recognition and classification [15],
speech recognition [16], face recognition [17], sentence
classification [18], material recognition [19], and person
re-identification [20] are samples of the DNN applications
for classification and recognition. In the field of generation,
the text-to-image synthesis [21], speech enhancement [22],
and image-to-image transactions [23] are some of the appli-
cations. DNNs can be employed to physical phenomena
by using observed or simulated data to learn the physical
behavior where the actual physical model is complicated or
unknown [8].

There are various types of DNNs, which benefit from a
large number of hidden layers in their structures. The Con-
volutional Neural Networks (CNNs) are a well-known and
powerful type of DNNs, inspired by biological models. The
CNNs have been used for pattern recognition tasks such as
handwritten numeral recognition and face recognition [24].
Moreover, CNNs are capable of automatic extractions of the
salient features with a certain degree of shape distortions and
shifts for the input characters [25].

A CNN consisted of an input layer, several intermediate
layers (hidden layers), and an output layer. In a CNN, the
pixels of a picture are delivered to an input layer and passes
to the intermediate layers like a flow until they reach the

Using deep learning to learn physics of conduction heat transfer﻿	

1 3

output layer. The structure of the intermediate layers can be
designed based on the application of CNNs.

Since the introduction of CNNs, many approaches have
been developed to improve the capability and accuracy of
these neural network, or accelerating training process, i.e.,
adding batch normalization between layers [26], using Recti-
fied Linear Unit (ReLU) [27] as the activation function, and
initializing the masses of a network with a random normal
distribution [28, 29]. Moreover, many DNNs with convo-
lutional layers and unique structures such as AlexNet [30],
GoogleNet [31], Generative Adversarial Networks (GAN)
[32], and ResNet [33] were suggested to increase the accu-
racy of CNNs.

Very recently, the use of deep networks has been
considered for the estimation of heat and fluid trans-
fer issues. Sharma et al. [34] used a fully convolutional
encoder–decoder network adapted from the U-Net archi-
tecture [35] to estimate temperature distribution over a flat
square plate with random temperatures on the bound of the
plate. Based on the Finite Difference Method (FDM) [36],
they convolved a special filter with the output of the network
to determine error value for each point on the plate. Farim-
ani et al. [8] suggested an extension of GAN, Conditional
Generative Adversarial Networks (cGAN) [37], to estimate
heat transfer. GAN has been successfully used for texture
mapping, style transferring, text-to-image translation, and
image-to-image translation in previous publications [32].
Authors trained cGAN network with a dataset containing
6230 training samples, generated by numerical FDM, for
various temperature boundary conditions, two-dimensional
geometries (annulus, disk, triangle, and rectangle), differ-
ent domain sizes, and domain position within a 64 × 64 grid
domains.

The dataset produced by Sharma et al. [34] contains only
a square heat boundary with random heats on each side,
and hence, the dataset was limited in terms of diversity of
geometry and boundary conditions. Training a deep model
without the need for a big actual dataset was the main advan-
tage of their work. With this technique, they could produce
data during the training process and utilize the advantage
of a big dataset. However, by using this technique, there is
no unique dataset available for future examinations. Mean-
while, Farimani et al. [8] studied the conduction heat transfer
by using a small dataset, consisted of only three bounded
shapes.

Regardless of the dataset, almost all previous works used
Mean Square Error (MSE) as a loss function to train their
models. However, there are many other error estimators for
training a deep neural network. An adequate selection of
an error estimator can notably affect the resolution of an
expert network for a specific task. Investigation of the effect
of different error estimators is one of the objectives of the
present study.

As mentioned, a partial differential equation is required
to introduce the physic of heat transfer, and then a numeri-
cal approach is needed to solve the partial differential equa-
tion. However, there are many applications in which the
exact governing equation may be unknown. Moreover, the
numerical approach shall be repeated from an initial guess
and for each different problem. It means that the solution of
a heat transfer problem produces much of knowledge about
the behavior of heat equation, which could not be passed to
another problem with different geometry and boundary con-
ditions. In a very recent study, Raissi et al. [38] introduced
a framework to teach DNNs the physics of Navier–Stokes
equations from an image database computational flow
field over a cylinder in a channel. The results demonstrate
the capability of DNNs in learning the hidden physics of
Navier–Stokes equations from the images. However, as the
DNNs just learn the physics of Navier–Stokes equations,
obtaining a flow field requires computational steps as usual.

The present work aims to teach a DNN to learn the behav-
ior of the heat transfer through a big dataset of heat trans-
fer images with no requirement of a computational step,
as was required in the study of Raissi et al. [38]. In this
approach, a DNN just looks at many solved heat problems
and then learns the behavior of the heat transfer. Indeed, the
knowledge of many previously solved heat problems will be
transferred into a DNN during a training process, without
exposing the actual differential equation of the heat transfer
to the DNN. Then, the expert (the trained) DNN will be
utilized to solve new heat transfer problems directly with no
iteration or construction of algebraic equations. Hence, the
advantage of the present method is that it omits the com-
putational iterative step of solving the governing equations
for the temperature field. The input of the expert DNN will
be a geometry with boundary conditions, and the output
will be the image of temperature distribution. The present
study is an early attempt to teach DNN the physics of a
transport phenomenon using a big dataset of heat transfer
images without revealing the underlying differential equa-
tion. Another contribution of the present study is producing
a public benchmark dataset for general training of future
deep neural network models.

Mathematical model and systematic analysis

The present study aims to teach a DNN to learn the physics
of 2D conduction heat transfer. Here, an overall view of the
present approach will be summarized in four steps. Then,
each step of the work will be discussed in detail.

First, a large database of images, representing the temper-
ature distribution in 2D geometries, is required. This data-
base shall contain various geometries with different geom-
etry sizes and different temperature boundary conditions.

	 M. Edalatifar et al.

1 3

The diversity of this database helps DNN to see various
situations and solutions of temperature distribution in a 2D
domain. Therefore, each initial image shall contain a geom-
etry (the domain of solution) and a defined boundary con-
dition to maintain the diversity of the dataset. To aim this
purpose, a code for the generation of various geometries
in terms of shapes and sizes, as well as random boundary
conditions, is developed. Then, the produced 2D heat trans-
fer problem can be solved by using conventional numerical
methods. The numerical solution of the heat transfer prob-
lem for each image produces the temperature distribution
in that image. Later, these images can be fed to the DNN as
training, testing, and validation stages.

In the second step, a structure of DNN shall be defined.
Indeed, the DNN is an extensive function with many adjust-
able parameters and interconnected functions. The structure
of a DNN can be designed for a specific task.

Then, the third step is introducing an error estima-
tion indicator, and the fourth step is using a mathematical
method, such as the gradient descent, that could be employed
to adjust the variables of the DNN. The variables of DNN
shall be adjusted to minimize an error function. Hence,
introducing an error estimation indicator is an essential step
in the present study. The training of DNN can be started by
using the dataset of images, the defined structure for the
DNN, and the error estimator. The train of DNN is an itera-
tive procedure that tends to reduce the estimation error of
the network gradually.

A well-trained DNN is expected with the ability to pro-
vide an accurate temperature distribution for any arbitrary
given heat conduction problem. The final step of the cur-
rent work is exploring the capabilities and accuracy of the
DNN for the heat transfer problems that DNN has never seen
before. Thus, bearing these above steps in mind, the first step
is producing a large dataset of 2D images of the temperature
distribution, which is the subject of the next subsection.

Dataset

Each sample in this dataset contains a two-channel image
as the input and a one-channel image as the output. Both
input and output images have 64 × 64 pixels. The first input
channel is used to introduce the boundaries of the geometry,
which can adopt the values of 0.5, 1, and 0. The value of 0.5
indicates a pixel at the boundary, the value of 1 denotes a
pixel inside of the geometry (the domain of solution), and
the value of 0 shows a pixel outside of the geometry.

A sample of the first input channel is depicted in
Fig. 1a. As seen, inside each figure is yellow, denoting
the value of 1; the outside is dark, indicating 0. There is a
narrow green border, which adopted the value of 0.5, and
it denotes the boundaries. The second input channel con-
tains the information on the boundary conditions, which

are the boundary temperatures. This channel is depicted
in Fig. 1b. Inside and outside of the boundary domain is
zero, and the numerical value on the boundary denotes
the temperature of the boundary, which is normalized in
the scale of zero to one. It is assumed that each boundary
can consist of two to five random segments with random
temperature values in the range of zero to one. For exam-
ple, the first row in Fig. 1 shows a hexagonal, in which
the inside, outside, and the boundary of the geometry are
clearly defined. Figure 1b shows that there are four tem-
perature segments (note that the temperature segments can
be randomly between two and five random segments), and
the value of each segment is defined with color.

