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Abstract
In the present study, an advanced type of artificial intelligence, a deep neural network, is employed to learn the physic of 
conduction heat transfer in 2D geometries. A dataset containing 44,160 samples is produced by using the conventional finite 
volume method in a uniform grid of 64 × 64. The dataset includes four geometries of the square, triangular, regular hexagonal, 
and regular octagonal with random sizes and random Dirichlet boundary conditions. Then, the dataset of the solved problems 
was introduced to a convolutional Deep Neural Network (DNN) to learn the physics of 2D heat transfer without knowing the 
partial differential equation underlying the conduction heat transfer. Two loss functions based on the Mean Square Errors 
(MSE) and Mean of Maximum Square Errors (MMaSE) are introduced. The MMaSE is a new loss function, tailored for the 
physic of heat transfer. The 70%, 15%, and 15% of images are used for training DNN, testing DNN, and validation of the 
DNN during the training process, respectively. In the validation stage, the 2D domain with random boundary conditions, in 
which DNN has never seen them before, is introduced to DNN. Then, DNN is asked to estimate the temperature distribution. 
The results show that the DNNs are capable of learning physical problems without knowing the underlying fundamental 
governing equation. The error analysis for various training methods is reported and discussed. The outcomes reveal that 
DNNs are capable of learning physics, but using MMaSE as a tailored loss function could improve the training quality. A 
DNN trained by MMaSE provides a better temperature distribution compared to a DNN trained by MSE. As the 2D heat 
equation is a Laplace equation, which is practical in multiple physics, the results of the present study indicate a new direc-
tion for future computational methods and advanced modeling of physical phenomena, using a big dataset of observations.

Keywords  Conduction heat transfer · Deep convolutional neural networks · Deep learning · Laplace equation · Large 
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List of symbols
T	� Temperature (K)
Ti	� Isothermal boundary conditions at the bounda-

ries of the domain (K)
x	� x-Cartesian coordinate (m)
y	� y-Cartesian coordinate (m)
T	� Temperature field, actual temperature distribu-

tion image (target images)
P	� Predicted temperature distribution image (K)
N	� Number of images in a collection of images
R	� Number of rows in an image
C	� Number of columns in an image

Greek symbols
β	� Parameters of Adam optimizer
β1	� First parameter of Adam optimizer
β2	� Second parameter of Adam optimizer
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Subscripts
i	� The segment of the boundary condition
n	� Sigma index for summation on a collection of 

images
r	� Sigma index for summation on all rows
c	� Sigma index for summation on all columns

Abbreviations
SE	� Square Error
MSE	� Mean Square Errors
MMaSE	� Mean of Maximum Square Errors
MaSE	� Maximum of Square Errors
AE	� Absolute Error
MAE	� Mean Absolute Errors
MMaAE	� Mean of Maximum Absolute Errors
MaAE	� Maximum of Absolute Errors

Introduction

The two-dimensional steady-state heat conduction is a sim-
ple typical problem in the context of heat transfer designs. 
The Laplace equation introduces the conduction heat transfer 
in the form of ∇2T = 0 where T is the temperature distribu-
tion. The Laplace equation not only represents the conduc-
tion heat transfer phenome but also introduces much more 
physical phenomena such as pressure distribution in a fluid 
or mass diffusion.

Although the Laplace equation is a simple partial dif-
ferential equation, there is not a general analytical solution 
for this equation. The availability of any analytical solution 
depends on the geometry of the heat transfer domain and 
the boundary conditions. Despite the lack of analytical solu-
tions, there are various numerical approaches, which can 
easily solve the heat equation. Well-known methods such 
as the finite difference method, finite volume method, finite 
element method, or the meshless methods can deal with this 
problem robustly. However, numerical methods generally 
discretize the domain of solution into subdomains (grid or 
mesh), and then they construct an algebraic equation for 
each subdomain. Finally, the set of algebraic equations has 
to be solved either analytically or iteratively. Solving the set 
of algebraic equations is a computationally costly procedure, 
mainly when the number of grid points (algebraic equations) 
is high.

Moreover, for each new problem, the set of algebraic 
equations has to be solved from an initial guess, and the 
knowledge of the calculations cannot be passed to a new 
domain and problem. It means that for each different prob-
lem, the algebraic equations shall be contracted and solved 
individually. The iterative numerical approaches are typical 
for solving heat equations. Such methods have been utilized 

in many engineering applications. Using interactive numeri-
cal methods, various aspects of heat transfer such as heat 
transfer in phase change materials for domestic applications 
[1], heat transfer of nanomaterials in porous spaces [2], heat 
transfer in channels [3] and helical pipes [4], heat transfer in 
nanofluids [5], and heat transfer in biofluids [6] have been 
investigated in recent years.

In recent years, Deep Neural Networks (DNNs) have 
shown enormous ability to extract features and generate 
images, using many hidden layers. Until 2006, the available 
neural networks suffer a lack of many hidden layers due to 
inadequate techniques to train the many hidden layers. How-
ever, Hastad and Goldmann [7] demonstrated the importance 
of an increased number of layers in a neural network.

In contrast to conventional neural networks, the deep neu-
ral networks are capable of producing realistic solutions and 
achieve state-of-the-art computational performance by using 
a data-driven approach [8]. Hinton et al. [9] represented the 
restricted Boltzmann machine (RBM) method, which was 
an unsupervised layer-by-layer learning algorithm. After a 
short time, Bengio et al. [10] introduced a process to train 
multilayer deep networks. They used RBM as a pre-training 
method before starting supervised training process. The 
RBM acts as a regularizer and initial parameters of the net-
work [11]. After that, deep networks were used to classifica-
tion [12], regression [13], dimensional reduction [14], and 
many other issues.

The classification and generation are two main types of 
DNN applications. Image recognition and classification [15], 
speech recognition [16], face recognition [17], sentence 
classification [18], material recognition [19], and person 
re-identification [20] are samples of the DNN applications 
for classification and recognition. In the field of generation, 
the text-to-image synthesis [21], speech enhancement [22], 
and image-to-image transactions [23] are some of the appli-
cations. DNNs can be employed to physical phenomena 
by using observed or simulated data to learn the physical 
behavior where the actual physical model is complicated or 
unknown [8].

There are various types of DNNs, which benefit from a 
large number of hidden layers in their structures. The Con-
volutional Neural Networks (CNNs) are a well-known and 
powerful type of DNNs, inspired by biological models. The 
CNNs have been used for pattern recognition tasks such as 
handwritten numeral recognition and face recognition [24]. 
Moreover, CNNs are capable of automatic extractions of the 
salient features with a certain degree of shape distortions and 
shifts for the input characters [25].

A CNN consisted of an input layer, several intermediate 
layers (hidden layers), and an output layer. In a CNN, the 
pixels of a picture are delivered to an input layer and passes 
to the intermediate layers like a flow until they reach the 
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output layer. The structure of the intermediate layers can be 
designed based on the application of CNNs.