Figure 3c illustrates the output image, containing the
boundary and the distribution of the temperature inside
the geometry (the domain of solution). The outside of the
boundary in the output image is filled with zeros as it is
outside of the domain of the solution. For example, the
first row of Fig. 1c shows the corresponding temperature
distribution for the given boundary conditions. As seen,
the temperature of the domain, in the vicinity of each
boundary, is close to the boundary’s temperature and then

Fig. 1   Some samples of each image channel: a input channel for
outside, boundary, and inside of domain with value of 0, 0.5, and 1,
respectively; b input channel for temperature boundary condition; c
the output with the temperature distribution inside the geometry and
null (zero) outside the geometry

Using deep learning to learn physics of conduction heat transfer﻿	

1 3

changes with the increase in distance from that boundary.
Various approaches, such as Successive Local Lineariza-
tion Method (SLLM) [39], can be employed to solve the
governing equations numerically. Here, the Finite Volume
Method (FVM) is employed to solve the temperature dis-
tribution in each image with the residual accuracy of 10−6.
The details of the computation of temperature distribution
will be discussed later.

The variables of the present study are the investigated
geometries and location of isothermal boundary condi-
tion segments. The variation of geometry and location
of imposed boundary conditions help DNN to learn the
physics of the heat transfer in various domains and under
various configurations.

The geometries of the dataset include square, triangu-
lar, regular hexagonal, and regular octagonal shapes, and
the width of all shapes is between 35 and 58 pixels. The
size of the geometries can be varied randomly, and the
height of the triangular geometry is half of its width. The
maximum limit of 58 pixels ensures that the geometry fits
in the image frame of 64 pixels, as it is assumed all of the
images are square with a size of 64 pixels.

As mentioned, the first and second input channels
are utilized to introduce the domain of solution and the
required boundary conditions. The following partial dif-
ferential equation is utilized to obtain the temperature
distribution:

subject to the T = Ti at each segment of the boundary of the
geometry where i is the segment of the boundary condi-
tion, and Ti is the temperature of the segment. The partial
differential equation, Eq. 1, is numerically solved using the
FVM. The details of conduction heat transfer and the FVM
for solving this equation are well described in fundamental
heat transfer textbooks [40, 41]. Therefore, the temperature
distribution images which are utilized as the output images
of the dataset indeed are the solution of Eq. (1).

The FVM was employed to obtain the temperature dis-
tribution in the given geometries and boundary conditions
and generated a dataset containing 44,160 sample images.
This extensive dataset, which includes various geom-
etries and boundary conditions, is a benchmark dataset.
The utilized FVM code for solving Eq. (1), and the cor-
responding temperature distributions, all of the database
images, and other DNN codes are available here: https​://
doi.org/10.17632​/rw9yk​3c559​.1.

The input images along with the calculated output
temperature distributions are a benchmark dataset which
can be employed for testing of various aspects of DNN in
learning and estimation of heat transfer phenome. In the

(1)
�2T

�x2
+

�2T

�y2
= 0

present study, the dataset images are divided into three
categories, in which 15% of the dataset images are ran-
domly extracted as testing data and 15% percent of the
remaining images are randomly selected as validation
data. The remaining images are saved as the training data.
The validation data were used to draw and investigate the
evaluation parameters of the training process as well as
to determine the best epoch of the training process with a
minimal loss value.

The bound width of all shapes of the dataset is between
35 and 58 pixels. In order to examine the generalization
capability of the trained DNN, a set of unseen data is also
produced. The unseen data have never been introduced to
DNN in any step of training or testing. The unseen dataset
contains 1920 samples with a bandwidth of 30 pixels. After
the training process, both testing and unseen data are given
to the network and extracted evaluation parameters and plot
charts. The result of these data shows the generalization abil-
ity of networks. The testing data are a part of the training
process and test the learning quality of the DNN; however,
the unseen data are not a part of train or test, and their pur-
pose is the validation of DNN to how well a trained DNN
can estimate the temperature distribution in an unseen and
completely fresh problem.

Deep Neural Network (DNN) structure

A deep neural network consists of a structure and adjustable
(trainable) parameters, layers, and connections. The number
of layers and connections can be selected following available
well-known structures, or it can be designed by trial and
error or a combination of literature works and modifications
by trial and error. There are several enormous models of
the DNNs, which have been employed for classification and
regression tasks.

An autoencoder is a type of intelligence neural networks,
which is designed for multi-purpose, i.e., dimensional reduc-
tion, image denoising, and generate images [42]. In the pre-
sent study, the inputs of the network are the images of the
domain and boundary conditions, while the outputs are the
temperature distribution in the domain. Hence, the autoen-
coder neural networks are adopted as the main structure of
the DNN. A schematic figure of the utilized autoencoder
DNN, adopted in the present study, is illustrated in Fig. 2. As
seen, an autoencoder is made of three major parts, encoder,
decoder, and bottleneck. The encoder extracts features and
reduces the dimensions of the input images. It also encodes
the input data. A bottleneck is a compressed representation
of the input data. Decoder reconstructs the output data from
the encoded data of the encoder. The layers of autoencoder
can be either fully connection layers or convolutional layers
[43]. An autoencoder with convolution layers, a convolu-
tional autoencoder, is adopted in the present study as the

https://doi.org/10.17632/rw9yk3c559.1
https://doi.org/10.17632/rw9yk3c559.1

	 M. Edalatifar et al.

1 3

main structure of DNNs. However, some modifications are
also employed in the structure of autoencoder to increase
its potential in learning the physics of heat transfer. The
adopted DNN for the present study is depicted in Fig. 4. The
layers of the autoencoder are replaced with convolutional
residual blocks.

He et al. [33] proposed the residual networks as a new
learning framework for classification purposes. They used
an individual block, residual block, instead of a cascade
of network layers, which is common in typical neural net-
works. The structure of the residual block is illustrated in
Fig. 3a. The advantage of using the residual blocks was that

in
pu

t i
m

ag
e

64
 ×

 6
4

×
 2

Encoder

Conv 1
32 × 32 × 64

16 × 16 × 128
8 × 8 × 256 8 × 8 × 256

4 × 4 × 512

Conv 2
Conv 3 Deconv 1

Deconv 2

Deconv 3

DecoderBottleneck

16 × 16 × 128

32 × 32 × 64

O
ut

pu
t i

m
ag

e
64

 ×
 6

4
×

 1

Fig. 2   An example of an autoencoder

Fig. 3   A structure of a convolutional residual block with shortcuts, a
simple shortcut for a residual block with the same size of input and
output features, b a shortcut with a matching block layer for a residual

block with different input and output sizes of features maps, c a com-
pact view of the a convolutional residual block for convenience

Using deep learning to learn physics of conduction heat transfer﻿	

1 3

it could replace two consequence layers of a network. These
authors achieved a state-of-the-art classification accuracy
on the well-known ImageNet dataset by using the residual
networks in a network, known as ResNet [15]. Comparing
to similar networks with ordinary layers, the ResNet eases
the optimization by providing faster convergence at the early
stage, exhibiting considerably lower training error, converg-
ing faster in general.

It should be noted that using too many layers in a conven-
tional network does not always improve the learning process
or the learning error. Indeed, over-increasing the depth of a
conventional neural network can unexpectedly elevate the
learning error. This is a well-known general issue in typical
neural networks as the degradation problem [44]. A ResNet
network has solved the degradation problem by using the
residual blocks. Hence, by using the residual blocks in the
structure of the ResNet network, the learning error will
improve or remain constant.

As shown in Fig. 3a, a residual block consists of two cas-
cades of layers that output of the block is the element-wise
summation of the first input of layer (input of block) and
the second output of layer. The input of a residual block is
transferred to the input of the element-wise summation by
a shortcut connection. A batch normalization layer and an
activation layer are placed before each layer of the block.
The batch normalization technique improves the speed, per-
formance, and stability of a network. The frequent activation
function for residual block networks is the ReLU activation
function, which is followed by a batch normalization layer.
Other activation functions, such as tangent hyperbolic and
sigmoid, are also possible. However, a computational com-
plexity of computations using a ReLU activation function is

minimal compared to other activation functions. Moreover,
the convergence rate of a network consisting of ReLU acti-
vation functions is much higher than that of the networks
with tangent hyperbolic and sigmoid activation functions
[30]. The shortcut connection can be a simple connection
transferring the input feature to the output of the block to
be added to the output data, as shown in Fig. 3a. It can also
be a transfer block that acts as a matching part and matches
the input and output sizes of a block in case there is a size
difference between the input and output of the block. The
matching part is depicted in Fig. 3b.

The layers of a residual block can be fully connected or
convolutional. The layers of the residual block, depicted
in Fig. 2a, are convolutional layers. Hence, the produced
residual block is known as a convolutional residual block.
Each convolutional layer consists of several filters. The fil-
ters are regular matrixes with a typical size of 3 × 3 or 5 × 5
for images. These matrixes contain trainable parameters
(values), which have to be adjusted during the learning pro-
cess. The input of a convolutional layer is the input data of
a network or the output features of the previous layer, while
its output is the extracted features of the layer.

The ResNet is usually utilized for image classifications
and is capable of extracting the various types of features
from an input image. As the purpose of the present study
is to produce the temperature distribution images from the
input images, a combination of an autoencoder and resid-
ual blocks is employed to benefit from the residual block
capability of ResNet and image generation structure of the
autoencoder neural network. As a result, the conventional
cascade layers of the autoencoder network are replaced by
the residual blocks. It is expected that utilizing the residual

64 × 64 × 2

Input

Layer 1

Layer 2

Convolution Convolution Convolution Convolution Convolution

3 × 3 × 16
Stride = 1 Stride = 2 Stride = 2 Stride = 2 Stride = 2

3 × 3 × 64 3 × 3 × 2563 × 3 × 128

8 × 8 × 128
32 × 32 × 32

64 × 64 × 16 3 × 3 × 32

16 × 16 × 64
4

×
4

×
51

2

Decoder

Encoder

64 × 64 × 1
3 × 3 × 16 3 × 3 × 32 3 × 3 × 64

32 × 32 × 32 16 × 16 × 64 8 × 8 × 128

3 × 3 × 2563 × 3 × 128
Stride = 1 Stride = 2

Output Deconvolution Deconvolution Deconvolution Deconvolution Deconvolution

64 × 64 × 16 Stride = 2 Stride = 2 Stride = 2

Layer 1

Layer 2

Layer 1

Layer 2

Layer 1

Layer 2

Layer 1

Layer 2

La
ye

r
1

La
ye

r
2

La
ye

r
1

La
ye

r
2

La
ye

r
1

La
ye

r
2

La
ye

r
1

La
ye

r
2

La
ye

r
1

La
ye

r
2

si
gm

oi
d

Fig. 4   Structure and characteristics of the DNN utilized in the cur-
rent study. Stride 1 represents a simple shortcut as shown in Fig. 3a,
in which the size of input and output features of the block is equal,

and stride 2 indicates a shortcut with a matching layer as depicted in
Fig. 3b, in which the size of the output features of a block is half of
its input features

	 M. Edalatifar et al.

1 3

blocks in the autoencoder framework improves the accuracy
of the image processing and the learning process. Therefore,
each of the blocks of the autoencoder of Fig. 2 is replaced by
the residual blocks of Fig. 3, which resulted in a deep neural
network. The schematic figure of the deep neural network,
utilized in the present study, is depicted in Fig. 4.

As shown in Fig. 4, each of the decoder and encoder
of the utilized DNN consists of five residual blocks. The
residual blocks of the encoder consist of convolutional lay-
ers, while the residual blocks of the decoder layer consist of
deconvolutional layers. The deconvolutional layers act as a
reverse function of the convolutional layers. Except for the
first residual block of the encoder layer, each residual block
reduces the size of its input feature to half and increases the
number of the features by twofold. In the decoder section,
in a reverse manner, all of the residual blocks, except for
the last residual block, increase the size of the input feature
by twofold and reduce the number of the features by half.
Therefore, the input images undergo a process of downscal-
ing and extracting features in the encoder part of the neural
network. Then, the extracted features are used for upscal-
ing and producing the final temperature distribution in the
decoder part of the neural network.

The size of the encoder output is 512 features, in which
each of the features has a size of 4 × 4. The output of the last
block of the decoder is passed through a sigmoid activation
function to generate an output image. The output of a sig-
moid activation function is in the rage of zero to one which
is the range of the possible values of the temperature field.
Hence, the sigmoid activation function through a nonlinear
function maps the output of the last block of the network to
an image of temperature distribution.

It is possible to adopt a larger number of residual blocks
in a DNN; however, increasing the number of residual
blocks increases the number of trainable parameters, which
computationally is not desirable. The DNN of the present
study, which is depicted in Fig. 4, involves 1,857,554 train-
able parameters. These parameters have to be adjusted in the
learning process to estimate a correct output temperature
distribution in an output image.

In summary, as shown in Fig. 4, the images of the geom-
etry (domain) and boundary conditions enter the autoen-
coder (DNN) with the size of 64 × 64 pixels (matrix of
size 64 × 64) and they go through the five encoder residual
blocks to reach 512 features of size 4 × 4. Then, they enter
the decoder part of the DNN and through five stages, an
image with a size of 64 × 64 is produced. This 64 × 64 will
be the temperature distribution in the given geometry and
boundary conditions.

Loss function and evaluation parameters

As mentioned, the present study aimed to show that deep
learning models can be used for the rapid estimation of heat
transfer phenomena without knowledge of the underlying
constitutive equations. A neural network requires adjusted
network parameters to estimate a correct and accurate out-
put. The parameters of a neural network can be adjusted dur-
ing a training process by using an optimizer. The optimizer
employs a numeric process, which is known as a training
process, to train the network by adjusting its parameters. An
optimizer continuously computes the difference between the
real output data and the estimated data, the estimation error.
Then, it modifies the neural network parameters to reduce
the estimated error. The estimation error can be determined
using a function, known as a loss function. In summary, an
optimizer uses the loss function to determine the estimation
error, and then, it employs the estimation error to adjust the
neural network parameters in a way to reduce the estima-
tion error of the network. Thus, the selection of an adequate
loss function is a crucial step in the training process as it
directly affects the behavior of the optimizers and the train-
ing process.

The square error is defined as the square of the difference
between the real value (target value) of output and the esti-
mated value of that output. The output of the neural network
is an image of temperature distribution in the present study.
Hence, the pixels are the data that have to be estimated.
Therefore, the square error of a pixel is equal to the square
of the actual value of a pixel and the estimated value of that
pixel. As a result, the mean of square error denotes the aver-
age of the square errors of all of the pixels of an image. The
MSE can also be introduced for a collection of images, i.e.,
testing data in the dataset, which in that case, it will be the
average of the square errors for all pixels of the collection
images.

Most of the neural networks, which are used to generate
or estimate the data, employ the MSE as the loss function.
The number of pixels in a collection of images is too many,
and if the neural network estimates a few numbers of the
pixels with too large square errors, e.g., much larger than
MSE, they do not affect the overall MSE. These pixels with
too large square errors can be considered as outlier pixels,
and unfortunately, they cannot be detected by the optimizer
during the training process with MSE as an error estimator.
The square error of outlier pixels is referred to as the outlier
error in this study for convenience. As the optimizer cannot
detect such abnormal pixels in the outlet image (temperature
distribution), the optimizer will not try to adjust the param-
eters of the neural network to remove such rare considerable
mistakes in the final temperature distribution.

Using deep learning to learn physics of conduction heat transfer﻿	

1 3

The presence of outlier errors is not crucial in the process-
ing of most of the natural images, but the accurate estimation
of all of the pixels in an image, in which the pixels denote a
physical meaning or contribute to physical computations, is
essential. Thus, introducing a new loss function, capable of
dealing with the outlier errors, demanded adequate training
of a neural network. Here, it is assumed that the loss func-
tion is the maximum value of the square error (MaSE) of all
estimated pixels for an image. In the case of a collection of
images, the mean of the MaSEs (MMaSE) is the loss func-
tion. This way, the optimizer can clearly see the variation
of outlier pixels. The optimizer will try to adjust the neural
network parameters to reduce the maximum value of the
square errors of an image as much as possible. Using MaSE
as the loss function, no image pixel can be estimated with
an error larger than MaSE. Hence, using MaSE as the error
estimation leads to an estimation of a temperature distribu-
tion without abnormal temperature values.