Since the introduction of CNNs, many approaches have 
been developed to improve the capability and accuracy of 
these neural network, or accelerating training process, i.e., 
adding batch normalization between layers [26], using Recti-
fied Linear Unit (ReLU) [27] as the activation function, and 
initializing the masses of a network with a random normal 
distribution [28, 29]. Moreover, many DNNs with convo-
lutional layers and unique structures such as AlexNet [30], 
GoogleNet [31], Generative Adversarial Networks (GAN) 
[32], and ResNet [33] were suggested to increase the accu-
racy of CNNs.

Very recently, the use of deep networks has been 
considered for the estimation of heat and fluid trans-
fer issues. Sharma et al. [34] used a fully convolutional 
encoder–decoder network adapted from the U-Net archi-
tecture [35] to estimate temperature distribution over a flat 
square plate with random temperatures on the bound of the 
plate. Based on the Finite Difference Method (FDM) [36], 
they convolved a special filter with the output of the network 
to determine error value for each point on the plate. Farim-
ani et al. [8] suggested an extension of GAN, Conditional 
Generative Adversarial Networks (cGAN) [37], to estimate 
heat transfer. GAN has been successfully used for texture 
mapping, style transferring, text-to-image translation, and 
image-to-image translation in previous publications [32]. 
Authors trained cGAN network with a dataset containing 
6230 training samples, generated by numerical FDM, for 
various temperature boundary conditions, two-dimensional 
geometries (annulus, disk, triangle, and rectangle), differ-
ent domain sizes, and domain position within a 64 × 64 grid 
domains.

The dataset produced by Sharma et al. [34] contains only 
a square heat boundary with random heats on each side, 
and hence, the dataset was limited in terms of diversity of 
geometry and boundary conditions. Training a deep model 
without the need for a big actual dataset was the main advan-
tage of their work. With this technique, they could produce 
data during the training process and utilize the advantage 
of a big dataset. However, by using this technique, there is 
no unique dataset available for future examinations. Mean-
while, Farimani et al. [8] studied the conduction heat transfer 
by using a small dataset, consisted of only three bounded 
shapes.

Regardless of the dataset, almost all previous works used 
Mean Square Error (MSE) as a loss function to train their 
models. However, there are many other error estimators for 
training a deep neural network. An adequate selection of 
an error estimator can notably affect the resolution of an 
expert network for a specific task. Investigation of the effect 
of different error estimators is one of the objectives of the 
present study.

As mentioned, a partial differential equation is required 
to introduce the physic of heat transfer, and then a numeri-
cal approach is needed to solve the partial differential equa-
tion. However, there are many applications in which the 
exact governing equation may be unknown. Moreover, the 
numerical approach shall be repeated from an initial guess 
and for each different problem. It means that the solution of 
a heat transfer problem produces much of knowledge about 
the behavior of heat equation, which could not be passed to 
another problem with different geometry and boundary con-
ditions. In a very recent study, Raissi et al. [38] introduced 
a framework to teach DNNs the physics of Navier–Stokes 
equations from an image database computational flow 
field over a cylinder in a channel. The results demonstrate 
the capability of DNNs in learning the hidden physics of 
Navier–Stokes equations from the images. However, as the 
DNNs just learn the physics of Navier–Stokes equations, 
obtaining a flow field requires computational steps as usual.

The present work aims to teach a DNN to learn the behav-
ior of the heat transfer through a big dataset of heat trans-
fer images with no requirement of a computational step, 
as was required in the study of Raissi et al. [38]. In this 
approach, a DNN just looks at many solved heat problems 
and then learns the behavior of the heat transfer. Indeed, the 
knowledge of many previously solved heat problems will be 
transferred into a DNN during a training process, without 
exposing the actual differential equation of the heat transfer 
to the DNN. Then, the expert (the trained) DNN will be 
utilized to solve new heat transfer problems directly with no 
iteration or construction of algebraic equations. Hence, the 
advantage of the present method is that it omits the com-
putational iterative step of solving the governing equations 
for the temperature field. The input of the expert DNN will 
be a geometry with boundary conditions, and the output 
will be the image of temperature distribution. The present 
study is an early attempt to teach DNN the physics of a 
transport phenomenon using a big dataset of heat transfer 
images without revealing the underlying differential equa-
tion. Another contribution of the present study is producing 
a public benchmark dataset for general training of future 
deep neural network models.

Mathematical model and systematic analysis

The present study aims to teach a DNN to learn the physics 
of 2D conduction heat transfer. Here, an overall view of the 
present approach will be summarized in four steps. Then, 
each step of the work will be discussed in detail.

First, a large database of images, representing the temper-
ature distribution in 2D geometries, is required. This data-
base shall contain various geometries with different geom-
etry sizes and different temperature boundary conditions. 
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The diversity of this database helps DNN to see various 
situations and solutions of temperature distribution in a 2D 
domain. Therefore, each initial image shall contain a geom-
etry (the domain of solution) and a defined boundary con-
dition to maintain the diversity of the dataset. To aim this 
purpose, a code for the generation of various geometries 
in terms of shapes and sizes, as well as random boundary 
conditions, is developed. Then, the produced 2D heat trans-
fer problem can be solved by using conventional numerical 
methods. The numerical solution of the heat transfer prob-
lem for each image produces the temperature distribution 
in that image. Later, these images can be fed to the DNN as 
training, testing, and validation stages.

In the second step, a structure of DNN shall be defined. 
Indeed, the DNN is an extensive function with many adjust-
able parameters and interconnected functions. The structure 
of a DNN can be designed for a specific task.

Then, the third step is introducing an error estima-
tion indicator, and the fourth step is using a mathematical 
method, such as the gradient descent, that could be employed 
to adjust the variables of the DNN. The variables of DNN 
shall be adjusted to minimize an error function. Hence, 
introducing an error estimation indicator is an essential step 
in the present study. The training of DNN can be started by 
using the dataset of images, the defined structure for the 
DNN, and the error estimator. The train of DNN is an itera-
tive procedure that tends to reduce the estimation error of 
the network gradually.

A well-trained DNN is expected with the ability to pro-
vide an accurate temperature distribution for any arbitrary 
given heat conduction problem. The final step of the cur-
rent work is exploring the capabilities and accuracy of the 
DNN for the heat transfer problems that DNN has never seen 
before. Thus, bearing these above steps in mind, the first step 
is producing a large dataset of 2D images of the temperature 
distribution, which is the subject of the next subsection.

Dataset

Each sample in this dataset contains a two-channel image 
as the input and a one-channel image as the output. Both 
input and output images have 64 × 64 pixels. The first input 
channel is used to introduce the boundaries of the geometry, 
which can adopt the values of 0.5, 1, and 0. The value of 0.5 
indicates a pixel at the boundary, the value of 1 denotes a 
pixel inside of the geometry (the domain of solution), and 
the value of 0 shows a pixel outside of the geometry.

A sample of the first input channel is depicted in 
Fig. 1a. As seen, inside each figure is yellow, denoting 
the value of 1; the outside is dark, indicating 0. There is a 
narrow green border, which adopted the value of 0.5, and 
it denotes the boundaries. The second input channel con-
tains the information on the boundary conditions, which 

are the boundary temperatures. This channel is depicted 
in Fig. 1b. Inside and outside of the boundary domain is 
zero, and the numerical value on the boundary denotes 
the temperature of the boundary, which is normalized in 
the scale of zero to one. It is assumed that each boundary 
can consist of two to five random segments with random 
temperature values in the range of zero to one. For exam-
ple, the first row in Fig. 1 shows a hexagonal, in which 
the inside, outside, and the boundary of the geometry are 
clearly defined. Figure 1b shows that there are four tem-
perature segments (note that the temperature segments can 
be randomly between two and five random segments), and 
the value of each segment is defined with color.

Figure 3c illustrates the output image, containing the 
boundary and the distribution of the temperature inside 
the geometry (the domain of solution). The outside of the 
boundary in the output image is filled with zeros as it is 
outside of the domain of the solution. For example, the 
first row of Fig. 1c shows the corresponding temperature 
distribution for the given boundary conditions. As seen, 
the temperature of the domain, in the vicinity of each 
boundary, is close to the boundary’s temperature and then 

Fig. 1   Some samples of each image channel: a input channel for 
outside, boundary, and inside of domain with value of 0, 0.5, and 1, 
respectively; b input channel for temperature boundary condition; c 
the output with the temperature distribution inside the geometry and 
null (zero) outside the geometry
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changes with the increase in distance from that boundary. 
Various approaches, such as Successive Local Lineariza-
tion Method (SLLM) [39], can be employed to solve the 
governing equations numerically. Here, the Finite Volume 
Method (FVM) is employed to solve the temperature dis-
tribution in each image with the residual accuracy of 10−6. 
The details of the computation of temperature distribution 
will be discussed later.

The variables of the present study are the investigated 
geometries and location of isothermal boundary condi-
tion segments. The variation of geometry and location 
of imposed boundary conditions help DNN to learn the 
physics of the heat transfer in various domains and under 
various configurations.

The geometries of the dataset include square, triangu-
lar, regular hexagonal, and regular octagonal shapes, and 
the width of all shapes is between 35 and 58 pixels. The 
size of the geometries can be varied randomly, and the 
height of the triangular geometry is half of its width. The 
maximum limit of 58 pixels ensures that the geometry fits 
in the image frame of 64 pixels, as it is assumed all of the 
images are square with a size of 64 pixels.

As mentioned, the first and second input channels 
are utilized to introduce the domain of solution and the 
required boundary conditions. The following partial dif-
ferential equation is utilized to obtain the temperature 
distribution:

subject to the T = Ti at each segment of the boundary of the 
geometry where i is the segment of the boundary condi-
tion, and Ti is the temperature of the segment. The partial 
differential equation, Eq. 1, is numerically solved using the 
FVM. The details of conduction heat transfer and the FVM 
for solving this equation are well described in fundamental 
heat transfer textbooks [40, 41]. Therefore, the temperature 
distribution images which are utilized as the output images 
of the dataset indeed are the solution of Eq. (1).

The FVM was employed to obtain the temperature dis-
tribution in the given geometries and boundary conditions 
and generated a dataset containing 44,160 sample images. 
This extensive dataset, which includes various geom-
etries and boundary conditions, is a benchmark dataset. 
The utilized FVM code for solving Eq. (1), and the cor-
responding temperature distributions, all of the database 
images, and other DNN codes are available here: https​://
doi.org/10.17632​/rw9yk​3c559​.1.

The input images along with the calculated output 
temperature distributions are a benchmark dataset which 
can be employed for testing of various aspects of DNN in 
learning and estimation of heat transfer phenome. In the 

(1)
�2T

�x2
+

�2T

�y2
= 0

present study, the dataset images are divided into three 
categories, in which 15% of the dataset images are ran-
domly extracted as testing data and 15% percent of the 
remaining images are randomly selected as validation 
data. The remaining images are saved as the training data. 
The validation data were used to draw and investigate the 
evaluation parameters of the training process as well as 
to determine the best epoch of the training process with a 
minimal loss value.

The bound width of all shapes of the dataset is between 
35 and 58 pixels. In order to examine the generalization 
capability of the trained DNN, a set of unseen data is also 
produced. The unseen data have never been introduced to 
DNN in any step of training or testing. The unseen dataset 
contains 1920 samples with a bandwidth of 30 pixels. After 
the training process, both testing and unseen data are given 
to the network and extracted evaluation parameters and plot 
charts. The result of these data shows the generalization abil-
ity of networks. The testing data are a part of the training 
process and test the learning quality of the DNN; however, 
the unseen data are not a part of train or test, and their pur-
pose is the validation of DNN to how well a trained DNN 
can estimate the temperature distribution in an unseen and 
completely fresh problem.

Deep Neural Network (DNN) structure

A deep neural network consists of a structure and adjustable 
(trainable) parameters, layers, and connections. The number 
of layers and connections can be selected following available 
well-known structures, or it can be designed by trial and 
error or a combination of literature works and modifications 
by trial and error. There are several enormous models of 
the DNNs, which have been employed for classification and 
regression tasks.

An autoencoder is a type of intelligence neural networks, 
which is designed for multi-purpose, i.e., dimensional reduc-
tion, image denoising, and generate images [42]. In the pre-
sent study, the inputs of the network are the images of the 
domain and boundary conditions, while the outputs are the 
temperature distribution in the domain. Hence, the autoen-
coder neural networks are adopted as the main structure of 
the DNN. A schematic figure of the utilized autoencoder 
DNN, adopted in the present study, is illustrated in Fig. 2. As 
seen, an autoencoder is made of three major parts, encoder, 
decoder, and bottleneck. The encoder extracts features and 
reduces the dimensions of the input images. It also encodes 
the input data. A bottleneck is a compressed representation 
of the input data. Decoder reconstructs the output data from 
the encoded data of the encoder. The layers of autoencoder 
can be either fully connection layers or convolutional layers 
[43]. An autoencoder with convolution layers, a convolu-
tional autoencoder, is adopted in the present study as the 

https://doi.org/10.17632/rw9yk3c559.1
https://doi.org/10.17632/rw9yk3c559.1
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main structure of DNNs. However, some modifications are 
also employed in the structure of autoencoder to increase 
its potential in learning the physics of heat transfer. The 
adopted DNN for the present study is depicted in Fig. 4. The 
layers of the autoencoder are replaced with convolutional 
residual blocks.