The introduced loss functions of MSE, and MaSE can be
adopted as an indicator for the evaluation of the neural net-
work outcomes. However, there are also other indicators for
the evaluation of the neural network, which will be discussed
later. Here, the mathematical details of the computation of
MSE and MaSE will be discussed.

Mean Square Error (MSE)

A black and white (grayscale) image can be represented by a
2D matrix, in which the value of each element of the matrix
denotes the intensity of a pixel. In contrast, a 2D matrix of
data for a physical phenomenon, for instance, a 2D matrix of
the temperature of a surface, can be represented as an image.
By taking I as a 2D matrix, which represents an image, Ir,c
denotes the value of a pixel at the row r and column c. In the
case of a collection of images such as the set of test images
of the current dataset, a 3D matrix is required to present
such a set of images. In the present dataset, T denotes the
value of the temperature in the output images. In a collec-
tion of images, the value of a pixel can be denoted by three
subscripts of n (the image number), r (row), and c (column)
as Tn,r,c. This topic can be extended to the color images or
multi-channel images; in that case, the matrixes with higher
dimensional are demanded. In the current research, the out-
put images are just one-channel gray images; hence, the 3D
matrixes are adequate. Here, T denotes the actual tempera-
ture distribution, evaluated by the numerical method. The
estimated temperature distribution, which is the outcome of
the neural network, can be represented by P. Here, P is also
a 3D matrix with the same characteristics as T. Considering
T and P as the actual and the estimated temperature distribu-
tions, the Square Error (SE) can be evaluated as:

where ⊙ is the element-wise product. As mentioned, SE
denotes the square value of the difference between the actual
temperature and the estimated temperature, and it is a 3D
matrix with the same size as T or P. The error for a pixel of
an image can be accessed by SEn,r,c. Hence, the SE of a pixel
can be evaluated as SEn,r,c = (Tn,r,c − Pn,r,c)2.

MSE is the mean of the SE of a collection of images and
can be introduced as:

where N is the number of images in a collection of images,
in which each image is made of R rows and C columns of
pixels. For example, in the test images, which are a part
of the dataset of the present study, there are 6624 images
(N = 6624), and each image consists of 64 rows and 64 col-
umns of pixels. Hence, the total number of pixels of the
dataset is 27,131,904 pixels. As a result, SE consists of
27,131,904 elements, in which each element is the square
of the difference between an actual and estimated value
of a pixel. Here, MSE shows the average of all SE ele-
ments. Thus, as mentioned, the existence of a few numbers
of abnormal errors, outlier errors, cannot be adequately
detected in MSE loss function.

Mean of maximum square errors (MMaSE)

The mean of maximum square errors (MMaSE) for a collec-
tion of images can be determined with the following steps.
The first step is to compute the square error for each of the
collection images in the form of a matrix of square errors.
Then, the maximum value of the square errors of each image
is selected as the error of that image. The summation of the
maximum errors of the images divided by the number of
the images results in the mean of the maximum errors of the
images, which here is the MMaSE. Mathematically, MMaSE
can be introduced as follows:

where max1,2 denotes the implication of the maximum
operator on the first and second dimensions of the matrix
of square errors of an image. Indeed, max1,2 indicates the
maximum of square error of an image.

Considering the test collection images of the present
study, which are 6624 images, the computation of the

(2)SE = (T − P)⊙ (T − P)

(3)

MSE =
1

N × R × C

N
∑

n=1

R
∑

r=1

C
∑

c=1

(

Tn,r,c − Pn,r,c

)2

=
1

N × R × C

N
∑

n=1

R
∑

r=1

C
∑

c=1

SEn,r,c

(4)

MMaSE =
1

N

N
∑

n=1

max
1,2

(

(

Tn,r,c − Pn,r,c

)2
)

=
1

N

N
∑

n=1

max
1,2

(

SEn,r,c

)

	 M. Edalatifar et al.

1 3

MMaSE requires only 6624 square error elements to com-
pute the mean error, MMaSE, by performing the mean
operator over the set of maximum error of the images of the
group of images. However, as mentioned in the previous
section, MSE requires 27,131,904 square error elements to
compute the mean error (MSE) by employing the mean oper-
ator over the entire square errors of images. Moreover, an
optimizer, which uses the MMaSE as its loss function, can
easily sense the outlier errors since the MMaSE performs
the mean operator just over the maximum square errors of
a collection of images. The disadvantage of using MMaSE
as the loss function is the fact that it will only provide data
regarding the maximum errors for the optimizer, and the
optimizer is totally unaware of other square errors, which did
not participate in computations of MMaSE. Hence, the opti-
mizer cannot control such square errors, and consequently,
the temperature of such pixels. As a result, the square errors
of an image can be changed unconditionally in the range of
zero to the maximum square error of an image.

Maximum Square Errors (MaSE)

The Maximum Square Errors (MaSE) is the maximum of
square error in a SE matrix. The SE matrix may be computed
for an image or a collection of images. Either way, MaSE is
the maximum value of the elements of the SE matrix, i.e.,
the maximum square error of an image or a set of images.
In the case of a collection of images, consisting of only one
image, the MaSE will be identical to MMaSE. The MaSE
can be computed mathematically as follows:

The MaSE is only practical as a characteristic for valida-
tion of the estimated results of the neural network. It should
be noted that MSE and MMaSE are practical as the loss
function and as the validation of the neural network.

Absolute evaluation parameters

The Absolute Error (AE) is useful as it does not change
the scale of the errors. This is while the square error was
a nonlinear function, which diminishes the normal errors.
Hence, square error changes the actual scale of errors. Thus,
using an AE, the actual scale of errors remains unchanged
and this is an essential advantage for judging the outcomes
of a neural network. The absolute error is introduced in the
following mathematical form:

As seen, AE is very similar to SE but the absolute opera-
tor replaces the squared operator. Hence, the concept of AE

(5)MaSE = max

(

(

Tn,r,c − Pn,r,c

)2
)

= max(SE)

(6)AE = |T − P|

can be extended to Mean Absolute Errors (MAE), mean
Maximum Absolute Errors (MMaAE), and Maximum Abso-
lute Errors (MaAE), accordingly as follows:

Numerical method and verification

To produce dataset and other issues, NumPy [45], Matplotlib
[46], and scikit-image [47] were used. The deep network of
this study was implemented in Keras [48] with Google Ten-
sorFlow [49] backend. The codes are written in Python, and
the Adam optimizer [50] is adopted for the training of the
DNNs. The learning rate is fixed as 0.001, and the param-
eters of β1 and β2 are fixed as 0.9 and 0.999, respectively.
The β parameters are a part of the training process, and more
details can be found in [50]. The training process is com-
menced after initiating all of the network parameters using
the Glorot uniform technique [51]. The DNN is trained using
2000 epochs of the training data. In each epoch, all of the
training data are utilized in the format of batches data. In
this regard, the training data are randomly categorized in
batches, in which each batch contains 32 samples of data.
Here, each sample of data consists of one input image with
two channels and one single-channel output image. Then,
these batches are utilized as training data instead of using
individual images. Using batch data accelerates the training
process because each time 32 samples are fed into the train-
ing process instead of feeding images individually. At the
end of each epoch, the validation parameters are computed
for both of the validation data and training data and recorded
as the training history for later analysis.

It should be noted that the training process is not mono-
tonic, as it depends on the validation data. Hence, loss
function for validation data can increase or decrease at each
stage of the training process. The training process consists
of 2000 epochs, and a DNN with minimal loss function
for validation data is adopted as the ultimate trained DNN
after completing the training process regardless of its epoch
number.

(7)MAE =
1

N × R × C

N
∑

n=1

R
∑

r=1

C
∑

c=1

|

|

Tn,r,c − Pn,r,c
|

|

(8)MMaAE =
1

N

N
∑

n=1

max
0,1

(

|

|

Tn,r,c − Pn,r,c
|

|

)

(9)MaAE = max
(

|

|

Tn,r,c − Pn,r,c
|

|

)

Using deep learning to learn physics of conduction heat transfer﻿	

1 3

Results and discussion

When it comes to working with the physical images, the
magnitude of each pixel indicates a physical value. Hence,
the magnitude of each individual pixel is important. In con-
trast, in a natural image, a group of pixels shows a mean-
ing, and an individual pixel can barely be of any signifi-
cant sense. Thus, the evaluation of a neural network for the
generation of images with physical meaning can be funda-
mentally different from natural images. Hence, introducing
an appropriate loss function (as mentioned in the previous
section) as well as the evaluation functions for dealing with
the physical images is an essential part of the present study.