He et al. [33] proposed the residual networks as a new 
learning framework for classification purposes. They used 
an individual block, residual block, instead of a cascade 
of network layers, which is common in typical neural net-
works. The structure of the residual block is illustrated in 
Fig. 3a. The advantage of using the residual blocks was that 
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Fig. 2   An example of an autoencoder

Fig. 3   A structure of a convolutional residual block with shortcuts, a 
simple shortcut for a residual block with the same size of input and 
output features, b a shortcut with a matching block layer for a residual 

block with different input and output sizes of features maps, c a com-
pact view of the a convolutional residual block for convenience
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it could replace two consequence layers of a network. These 
authors achieved a state-of-the-art classification accuracy 
on the well-known ImageNet dataset by using the residual 
networks in a network, known as ResNet [15]. Comparing 
to similar networks with ordinary layers, the ResNet eases 
the optimization by providing faster convergence at the early 
stage, exhibiting considerably lower training error, converg-
ing faster in general.

It should be noted that using too many layers in a conven-
tional network does not always improve the learning process 
or the learning error. Indeed, over-increasing the depth of a 
conventional neural network can unexpectedly elevate the 
learning error. This is a well-known general issue in typical 
neural networks as the degradation problem [44]. A ResNet 
network has solved the degradation problem by using the 
residual blocks. Hence, by using the residual blocks in the 
structure of the ResNet network, the learning error will 
improve or remain constant.

As shown in Fig. 3a, a residual block consists of two cas-
cades of layers that output of the block is the element-wise 
summation of the first input of layer (input of block) and 
the second output of layer. The input of a residual block is 
transferred to the input of the element-wise summation by 
a shortcut connection. A batch normalization layer and an 
activation layer are placed before each layer of the block. 
The batch normalization technique improves the speed, per-
formance, and stability of a network. The frequent activation 
function for residual block networks is the ReLU activation 
function, which is followed by a batch normalization layer. 
Other activation functions, such as tangent hyperbolic and 
sigmoid, are also possible. However, a computational com-
plexity of computations using a ReLU activation function is 

minimal compared to other activation functions. Moreover, 
the convergence rate of a network consisting of ReLU acti-
vation functions is much higher than that of the networks 
with tangent hyperbolic and sigmoid activation functions 
[30]. The shortcut connection can be a simple connection 
transferring the input feature to the output of the block to 
be added to the output data, as shown in Fig. 3a. It can also 
be a transfer block that acts as a matching part and matches 
the input and output sizes of a block in case there is a size 
difference between the input and output of the block. The 
matching part is depicted in Fig. 3b.

The layers of a residual block can be fully connected or 
convolutional. The layers of the residual block, depicted 
in Fig. 2a, are convolutional layers. Hence, the produced 
residual block is known as a convolutional residual block. 
Each convolutional layer consists of several filters. The fil-
ters are regular matrixes with a typical size of 3 × 3 or 5 × 5 
for images. These matrixes contain trainable parameters 
(values), which have to be adjusted during the learning pro-
cess. The input of a convolutional layer is the input data of 
a network or the output features of the previous layer, while 
its output is the extracted features of the layer.

The ResNet is usually utilized for image classifications 
and is capable of extracting the various types of features 
from an input image. As the purpose of the present study 
is to produce the temperature distribution images from the 
input images, a combination of an autoencoder and resid-
ual blocks is employed to benefit from the residual block 
capability of ResNet and image generation structure of the 
autoencoder neural network. As a result, the conventional 
cascade layers of the autoencoder network are replaced by 
the residual blocks. It is expected that utilizing the residual 
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Fig. 4   Structure and characteristics of the DNN utilized in the cur-
rent study. Stride 1 represents a simple shortcut as shown in Fig. 3a, 
in which the size of input and output features of the block is equal, 

and stride 2 indicates a shortcut with a matching layer as depicted in 
Fig. 3b, in which the size of the output features of a block is half of 
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blocks in the autoencoder framework improves the accuracy 
of the image processing and the learning process. Therefore, 
each of the blocks of the autoencoder of Fig. 2 is replaced by 
the residual blocks of Fig. 3, which resulted in a deep neural 
network. The schematic figure of the deep neural network, 
utilized in the present study, is depicted in Fig. 4.

As shown in Fig. 4, each of the decoder and encoder 
of the utilized DNN consists of five residual blocks. The 
residual blocks of the encoder consist of convolutional lay-
ers, while the residual blocks of the decoder layer consist of 
deconvolutional layers. The deconvolutional layers act as a 
reverse function of the convolutional layers. Except for the 
first residual block of the encoder layer, each residual block 
reduces the size of its input feature to half and increases the 
number of the features by twofold. In the decoder section, 
in a reverse manner, all of the residual blocks, except for 
the last residual block, increase the size of the input feature 
by twofold and reduce the number of the features by half. 
Therefore, the input images undergo a process of downscal-
ing and extracting features in the encoder part of the neural 
network. Then, the extracted features are used for upscal-
ing and producing the final temperature distribution in the 
decoder part of the neural network.

The size of the encoder output is 512 features, in which 
each of the features has a size of 4 × 4. The output of the last 
block of the decoder is passed through a sigmoid activation 
function to generate an output image. The output of a sig-
moid activation function is in the rage of zero to one which 
is the range of the possible values of the temperature field. 
Hence, the sigmoid activation function through a nonlinear 
function maps the output of the last block of the network to 
an image of temperature distribution.

It is possible to adopt a larger number of residual blocks 
in a DNN; however, increasing the number of residual 
blocks increases the number of trainable parameters, which 
computationally is not desirable. The DNN of the present 
study, which is depicted in Fig. 4, involves 1,857,554 train-
able parameters. These parameters have to be adjusted in the 
learning process to estimate a correct output temperature 
distribution in an output image.

In summary, as shown in Fig. 4, the images of the geom-
etry (domain) and boundary conditions enter the autoen-
coder (DNN) with the size of 64 × 64 pixels (matrix of 
size 64 × 64) and they go through the five encoder residual 
blocks to reach 512 features of size 4 × 4. Then, they enter 
the decoder part of the DNN and through five stages, an 
image with a size of 64 × 64 is produced. This 64 × 64 will 
be the temperature distribution in the given geometry and 
boundary conditions.

Loss function and evaluation parameters

As mentioned, the present study aimed to show that deep 
learning models can be used for the rapid estimation of heat 
transfer phenomena without knowledge of the underlying 
constitutive equations. A neural network requires adjusted 
network parameters to estimate a correct and accurate out-
put. The parameters of a neural network can be adjusted dur-
ing a training process by using an optimizer. The optimizer 
employs a numeric process, which is known as a training 
process, to train the network by adjusting its parameters. An 
optimizer continuously computes the difference between the 
real output data and the estimated data, the estimation error. 
Then, it modifies the neural network parameters to reduce 
the estimated error. The estimation error can be determined 
using a function, known as a loss function. In summary, an 
optimizer uses the loss function to determine the estimation 
error, and then, it employs the estimation error to adjust the 
neural network parameters in a way to reduce the estima-
tion error of the network. Thus, the selection of an adequate 
loss function is a crucial step in the training process as it 
directly affects the behavior of the optimizers and the train-
ing process.

The square error is defined as the square of the difference 
between the real value (target value) of output and the esti-
mated value of that output. The output of the neural network 
is an image of temperature distribution in the present study. 
Hence, the pixels are the data that have to be estimated. 
Therefore, the square error of a pixel is equal to the square 
of the actual value of a pixel and the estimated value of that 
pixel. As a result, the mean of square error denotes the aver-
age of the square errors of all of the pixels of an image. The 
MSE can also be introduced for a collection of images, i.e., 
testing data in the dataset, which in that case, it will be the 
average of the square errors for all pixels of the collection 
images.

Most of the neural networks, which are used to generate 
or estimate the data, employ the MSE as the loss function. 
The number of pixels in a collection of images is too many, 
and if the neural network estimates a few numbers of the 
pixels with too large square errors, e.g., much larger than 
MSE, they do not affect the overall MSE. These pixels with 
too large square errors can be considered as outlier pixels, 
and unfortunately, they cannot be detected by the optimizer 
during the training process with MSE as an error estimator. 
The square error of outlier pixels is referred to as the outlier 
error in this study for convenience. As the optimizer cannot 
detect such abnormal pixels in the outlet image (temperature 
distribution), the optimizer will not try to adjust the param-
eters of the neural network to remove such rare considerable 
mistakes in the final temperature distribution.
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The presence of outlier errors is not crucial in the process-
ing of most of the natural images, but the accurate estimation 
of all of the pixels in an image, in which the pixels denote a 
physical meaning or contribute to physical computations, is 
essential. Thus, introducing a new loss function, capable of 
dealing with the outlier errors, demanded adequate training 
of a neural network. Here, it is assumed that the loss func-
tion is the maximum value of the square error (MaSE) of all 
estimated pixels for an image. In the case of a collection of 
images, the mean of the MaSEs (MMaSE) is the loss func-
tion. This way, the optimizer can clearly see the variation 
of outlier pixels. The optimizer will try to adjust the neural 
network parameters to reduce the maximum value of the 
square errors of an image as much as possible. Using MaSE 
as the loss function, no image pixel can be estimated with 
an error larger than MaSE. Hence, using MaSE as the error 
estimation leads to an estimation of a temperature distribu-
tion without abnormal temperature values.

The introduced loss functions of MSE, and MaSE can be 
adopted as an indicator for the evaluation of the neural net-
work outcomes. However, there are also other indicators for 
the evaluation of the neural network, which will be discussed 
later. Here, the mathematical details of the computation of 
MSE and MaSE will be discussed.

Mean Square Error (MSE)

A black and white (grayscale) image can be represented by a 
2D matrix, in which the value of each element of the matrix 
denotes the intensity of a pixel. In contrast, a 2D matrix of 
data for a physical phenomenon, for instance, a 2D matrix of 
the temperature of a surface, can be represented as an image. 
By taking I as a 2D matrix, which represents an image, Ir,c 
denotes the value of a pixel at the row r and column c. In the 
case of a collection of images such as the set of test images 
of the current dataset, a 3D matrix is required to present 
such a set of images. In the present dataset, T denotes the 
value of the temperature in the output images. In a collec-
tion of images, the value of a pixel can be denoted by three 
subscripts of n (the image number), r (row), and c (column) 
as Tn,r,c. This topic can be extended to the color images or 
multi-channel images; in that case, the matrixes with higher 
dimensional are demanded. In the current research, the out-
put images are just one-channel gray images; hence, the 3D 
matrixes are adequate. Here, T denotes the actual tempera-
ture distribution, evaluated by the numerical method. The 
estimated temperature distribution, which is the outcome of 
the neural network, can be represented by P. Here, P is also 
a 3D matrix with the same characteristics as T. Considering 
T and P as the actual and the estimated temperature distribu-
tions, the Square Error (SE) can be evaluated as:

where ⊙ is the element-wise product. As mentioned, SE 
denotes the square value of the difference between the actual 
temperature and the estimated temperature, and it is a 3D 
matrix with the same size as T or P. The error for a pixel of 
an image can be accessed by SEn,r,c. Hence, the SE of a pixel 
can be evaluated as SEn,r,c = (Tn,r,c − Pn,r,c)2.

MSE is the mean of the SE of a collection of images and 
can be introduced as:

where N is the number of images in a collection of images, 
in which each image is made of R rows and C columns of 
pixels. For example, in the test images, which are a part 
of the dataset of the present study, there are 6624 images 
(N = 6624), and each image consists of 64 rows and 64 col-
umns of pixels. Hence, the total number of pixels of the 
dataset is 27,131,904 pixels. As a result, SE consists of 
27,131,904 elements, in which each element is the square 
of the difference between an actual and estimated value 
of a pixel. Here, MSE shows the average of all SE ele-
ments. Thus, as mentioned, the existence of a few numbers 
of abnormal errors, outlier errors, cannot be adequately 
detected in MSE loss function.

Mean of maximum square errors (MMaSE)

The mean of maximum square errors (MMaSE) for a collec-
tion of images can be determined with the following steps. 
The first step is to compute the square error for each of the 
collection images in the form of a matrix of square errors. 
Then, the maximum value of the square errors of each image 
is selected as the error of that image. The summation of the 
maximum errors of the images divided by the number of 
the images results in the mean of the maximum errors of the 
images, which here is the MMaSE. Mathematically, MMaSE 
can be introduced as follows:

where max1,2 denotes the implication of the maximum 
operator on the first and second dimensions of the matrix 
of square errors of an image. Indeed, max1,2 indicates the 
maximum of square error of an image.

Considering the test collection images of the present 
study, which are 6624 images, the computation of the 
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MMaSE requires only 6624 square error elements to com-
pute the mean error, MMaSE, by performing the mean 
operator over the set of maximum error of the images of the 
group of images. However, as mentioned in the previous 
section, MSE requires 27,131,904 square error elements to 
compute the mean error (MSE) by employing the mean oper-
ator over the entire square errors of images. Moreover, an 
optimizer, which uses the MMaSE as its loss function, can 
easily sense the outlier errors since the MMaSE performs 
the mean operator just over the maximum square errors of 
a collection of images. The disadvantage of using MMaSE 
as the loss function is the fact that it will only provide data 
regarding the maximum errors for the optimizer, and the 
optimizer is totally unaware of other square errors, which did 
not participate in computations of MMaSE. Hence, the opti-
mizer cannot control such square errors, and consequently, 
the temperature of such pixels. As a result, the square errors 
of an image can be changed unconditionally in the range of 
zero to the maximum square error of an image.

Maximum Square Errors (MaSE)

The Maximum Square Errors (MaSE) is the maximum of 
square error in a SE matrix. The SE matrix may be computed 
for an image or a collection of images. Either way, MaSE is 
the maximum value of the elements of the SE matrix, i.e., 
the maximum square error of an image or a set of images. 
In the case of a collection of images, consisting of only one 
image, the MaSE will be identical to MMaSE. The MaSE 
can be computed mathematically as follows:

The MaSE is only practical as a characteristic for valida-
tion of the estimated results of the neural network. It should 
be noted that MSE and MMaSE are practical as the loss 
function and as the validation of the neural network.