Moreover, selecting a structure of the DNN, capable of
generating high-quality temperature distribution of output
images, is another important aspect of the present research.
Hence, the current work aims to address the influence of the
loss function on the quality of the generated temperature
distributions. To aim this purpose, the MSE and MMaSE are
selected as the loss functions for the training of DNN. There-
fore, a DNN trained by MSE as loss function is referred as
Net_MSE, and similarly, a DNN trained by MMaSE as the
loss function is referred as Net_MMaSE. It should be noted
that the structure of the DNN for both cases of Net_MSE and
Net_MMaSE is identical, and only the adopted loss function,
which is employed during the training process, is different.

After the training process, the Net_MSE and Net_
MMaSE are investigated in the post-processing step, where
the temperature distributions (the output images) for all of
the four collections of training data, testing data, validation
data, and unseen data are estimated. Using the estimated
data, the validation parameters are computed and reported
in Table 1.

As mentioned, a small collection of images are produced
to be used as the unseen data. The unseen data are utilized
to measure the generalization capability of a DNN. The gen-
eralization capability of a DNN refers to the ability of the
DNN to how well it can employ the learned physical concept
to the problems, which has never seen before during the
learning process. The purpose of a good DNN model is to

generalize the learned concept well and be able to employ it
to any data from the problem domain. This allows the neural
network to make future estimations on fresh problems. The
unseen collection of images in the present study is differ-
ent from the set of training data. The difference is that the
width of the thermal boundaries of the images in the dataset
was in the range of 35–58 pixels, while the width of the
thermal boundaries in the unseen images is selected equal
to 30 pixels. It should be noted that the width and height of
the images are linked and changing the width of the images
will change the height of the images accordingly. As the
DNNs have never seen the unseen data, a DNN with better
validation parameters can provide a better generalization
capability.

Comparison of MSE and MMaSE

Table 1 shows the characteristic parameters of the trained
DNN for both cases of Net_MSE and Net MMaSE. The
outcomes are reported for the best trained DNN during
the training process. The results are categorized into four
categories of training, validation, testing, and unseen data.
For each category, the evaluation parameters of five various
parameters of MAE, MMaAE, MSE, MMaSE, and MaAE
are computed and summarized in Table 1.

As seen, the MSE and MAE parameters of Net_MSE
network are slightly smaller than that of Net_MMaSE in
terms of training, testing, and validation data. Thus, it can
be concluded that Net_MSE shows a better performance in
reducing the average of errors compared to the Net_MMaSE.
However, Table 1 reveals that the values of MMaSE and
MMaAE for Net_MMaSE are better than that of Net_MSE
in the term of training, validation, and testing data. There-
fore, Net_MMaSE network can more conveniently deal
with the outlier errors. These outcomes were expected as
the Net_MSE has been trained using the MSE as the loss
function, whose goal was reducing the average errors as
much as possible. Accordingly, Net_MMaSE was trained
using MMaSE as the loss function, whose goal was reducing
the maximum errors as much as possible. Thus, the aim of

Table 1   The characteristic
parameters of the trained DNNs
for two cases of Net_MSE and
Net_MMaSE

Data type DDN type MAE MMaAE MSE MMaSE MaAE

Train Net_MSE 0.00061 0.0219 2.2509E−06 5.8232E−04 0.9715
Net_MMaSE 0.0014 0.0167 9.6905E−06 3.0494E−04 0.2377

Validation Net_MSE 0.000796 0.0326 5.4502E−06 0.0022 0.9964
Net_MMaSE 0.0015 0.0205 1.0806E−05 5.7199E−04 0.3202

Test Net_MSE 0.000791 0.0322 4.7280E−06 0.0018 0.9953
Net_MMaSE 0.0015 0.0202 1.0638E−05 5.1169E−04 0.1619

Unseen Net_MSE 0.0124 0.7642 0.0055 0.6255 1.0
Net_MMaSE 0.0077 0.7475 0.0034 0.6056 0.9987

	 M. Edalatifar et al.

1 3

optimizer during the training process of Net_MMaSE was
reducing outlier errors.

Attention to the magnitude of MAE of both DNNs dem-
onstrates that the difference between these two networks
is just 0.000709 in the case of testing data. This is while
the difference between MMaAE and MaAE of these two
DNNs is 0.012 and 0.8334, respectively. Hence, the differ-
ence between MAE of the DNNs, i.e., 0.000709, is minimal
compared to the other differences, i.e., 0.12 and 0.8334.
Thus, it can be concluded that Net_MMaSE significantly
reduced the outlier errors with the cost of a slight growth
of MSE and MAE characteristics. As a result, Net_MMaSE
notably reduced the values of other characteristic parameters
of MaAE, MMaSE, MMaAE, and MaSE.

Here, MaAE indicates the value of the maximum error
among all of the estimated pixels. The values of MaAE for
the Net_MSE and Net_MMaSE are 0.9953 and 0.1619,
respectively, in terms of testing data. These outcomes show
that Net_MMaSE estimated all of the pixels of the output

images with a maximum absolute error of less than 0.1619
for the testing data. The MaAE error of Net_MSE reveals
that at least a pixel of the testing data has been estimated
with an absolute error of 0.9953, which is a considerable
outlier error. More details about the total number of such
outlier errors will be discussed later.

Following the results of Table 1, it can be concluded that
the Net_MSE estimated the images with a smaller overall
error, but it also made considerable mistakes in estimating
some of the pixels in terms of outlier errors. For example,
one of the images of the temperature distribution, which is
estimated by Net_MSE, is depicted in Fig. 5. The actual
temperature distribution is illustrated in Fig. 5a as a refer-
ence image, while Fig. 5b shows the estimated temperature
distribution of Net_MSE. The absolute error of some of the
outlier pixels is written in Fig. 5b to highlight the outlier
pixels and their absolute errors. It is vivid that the outlier
pixels are completely dark; however, the target image indi-
cates that these pixels shall be yellow. The absolute error

Fig. 5   A sample of estimated
image containing outlier pixels;
a actual image (target), and b
estimated image with Net_MSE 0.9953

0.9953

0.9951

0 1

(a) (b)

Fig. 6   Cumulative frequency
distribution of testing data for
some absolute errors

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

2 2.5 3 4 5 6

0.0950%

0.0280%

0.0091%
0.0025% 0.0012% 0.0008%

0.1000%

0.0580%

0.0350%

0.0160%
0.0084% 0.0049%

N
um

be
r o

f p
ix

el
s

Absolute error

Net_MMaSE

Net_MSE

Using deep learning to learn physics of conduction heat transfer﻿	

1 3

of these outlier pixels is about 0.995. As the magnitude of
each pixel can be in the normal range of 0–1, the absolute
error of 0.995 is a considerable outlier error with no physical
estimation value.

One of the important and interesting outcomes of using
Net_MMaSE instead of typical Net_MSE for the loss func-
tion is obtained for the estimation of the unseen data. As
mentioned, the unseen data are input images almost similar
to the training data but with smaller geometries. Therefore,
the unseen data represent new thermal problems and geom-
etry sizes, which DNN has never seen before. The results of
Table 1 reveal that Net_MMaSE outperformed Net_MSE
for all of the evaluation characteristics, including charac-
teristics of MSE and MAE. It should be noted that the loss
function of Net_MSE was optimized for reducing MSE, and
hence, the characteristics evaluation parameters of Net_MSE
were better than those of Net_MMaSE for training, valida-
tion, and testing data. However, in the case of unseen data,
Net_MMaSE outperformed Net_MSE even in terms of MSE
and MAE. Hence, a DNN trained by using MMaSE as the
loss function provides much better generalizable ability
compared to the typical loss function of MSE.