Absolute evaluation parameters

The Absolute Error (AE) is useful as it does not change 
the scale of the errors. This is while the square error was 
a nonlinear function, which diminishes the normal errors. 
Hence, square error changes the actual scale of errors. Thus, 
using an AE, the actual scale of errors remains unchanged 
and this is an essential advantage for judging the outcomes 
of a neural network. The absolute error is introduced in the 
following mathematical form:

As seen, AE is very similar to SE but the absolute opera-
tor replaces the squared operator. Hence, the concept of AE 

(5)MaSE = max

(

(

Tn,r,c − Pn,r,c

)2
)

= max(SE)

(6)AE = |T − P|

can be extended to Mean Absolute Errors (MAE), mean 
Maximum Absolute Errors (MMaAE), and Maximum Abso-
lute Errors (MaAE), accordingly as follows:

Numerical method and verification

To produce dataset and other issues, NumPy [45], Matplotlib 
[46], and scikit-image [47] were used. The deep network of 
this study was implemented in Keras [48] with Google Ten-
sorFlow [49] backend. The codes are written in Python, and 
the Adam optimizer [50] is adopted for the training of the 
DNNs. The learning rate is fixed as 0.001, and the param-
eters of β1 and β2 are fixed as 0.9 and 0.999, respectively. 
The β parameters are a part of the training process, and more 
details can be found in [50]. The training process is com-
menced after initiating all of the network parameters using 
the Glorot uniform technique [51]. The DNN is trained using 
2000 epochs of the training data. In each epoch, all of the 
training data are utilized in the format of batches data. In 
this regard, the training data are randomly categorized in 
batches, in which each batch contains 32 samples of data. 
Here, each sample of data consists of one input image with 
two channels and one single-channel output image. Then, 
these batches are utilized as training data instead of using 
individual images. Using batch data accelerates the training 
process because each time 32 samples are fed into the train-
ing process instead of feeding images individually. At the 
end of each epoch, the validation parameters are computed 
for both of the validation data and training data and recorded 
as the training history for later analysis.

It should be noted that the training process is not mono-
tonic, as it depends on the validation data. Hence, loss 
function for validation data can increase or decrease at each 
stage of the training process. The training process consists 
of 2000 epochs, and a DNN with minimal loss function 
for validation data is adopted as the ultimate trained DNN 
after completing the training process regardless of its epoch 
number.
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Results and discussion

When it comes to working with the physical images, the 
magnitude of each pixel indicates a physical value. Hence, 
the magnitude of each individual pixel is important. In con-
trast, in a natural image, a group of pixels shows a mean-
ing, and an individual pixel can barely be of any signifi-
cant sense. Thus, the evaluation of a neural network for the 
generation of images with physical meaning can be funda-
mentally different from natural images. Hence, introducing 
an appropriate loss function (as mentioned in the previous 
section) as well as the evaluation functions for dealing with 
the physical images is an essential part of the present study.

Moreover, selecting a structure of the DNN, capable of 
generating high-quality temperature distribution of output 
images, is another important aspect of the present research. 
Hence, the current work aims to address the influence of the 
loss function on the quality of the generated temperature 
distributions. To aim this purpose, the MSE and MMaSE are 
selected as the loss functions for the training of DNN. There-
fore, a DNN trained by MSE as loss function is referred as 
Net_MSE, and similarly, a DNN trained by MMaSE as the 
loss function is referred as Net_MMaSE. It should be noted 
that the structure of the DNN for both cases of Net_MSE and 
Net_MMaSE is identical, and only the adopted loss function, 
which is employed during the training process, is different.

After the training process, the Net_MSE and Net_
MMaSE are investigated in the post-processing step, where 
the temperature distributions (the output images) for all of 
the four collections of training data, testing data, validation 
data, and unseen data are estimated. Using the estimated 
data, the validation parameters are computed and reported 
in Table 1.

As mentioned, a small collection of images are produced 
to be used as the unseen data. The unseen data are utilized 
to measure the generalization capability of a DNN. The gen-
eralization capability of a DNN refers to the ability of the 
DNN to how well it can employ the learned physical concept 
to the problems, which has never seen before during the 
learning process. The purpose of a good DNN model is to 

generalize the learned concept well and be able to employ it 
to any data from the problem domain. This allows the neural 
network to make future estimations on fresh problems. The 
unseen collection of images in the present study is differ-
ent from the set of training data. The difference is that the 
width of the thermal boundaries of the images in the dataset 
was in the range of 35–58 pixels, while the width of the 
thermal boundaries in the unseen images is selected equal 
to 30 pixels. It should be noted that the width and height of 
the images are linked and changing the width of the images 
will change the height of the images accordingly. As the 
DNNs have never seen the unseen data, a DNN with better 
validation parameters can provide a better generalization 
capability.

Comparison of MSE and MMaSE

Table 1 shows the characteristic parameters of the trained 
DNN for both cases of Net_MSE and Net MMaSE. The 
outcomes are reported for the best trained DNN during 
the training process. The results are categorized into four 
categories of training, validation, testing, and unseen data. 
For each category, the evaluation parameters of five various 
parameters of MAE, MMaAE, MSE, MMaSE, and MaAE 
are computed and summarized in Table 1.

As seen, the MSE and MAE parameters of Net_MSE 
network are slightly smaller than that of Net_MMaSE in 
terms of training, testing, and validation data. Thus, it can 
be concluded that Net_MSE shows a better performance in 
reducing the average of errors compared to the Net_MMaSE. 
However, Table 1 reveals that the values of MMaSE and 
MMaAE for Net_MMaSE are better than that of Net_MSE 
in the term of training, validation, and testing data. There-
fore, Net_MMaSE network can more conveniently deal 
with the outlier errors. These outcomes were expected as 
the Net_MSE has been trained using the MSE as the loss 
function, whose goal was reducing the average errors as 
much as possible. Accordingly, Net_MMaSE was trained 
using MMaSE as the loss function, whose goal was reducing 
the maximum errors as much as possible. Thus, the aim of 

Table 1   The characteristic 
parameters of the trained DNNs 
for two cases of Net_MSE and 
Net_MMaSE

Data type DDN type MAE MMaAE MSE MMaSE MaAE

Train Net_MSE 0.00061 0.0219 2.2509E−06 5.8232E−04 0.9715
Net_MMaSE 0.0014 0.0167 9.6905E−06 3.0494E−04 0.2377

Validation Net_MSE 0.000796 0.0326 5.4502E−06 0.0022 0.9964
Net_MMaSE 0.0015 0.0205 1.0806E−05 5.7199E−04 0.3202

Test Net_MSE 0.000791 0.0322 4.7280E−06 0.0018 0.9953
Net_MMaSE 0.0015 0.0202 1.0638E−05 5.1169E−04 0.1619

Unseen Net_MSE 0.0124 0.7642 0.0055 0.6255 1.0
Net_MMaSE 0.0077 0.7475 0.0034 0.6056 0.9987
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optimizer during the training process of Net_MMaSE was 
reducing outlier errors.