Population and distribution of errors

The overall outcomes of the two DNNs of Net_MSE and
Net_MMaSE are compared in Table 1 based on the evalua-
tion parameters. This section aims to provide a more detailed
study on the pixels of the testing data, estimated by the
trained DNNs. Figure 6 shows a cumulative frequency dis-
tribution of the testing data based on the absolute error and
the percentage of pixels. This chart shows the percentage of
the estimated pixels with an absolute error equal to or bigger
than a predefined value. In this chart, each bar corresponds

to a value of absolute error, including 0.02, 0.025, 0.03,
0.04, 0.05, and 0.06. The height of each bar is equal to the
percentage of the pixels with an absolute error equal to or
bigger than the absolute error of the bar. For example, 0.1%
of the total pixels of the test data are estimated by Net_MSE
with an absolute error equal to or higher than 0.02. Figure 6
is plotted for a few absolute errors for the sake of the com-
parison of the two DNNs.

Figure 6 shows that 0.058% of the total pixels of the test-
ing data estimated by Net_MSE are within an absolute error
of 0.025 or higher, while only 0.028% of the estimated pix-
els by Net_MMaSE are within the same error. Hence, the
number of the estimated pixels by Net_MMaSE is about
half of those by Net_MSE for this error range. This figure
depicts that the increase in absolute error boosts the differ-
ence between the outcomes of two DNNs; as the absolute
error increases, the heights of bars for Net_MMaSE drop
sharply. This rapid drop indicates that the number of pixels
with large errors, the number of outliers, reduced notably
in the Net_MMaSE. Thus, the Net_MMaSE has reduced
the number of outlier errors notably compared to that of
Net_MSE.

Figure 7 shows the frequency distribution curve for both
DNNs. This figure displays the number of estimated testing
pixels within a bond of absolute error. The absolute errors
are studied in the range of 0–0.048 and categorized into 48
categories, and each of the categories is with an absolute
error bond of 0.001. The bars are placed at the starting value
of each category, and the height of a bar indicates the loga-
rithmic number of each pixel within the error range of that
bar. For example, the first bar of Fig. 7 corresponds to the
absolute error range of 0.000–0.001 and is placed at zero.
Due to the large variation of the number of the pixels, they
have been plotted in the logarithmic scale for convenience.
For example, the numbers of pixels within an error range of
0.000–0.001 are 20,793,987 and 19322919 for Net_MSE
and Net_MMaSE, respectively. Similarly, the numbers of
pixels within an error range of 0.001–0.002 are 2,443,122
and 1,418,265 for Net_MSE and Net_MMaSE, respectively.

As shown in Fig. 7, Net_MSE estimated a larger num-
ber of pixels compared to that of Net_MMaSE for an abso-
lute error in the range of 0–0.002 and 0.024–0.048. How-
ever, Net_MMaSE estimated more pixels in the range of
0.024–0.048 compared to Net_MSE. This behavior indicates
that Net_MSE tried to reduce the average error of pixels
as much as possible, and hence, the number of pixels esti-
mated by Net_MSE and with an error close to zero is the
highest. However, this behavior also failed Net_MSE to
estimate a large number of pixels with an adequately low
error, and hence, the number of pixels with a significant
error of 0.024 or higher is more than that of Net_MMaSE.
On the other hand, Net_MMaSE has reduced the number of
pixels with very low errors in the range of absolute error of

107

106

105

104

103

102

0.00 0.01 0.02

Categories of absolute error

0.03 0.04 0.05

N
um

be
r

of
 p

ix
el

s/
Lo

ga
rit

hm
ic

Net_MMaSE
Net_MSE

Fig. 7   Frequency distribution curve for testing data from 0 to 0.048.
Each bar shows the number of pixels estimated with absolute error in
a range of 0.001

	 M. Edalatifar et al.

1 3

0.000–0.002, but it has not only succeeded to increase the
number of pixels with an adequate error of 0.02–0.024 but
also reduced the number of pixels with a significant error of
0.024 and higher compared to that of Net_MSE.

Figure 7 is plotted for the maximum absolute error of
0.048. The total values of MaAE for both of Net_MSE and
Net_MMaSE are reported in Table 1. The values of MaAE
are 0.9953 and 0.1619 for Net_MSE and Net_MMaSE,
respectively. Hence, in the case of plotting the outcomes
for the total range of the absolute error, the height of the
bars for the case of Net_MMaSE drops to zero for absolute
errors larger than 0.1619, while the bars will be continued
for Net_MSE until the absolute error of 0.9953. In conclu-
sion, the Net_MMaSE significantly reduced the outlier
errors by reducing the number of pixels with an absolute
error close to zero.

Speed of training

The training speed of a DNN is one of the important evalu-
ation characteristics of a loss function. A good loss function
leads to a DNN with a lower estimation error for a fixed
number of epochs. Figures 8 and 9 depict the learning his-
tory of Net_MSE and Net_MMaSE DNNs for training data.
Figures 8 and 9 are plotted for MSE and MMaSE, respec-
tively. Figures 8a and 9a show the first few hundreds of the
epochs for convinces, while the outcomes for the rest of
epochs are plotted in Figs. 8b and 9b. Figures 8a and 9a
demonstrate that Net_MSE is much faster than Net_MMaSE
at pioneer epochs when the learning process commences,
and it reduced both MSE and MMaSE parameters notably.

Moreover, the fluctuations of Net_MMaSE are much
more significant than that of Net_MSE, which is because
of the nature of the MMaSE loss function. MMaSE solely
monitors the maximum square error of an image, and hence,
there are only a few maximum errors in a collection of
images, which are used for computing MMaSE. Accord-
ingly, changing each of these few pixels could change the
overall MMaSE considerably. The behavior of MMaSE is
absolutely opposite to the nature of MSE, which incorpo-
rates all of the pixels of a collocation of images in the com-
putation of the loss function, and consequently, changing
only a few outlier pixels does not affect MSE notably.

The MSE is small in most of the training epochs for the
Net_MSE during the training process, and similarly, the
MMaSE is smaller than MSE for the Net_MMaSE for most
of the epochs. These observations are in agreement with the
selected loss functions of these DNNs.

Study of estimated images

Here, some examples of the estimated images using the
Net_MSE and Net_MMaSE are illustrated and compared.
Figure 10 depicts four images from the testing data. The
images in the first and second row, respectively, show the
images with the largest values of the MAE and MaAE,
which are estimated by Net_MSE. The images of the third
and fourth row, respectively, correspond to the largest MAE
and MaAE estimated by Net_MMaSE. The columns from
left to right show the target image (the actual CFD solution),
the estimated image by Net_MSE, the estimated image by
Net_MMaSE, the absolute error of the estimated image by
Net_MSE, and the absolute error of the estimated image by
Net_MMaSE, respectively. The color map of each image is
added below the image for convenience. The range of the
color maps for the fourth and fifth columns is identical for
the sake of better comparison.

Moreover, the corresponding values of MAE and
MMaAE are reported above each image. The absolute error
for the fourth and fifth columns is computed as the absolute

0.10

(a)

(b)

0.05

0.00

0 25 50 75 100 125 150 175 200

0.00025

M
se

0.00020

0.00015

0.00010

0.00005

0.00000
250 500 750 1000 1250

Epoch number
1500 1750 2000

M
S

E
Net_MMaSE

Net_MSE

Net_MMaSE

Net_MSE

Fig. 8   MSE of training data for each epoch of the training process. a
First 200 epochs. b from epoch 201–2000

0.25(a)

(b)

0.20

0.15

0.10

0.05

0.00

0 50 100 150 200 250 300 350 400

0.008

0.006

0.004

0.002

0.000
400 600 800 1000 1200 1400 1600 1800 2000

Epoch number

Net_MMaSE

Net_MSE

M
M

aS
E

M
M

aS
E

Net_MMaSE

Net_MSE

Fig. 9   MMaSE of training data for each epoch of the training process.
a First 400 epochs, b from epoch 401–2000

Using deep learning to learn physics of conduction heat transfer﻿	

1 3

difference between the estimated image and the target image.
Hence, the absolute error in the fourth column is the abso-
lute difference between the first column and second column,
and similarly, the absolute error in the fifth column is the
absolute difference between the first column and the third
column.

Figure 10 shows that the images in the fifth column are
darker than the fourth column for all rows except the third
row. A darker color denotes a lower error, and hence, as
seen, the absolute error of the estimated images by Net_
MMaSE is better than the images estimated by Net_MSE,
except the third row. The yellow pixels in the fourth and fifth

Target

0 1 0 1

MaAE = 0.606
MAE = 0.0055

MaAE = 0.9953
MAE = 0.0021

MaAE = 0.0750
MAE = 0.0016

MaAE = 0.0563
MAE = 0.0014

Net_MMaSENet_MSE
Net_MSE

Absolute error

Net_MMaSE
Absolute error

0 1 0 0.14

MaAE = 0.0334
MAE = 0.0160

0 1 0 0.1 0 0.1

0 0.14

0 1

0 1

0 1MaAE = 0.0173
MAE = 0.0044

0 1 0 1 0 1

0 1MaAE = 0.2684
MAE = 0.001057

0 0.08

0 0.040 0.04

0 0.08

MaAE = 0.1619
MAE = 0.001058

0 1

Fig. 10   Some samples of estimated test images by Net_MSE and
Net_MMaSE. Row1: The image with the worst MAE among the esti-
mated images by Net_MSE. Row2: The image with the worst MaAE
among the estimated images by Net_MSE. Row3: The image with

the worst MAE among the estimated images by Net_MMaSE. Row4:
The image with the worst MaAE among estimated images by Net_
MMaSE

	 M. Edalatifar et al.

1 3

columns show the significant absolute errors compared to
the other pixels. The number of yellow pixels in the fourth
column is much more than those in the fifth column, except
for the third row. Indeed, the yellow pixels in the fourth
and fifth columns denote the outlier pixels. Thus, from the
results of Fig. 10, it can be concluded that both DNNs have
been successful in estimating the overall temperature distri-
bution, but the Net_MMaSE could provide much uniform
and low error distribution by reducing the magnitude of the
outlier errors.

Attention to the images of the third row reveals that the
target image is almost a mono-color image. Checking the
input channel for the boundary conditions shows that there
are only two input temperatures at the boundaries, which
are very close to the values of 0.9937 and 0.9918. Hence,
the target image, including the boundary conditions and
the temperature distribution, appears as a semi-mono-color
image with no apparent distinction between the boundaries
and temperature distribution inside the image. The reason
for such inadequate estimation of MAE and MaAE of the
results in the third row is followed by investigating ten test-
ing images estimated by Net_MMaSE in Fig. 11.

Figure 11 shows the estimated testing images by Net_
MMaSE with the most MAE errors. Below each image, the
MAE-value-estimated Net_MMaSE is written as MAE1,
and similarly, the MAE corresponding to Net_MSE is writ-
ten as MAE2. As seen, in all of the images, MAE1 is larger
than MAE2. It is evident that the temperature variations at
the boundaries of these images are minimal. Thus, it can
be concluded that an image with low-temperature variation
at the boundaries weakens the estimation capability of a
Net_MMaSE.

Conclusions

In the present study, the deep neural networks were utilized
to learn the physics of conduction heat transfer in 2D geom-
etries. A big dataset of various geometries and temperature
boundary conditions were constructed. The actual tempera-
ture distribution in each geometry, along with the boundary
conditions, was obtained by using the conventional finite
volume method in a 64 × 64 structured grid. Then, the geom-
etry and the corresponding temperature boundary condi-
tions, along with actual computed temperature distribution,
were used as the collection of big data to teach the DNN. An
autoencoder DNN with a block residual structure was tai-
lored for the present study to learn the physic of conduction
heat transfer. Two different loss functions were introduced
to be used during the learning process. One of the loss func-
tions, MSE, was based on the typical average square error
estimation conventional in the context of DNNs for natu-
ral image generation. The other loss function MMaSE was
introduced based on the maximum square error related to the
physical needs of the DNNs. Finally, using the structure of
the DNN and the introduced loss functions, the estimation
capability of DNNs for learning and estimation of the tem-
perature distributions in 2D geometries was addressed. The
primary outcomes of the present study can be summarized
as follows:

1.	 The DNN, which was trained by MSE as the loss func-
tion (Net_MSE), estimated the images with a lower aver-
age error compared to a DNN, which was trained by
MMaSE as the loss function (Net_MMaSE). However,
a portion of the estimated by Net_MSE was pixels with
high absolute errors, outlier errors. The Net_MMaSE
notably reduced the number and magnitude of the outlier

MAE1 = 0.0160
MAE2 = 0.0044

MAE1 = 0.0103
MAE2 = 0.0019

MAE1 = 0.0100
MAE2 = 0.0015

MAE1 = 0.0091
MAE2 = 0.0012

MAE1 = 0.0083
MAE2 = 0.0015

MAE1 = 0.0085
MAE2 = 0.0016

MAE1 = 0.0087
MAE2 = 0.0013

MAE1 = 0.0089
MAE2 = 0.0011

MAE1 = 0.0089
MAE2 = 0.0011

MAE1 = 0.0097
MAE2 = 0.0012

Fig. 11   Some target images of the test data with the worst MAE when they were estimated by Net_MMaSE. MAE1 and MAE2 denote the MAE
of an image when estimated by Net_MMaSE and Net_MAE, respectively

Using deep learning to learn physics of conduction heat transfer﻿	

1 3

pixels by the cost of a slight increase in the average error
of the pixels.

2.	 The estimated images by Net_MMaSE contain fewer and
smaller outlier errors compared to Net_MSE, and hence,
they are much similar to the target imaged compared to
that of Net_MSE.

3.	 In the early stages of the training, the convergence rate
of Net_MMaSE was much lower than that of Net_MSE,
but the convergence rate of Net_MMaSE is raised by
the continuation of the training process. Eventually, the
ultimate value of MMaSE for Net_MMaSE was lower
than that of Net_MSE. In the entire training process, the
reduction rate of MSE for Net_MSE was better than that
of Net_MMaSE.

4.	 Both of the DNNs were successful in learning the phys-
ics of heat transfer and estimating the overall tempera-
ture distribution. However, the results, estimated by the
customized loss function of MMaSE, were much better
than that of typical MSE. Moreover, the generalization
capability of Net_MMaSE was much better than Net_
MSE.

5.	 The results of the present research demonstrate the gen-
eral capability of DNNs in learning the physics of heat
transfer. The trained DNNs were capable of generating
images with accurate temperature distribution without
knowing the underlying governing partial differential
equation. Hence, DNNs are promising for learning more
advanced physics, such as convective heat transfer and
hydrodynamic of fluids.

The outcomes demonstrated that a tailored loss function,
MMaSE, could lead to a DNN with much better estimations.
Hence, introducing new hybrid loss functions and improving
the internal structure of DNNs for a better estimation can be
subject to future studies.

References

	 1.	 Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Accelera-
tion of discharge process of clean energy storage unit with inser-
tion of porous foam considering nanoparticle enhanced paraffin.
J Clean Prod. 2020;261:121206.

	 2.	 Sheikholeslami M, Arabkoohsar A, Babazadeh H. Modeling of
nanomaterial treatment through a porous space including mag-
netic forces. J Therm Anal Calorim. 2019;140:1–10.

	 3.	 Shafee A, Sheikholeslami M, Jafaryar M, Selimefendigil F, Bhatti
M, Babazadeh H. Numerical modeling of turbulent behavior of
nanomaterial exergy loss and flow through a circular channel. J
Therm Anal Calorim 2020; pp. 1–9.

	 4.	 Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a
helical-twisting device on the thermal–hydraulic performance
of a nanofluid flow through a tube. J Therm Anal Calorim.
2020;139(5):3317–29.

	 5.	 Shafee A, Bhatti M, Muhammad T, Kumar R, Nam ND, Babaza-
deh H. Simulation of convective MHD flow with inclusion of
hybrid powders. Tc. 2020;10:2.

	 6.	 Waqas H, Khan SU, Bhatti M, Imran M. Significance of biocon-
vection in chemical reactive flow of magnetized Carreau-Yasuda
nanofluid with thermal radiation and second-order slip. J Therm
Anal Calorim. 2020;140:1–14.

	 7.	 Håstad J, Goldmann M. On the power of small-depth threshold
circuits. Comput Complex. 1991;1(2):113–29.

	 8.	 Farimani AB, Gomes J, Pande VS. Deep learning the physics of
transport phenomena. 2017. arXiv preprint arXiv​:17090​2432.

	 9.	 Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for
deep belief nets. Neural Comput. 2006;18(7):1527–54.

	10.	 Bengio Y, Lamblin P, Popovici D, Larochelle H, editors. Greedy
layer-wise training of deep networks. In: Proc. advances in neural
information processing systems. vol. 19. 2006. p. 153–60.