Attention to the magnitude of MAE of both DNNs dem-
onstrates that the difference between these two networks 
is just 0.000709 in the case of testing data. This is while 
the difference between MMaAE and MaAE of these two 
DNNs is 0.012 and 0.8334, respectively. Hence, the differ-
ence between MAE of the DNNs, i.e., 0.000709, is minimal 
compared to the other differences, i.e., 0.12 and 0.8334. 
Thus, it can be concluded that Net_MMaSE significantly 
reduced the outlier errors with the cost of a slight growth 
of MSE and MAE characteristics. As a result, Net_MMaSE 
notably reduced the values of other characteristic parameters 
of MaAE, MMaSE, MMaAE, and MaSE.

Here, MaAE indicates the value of the maximum error 
among all of the estimated pixels. The values of MaAE for 
the Net_MSE and Net_MMaSE are 0.9953 and 0.1619, 
respectively, in terms of testing data. These outcomes show 
that Net_MMaSE estimated all of the pixels of the output 

images with a maximum absolute error of less than 0.1619 
for the testing data. The MaAE error of Net_MSE reveals 
that at least a pixel of the testing data has been estimated 
with an absolute error of 0.9953, which is a considerable 
outlier error. More details about the total number of such 
outlier errors will be discussed later.

Following the results of Table 1, it can be concluded that 
the Net_MSE estimated the images with a smaller overall 
error, but it also made considerable mistakes in estimating 
some of the pixels in terms of outlier errors. For example, 
one of the images of the temperature distribution, which is 
estimated by Net_MSE, is depicted in Fig. 5. The actual 
temperature distribution is illustrated in Fig. 5a as a refer-
ence image, while Fig. 5b shows the estimated temperature 
distribution of Net_MSE. The absolute error of some of the 
outlier pixels is written in Fig. 5b to highlight the outlier 
pixels and their absolute errors. It is vivid that the outlier 
pixels are completely dark; however, the target image indi-
cates that these pixels shall be yellow. The absolute error 

Fig. 5   A sample of estimated 
image containing outlier pixels; 
a actual image (target), and b 
estimated image with Net_MSE 0.9953
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Fig. 6   Cumulative frequency 
distribution of testing data for 
some absolute errors
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of these outlier pixels is about 0.995. As the magnitude of 
each pixel can be in the normal range of 0–1, the absolute 
error of 0.995 is a considerable outlier error with no physical 
estimation value.

One of the important and interesting outcomes of using 
Net_MMaSE instead of typical Net_MSE for the loss func-
tion is obtained for the estimation of the unseen data. As 
mentioned, the unseen data are input images almost similar 
to the training data but with smaller geometries. Therefore, 
the unseen data represent new thermal problems and geom-
etry sizes, which DNN has never seen before. The results of 
Table 1 reveal that Net_MMaSE outperformed Net_MSE 
for all of the evaluation characteristics, including charac-
teristics of MSE and MAE. It should be noted that the loss 
function of Net_MSE was optimized for reducing MSE, and 
hence, the characteristics evaluation parameters of Net_MSE 
were better than those of Net_MMaSE for training, valida-
tion, and testing data. However, in the case of unseen data, 
Net_MMaSE outperformed Net_MSE even in terms of MSE 
and MAE. Hence, a DNN trained by using MMaSE as the 
loss function provides much better generalizable ability 
compared to the typical loss function of MSE.

Population and distribution of errors

The overall outcomes of the two DNNs of Net_MSE and 
Net_MMaSE are compared in Table 1 based on the evalua-
tion parameters. This section aims to provide a more detailed 
study on the pixels of the testing data, estimated by the 
trained DNNs. Figure 6 shows a cumulative frequency dis-
tribution of the testing data based on the absolute error and 
the percentage of pixels. This chart shows the percentage of 
the estimated pixels with an absolute error equal to or bigger 
than a predefined value. In this chart, each bar corresponds 

to a value of absolute error, including 0.02, 0.025, 0.03, 
0.04, 0.05, and 0.06. The height of each bar is equal to the 
percentage of the pixels with an absolute error equal to or 
bigger than the absolute error of the bar. For example, 0.1% 
of the total pixels of the test data are estimated by Net_MSE 
with an absolute error equal to or higher than 0.02. Figure 6 
is plotted for a few absolute errors for the sake of the com-
parison of the two DNNs.

Figure 6 shows that 0.058% of the total pixels of the test-
ing data estimated by Net_MSE are within an absolute error 
of 0.025 or higher, while only 0.028% of the estimated pix-
els by Net_MMaSE are within the same error. Hence, the 
number of the estimated pixels by Net_MMaSE is about 
half of those by Net_MSE for this error range. This figure 
depicts that the increase in absolute error boosts the differ-
ence between the outcomes of two DNNs; as the absolute 
error increases, the heights of bars for Net_MMaSE drop 
sharply. This rapid drop indicates that the number of pixels 
with large errors, the number of outliers, reduced notably 
in the Net_MMaSE. Thus, the Net_MMaSE has reduced 
the number of outlier errors notably compared to that of 
Net_MSE.

Figure 7 shows the frequency distribution curve for both 
DNNs. This figure displays the number of estimated testing 
pixels within a bond of absolute error. The absolute errors 
are studied in the range of 0–0.048 and categorized into 48 
categories, and each of the categories is with an absolute 
error bond of 0.001. The bars are placed at the starting value 
of each category, and the height of a bar indicates the loga-
rithmic number of each pixel within the error range of that 
bar. For example, the first bar of Fig. 7 corresponds to the 
absolute error range of 0.000–0.001 and is placed at zero. 
Due to the large variation of the number of the pixels, they 
have been plotted in the logarithmic scale for convenience. 
For example, the numbers of pixels within an error range of 
0.000–0.001 are 20,793,987 and 19322919 for Net_MSE 
and Net_MMaSE, respectively. Similarly, the numbers of 
pixels within an error range of 0.001–0.002 are 2,443,122 
and 1,418,265 for Net_MSE and Net_MMaSE, respectively.

As shown in Fig. 7, Net_MSE estimated a larger num-
ber of pixels compared to that of Net_MMaSE for an abso-
lute error in the range of 0–0.002 and 0.024–0.048. How-
ever, Net_MMaSE estimated more pixels in the range of 
0.024–0.048 compared to Net_MSE. This behavior indicates 
that Net_MSE tried to reduce the average error of pixels 
as much as possible, and hence, the number of pixels esti-
mated by Net_MSE and with an error close to zero is the 
highest. However, this behavior also failed Net_MSE to 
estimate a large number of pixels with an adequately low 
error, and hence, the number of pixels with a significant 
error of 0.024 or higher is more than that of Net_MMaSE. 
On the other hand, Net_MMaSE has reduced the number of 
pixels with very low errors in the range of absolute error of 
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0.000–0.002, but it has not only succeeded to increase the 
number of pixels with an adequate error of 0.02–0.024 but 
also reduced the number of pixels with a significant error of 
0.024 and higher compared to that of Net_MSE.