	11.	 Erhan D, Manzagol P-A, Bengio Y, Bengio S, Vincent P, edi-
tors. The difficulty of training deep architectures and the effect of
unsupervised pre-training. In: Artificial intelligence and statis-
tics. Clearwater Beach, Florida, USA, 2009. p. 153–60.

	12.	 Bengio Y, Delalleau O. Justifying and generalizing contrastive
divergence. Neural Comput. 2009;21(6):1601–21.

	13.	 Hinton GE, Salakhutdinov RR, editors. Using deep belief nets to
learn covariance kernels for Gaussian processes. In: Advances in
neural information processing systems. vol. 20. 2008. p. 1249–56.

	14.	 Hinton GE, Salakhutdinov RR. Reducing the dimensionality of
data with neural networks. Science. 2006;313(5786):504–7.

	15.	 Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al.
Imagenet large scale visual recognition challenge. Int J Comput
Vis. 2015;115(3):211–52.

	16.	 Graves A, Mohamed A-R, Hinton G, editors. Speech recognition
with deep recurrent neural networks. In: 2013 IEEE interna-
tional conference on acoustics, speech and signal processing.
IEEE; 2013. p. 6645–9.

	17.	 Sun Y, Liang D, Wang X, Tang X. Deepid3: Face recognition
with very deep neural networks. 2015. arXiv preprint arXiv​
:15020​0873.

	18.	 Zhining L, Xiaozhuo G, Quan Z, Taizhong X, editors. Combin-
ing statistics-based and cnn-based information for sentence clas-
sification. In: 2016 IEEE 28th international conference on tools
with artificial intelligence (ICTAI). IEEE; 2016. p. 1012–8.

	19.	 Wang T-C, Zhu J-Y, Hiroaki E, Chandraker M, Efros AA, Rama-
moorthi R, editors. A 4d light-field dataset and cnn architectures
for material recognition. In: European conference on computer
vision. Springer; 2016. p. 121–38.

	20.	 Wu L, Shen C, Hengel Avd. Personnet: Person re-identification
with deep convolutional neural networks. 2016. arXiv preprint
arXiv​:16010​7255.

	21.	 Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X et al., editors.
Stackgan: text to photo-realistic image synthesis with stacked
generative adversarial networks. In: Proceedings of the IEEE
international conference on computer vision. 2017. p. 5907–15.

	22.	 Pascual S, Bonafonte A, Serrà J. SEGAN: Speech enhancement
generative adversarial network. 2017. arXiv preprint arXiv​
:17030​9452.

	23.	 Choi Y, Choi M, Kim M, Ha J-W, Kim S, Choo J, editors. Star-
gan: unified generative adversarial networks for multi-domain
image-to-image translation. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2018. p.
8789–97.

	24.	 Matsugu M, Mori K, Mitari Y, Kaneda Y. Subject independ-
ent facial expression recognition with robust face detec-
tion using a convolutional neural network. Neural Netw.
2003;16(5–6):555–9.

http://arxiv.org/abs/170902432
http://arxiv.org/abs/150200873
http://arxiv.org/abs/150200873
http://arxiv.org/abs/160107255
http://arxiv.org/abs/170309452
http://arxiv.org/abs/170309452

	 M. Edalatifar et al.

1 3

	25.	 Yu N, Jiao P, Zheng Y, editors. Handwritten digits recognition
base on improved LeNet5. In: The 27th Chinese control and deci-
sion conference (2015 CCDC). IEEE; 2015.

	26.	 Ioffe S, Szegedy C. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. 2015. arXiv
preprint arXiv​:15020​3167.

	27.	 Agarap AF. Deep learning using rectified linear units (relu). 2018.
arXiv preprint arXiv​:18030​8375.

	28.	 He K, Zhang X, Ren S, Sun J, editors. Delving deep into rectifiers:
surpassing human-level performance on imagenet classification.
In: Proceedings of the IEEE international conference on computer
vision. 2015. p. 1026–34.

	29.	 Han K, Mun YY, Gweon G, Lee J-G, editors. Understanding the
difficulty factors for learning materials: a qualitative study. In:
International conference on artificial intelligence in education.
Springer; 2013. p. 615–8.

	30.	 Krizhevsky A, Sutskever I, Hinton GE, editors. Imagenet clas-
sification with deep convolutional neural networks. In: Advances
in neural information processing systems. 2012. p. 1097–105.

	31.	 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D et al.,
editors. Going deeper with convolutions. In: Proceedings of the
IEEE conference on computer vision and pattern recognition.
2015. p. 1–9.

	32.	 Goodfellow I. NIPS 2016 tutorial: Generative adversarial net-
works. 2016. arXiv preprint arXiv​:17010​0160.

	33.	 He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016. p. 770–8.

	34.	 Sharma R, Farimani AB, Gomes J, Eastman P, Pande V. Weakly-
Supervised Deep Learning of Heat Transport via Physics
Informed Loss. 2018. arXiv preprint arXiv​:18071​1374.

	35.	 Ronneberger O, Fischer P, Brox T, editors. U-net: Convolutional
networks for biomedical image segmentation. In: International
conference on medical image computing and computer-assisted
intervention. Springer; 2015. p. 234–41.

	36.	 Bergman TL, Incropera FP, Lavine AS, DeWitt DP. Introduction
to heat transfer. Hoboken: Wiley; 2011.

	37.	 Mirza M, Osindero S. Conditional generative adversarial net-
works. 2014;9:24. arXiv​:17090​2023.

	38.	 Raissi M, Yazdani A, Karniadakis GE. Hidden fluid mechanics:
learning velocity and pressure fields from flow visualizations. Sci-
ence. 2020;367(6481):1026–30.

	39.	 Bhatti MM, Shahid A, Abbas T, Alamri SZ, Ellahi R. Study of
activation energy on the movement of gyrotactic microorgan-
ism in a magnetized nanofluids past a porous plate. Processes.
2020;8(3):328.

	40.	 Jaluria Y. Computational heat transfer. New York: Routledge;
2017.

	41.	 Incropera FP, Lavine AS, Bergman TL, DeWitt DP. Principles of
heat and mass transfer. Amsterdam: Wiley; 2013.

	42.	 Baldi P, editor. Autoencoders, unsupervised learning, and deep
architectures. In: Proceedings of ICML workshop on unsupervised
and transfer learning. 2012.

	43.	 Masci J, Meier U, Cireşan D, Schmidhuber J, editors. Stacked
convolutional auto-encoders for hierarchical feature extraction. In:
International Conference on Artificial Neural Networks. Springer;
2011. p. 52–9.

	44.	 Monti RP, Tootoonian S, Cao R, editors. Avoiding degradation in
deep feed-forward networks by phasing out skip-connections. In:
International conference on artificial neural networks. Springer;
2018. p. 447–56.

	45.	 Oliphant TE. A guide to NumPy. New York: Trelgol Publishing
USA; 2006.

	46.	 Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci
Eng. 2007;9(3):90.

	47.	 Van der Walt S, Schönberger J, Nunez-Iglesias J, Boulogne
F, Warner J, Yager N, et al. scikit-image: image processing in
Python. PeerJ. 2014;2:e453.

	48.	 Chollet F, others. Keras. 2015. https​://keras​.io.
	49.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,

et al. TensorFlow: Large-scale machine learning on heterogeneous
systems. 2015.

	50.	 Kingma DP, Ba J. Adam: A method for stochastic optimization.
2014. arXiv preprint arXiv​:14126​980.

	51.	 Glorot X, Bengio Y. Understanding the difficulty of training deep
feedforward neural networks. In: Proceedings of the thirteenth
international conference on artificial intelligence and statistics.
2010. p. 249–56.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/150203167
http://arxiv.org/abs/180308375
http://arxiv.org/abs/170100160
http://arxiv.org/abs/180711374
http://arxiv.org/abs/170902023
https://keras.io
http://arxiv.org/abs/14126980

	Using deep learning to learn physics of conduction heat transfer
	Abstract
	Introduction
	Mathematical model and systematic analysis
	Dataset
	Deep Neural Network (DNN) structure

	Loss function and evaluation parameters
	Mean Square Error (MSE)
	Mean of maximum square errors (MMaSE)
	Maximum Square Errors (MaSE)
	Absolute evaluation parameters
	Numerical method and verification

	Results and discussion
	Comparison of MSE and MMaSE
	Population and distribution of errors
	Speed of training
	Study of estimated images

	Conclusions
	References