Figure 7 is plotted for the maximum absolute error of 
0.048. The total values of MaAE for both of Net_MSE and 
Net_MMaSE are reported in Table 1. The values of MaAE 
are 0.9953 and 0.1619 for Net_MSE and Net_MMaSE, 
respectively. Hence, in the case of plotting the outcomes 
for the total range of the absolute error, the height of the 
bars for the case of Net_MMaSE drops to zero for absolute 
errors larger than 0.1619, while the bars will be continued 
for Net_MSE until the absolute error of 0.9953. In conclu-
sion, the Net_MMaSE significantly reduced the outlier 
errors by reducing the number of pixels with an absolute 
error close to zero.

Speed of training

The training speed of a DNN is one of the important evalu-
ation characteristics of a loss function. A good loss function 
leads to a DNN with a lower estimation error for a fixed 
number of epochs. Figures 8 and 9 depict the learning his-
tory of Net_MSE and Net_MMaSE DNNs for training data. 
Figures 8 and 9 are plotted for MSE and MMaSE, respec-
tively. Figures 8a and 9a show the first few hundreds of the 
epochs for convinces, while the outcomes for the rest of 
epochs are plotted in Figs. 8b and 9b. Figures 8a and 9a 
demonstrate that Net_MSE is much faster than Net_MMaSE 
at pioneer epochs when the learning process commences, 
and it reduced both MSE and MMaSE parameters notably.

Moreover, the fluctuations of Net_MMaSE are much 
more significant than that of Net_MSE, which is because 
of the nature of the MMaSE loss function. MMaSE solely 
monitors the maximum square error of an image, and hence, 
there are only a few maximum errors in a collection of 
images, which are used for computing MMaSE. Accord-
ingly, changing each of these few pixels could change the 
overall MMaSE considerably. The behavior of MMaSE is 
absolutely opposite to the nature of MSE, which incorpo-
rates all of the pixels of a collocation of images in the com-
putation of the loss function, and consequently, changing 
only a few outlier pixels does not affect MSE notably.

The MSE is small in most of the training epochs for the 
Net_MSE during the training process, and similarly, the 
MMaSE is smaller than MSE for the Net_MMaSE for most 
of the epochs. These observations are in agreement with the 
selected loss functions of these DNNs.

Study of estimated images

Here, some examples of the estimated images using the 
Net_MSE and Net_MMaSE are illustrated and compared. 
Figure 10 depicts four images from the testing data. The 
images in the first and second row, respectively, show the 
images with the largest values of the MAE and MaAE, 
which are estimated by Net_MSE. The images of the third 
and fourth row, respectively, correspond to the largest MAE 
and MaAE estimated by Net_MMaSE. The columns from 
left to right show the target image (the actual CFD solution), 
the estimated image by Net_MSE, the estimated image by 
Net_MMaSE, the absolute error of the estimated image by 
Net_MSE, and the absolute error of the estimated image by 
Net_MMaSE, respectively. The color map of each image is 
added below the image for convenience. The range of the 
color maps for the fourth and fifth columns is identical for 
the sake of better comparison.

Moreover, the corresponding values of MAE and 
MMaAE are reported above each image. The absolute error 
for the fourth and fifth columns is computed as the absolute 
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difference between the estimated image and the target image. 
Hence, the absolute error in the fourth column is the abso-
lute difference between the first column and second column, 
and similarly, the absolute error in the fifth column is the 
absolute difference between the first column and the third 
column.

Figure 10 shows that the images in the fifth column are 
darker than the fourth column for all rows except the third 
row. A darker color denotes a lower error, and hence, as 
seen, the absolute error of the estimated images by Net_
MMaSE is better than the images estimated by Net_MSE, 
except the third row. The yellow pixels in the fourth and fifth 
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Fig. 10   Some samples of estimated test images by Net_MSE and 
Net_MMaSE. Row1: The image with the worst MAE among the esti-
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columns show the significant absolute errors compared to 
the other pixels. The number of yellow pixels in the fourth 
column is much more than those in the fifth column, except 
for the third row. Indeed, the yellow pixels in the fourth 
and fifth columns denote the outlier pixels. Thus, from the 
results of Fig. 10, it can be concluded that both DNNs have 
been successful in estimating the overall temperature distri-
bution, but the Net_MMaSE could provide much uniform 
and low error distribution by reducing the magnitude of the 
outlier errors.

Attention to the images of the third row reveals that the 
target image is almost a mono-color image. Checking the 
input channel for the boundary conditions shows that there 
are only two input temperatures at the boundaries, which 
are very close to the values of 0.9937 and 0.9918. Hence, 
the target image, including the boundary conditions and 
the temperature distribution, appears as a semi-mono-color 
image with no apparent distinction between the boundaries 
and temperature distribution inside the image. The reason 
for such inadequate estimation of MAE and MaAE of the 
results in the third row is followed by investigating ten test-
ing images estimated by Net_MMaSE in Fig. 11.

Figure 11 shows the estimated testing images by Net_
MMaSE with the most MAE errors. Below each image, the 
MAE-value-estimated Net_MMaSE is written as MAE1, 
and similarly, the MAE corresponding to Net_MSE is writ-
ten as MAE2. As seen, in all of the images, MAE1 is larger 
than MAE2. It is evident that the temperature variations at 
the boundaries of these images are minimal. Thus, it can 
be concluded that an image with low-temperature variation 
at the boundaries weakens the estimation capability of a 
Net_MMaSE.

Conclusions

In the present study, the deep neural networks were utilized 
to learn the physics of conduction heat transfer in 2D geom-
etries. A big dataset of various geometries and temperature 
boundary conditions were constructed. The actual tempera-
ture distribution in each geometry, along with the boundary 
conditions, was obtained by using the conventional finite 
volume method in a 64 × 64 structured grid. Then, the geom-
etry and the corresponding temperature boundary condi-
tions, along with actual computed temperature distribution, 
were used as the collection of big data to teach the DNN. An 
autoencoder DNN with a block residual structure was tai-
lored for the present study to learn the physic of conduction 
heat transfer. Two different loss functions were introduced 
to be used during the learning process. One of the loss func-
tions, MSE, was based on the typical average square error 
estimation conventional in the context of DNNs for natu-
ral image generation. The other loss function MMaSE was 
introduced based on the maximum square error related to the 
physical needs of the DNNs. Finally, using the structure of 
the DNN and the introduced loss functions, the estimation 
capability of DNNs for learning and estimation of the tem-
perature distributions in 2D geometries was addressed. The 
primary outcomes of the present study can be summarized 
as follows:

1.	 The DNN, which was trained by MSE as the loss func-
tion (Net_MSE), estimated the images with a lower aver-
age error compared to a DNN, which was trained by 
MMaSE as the loss function (Net_MMaSE). However, 
a portion of the estimated by Net_MSE was pixels with 
high absolute errors, outlier errors. The Net_MMaSE 
notably reduced the number and magnitude of the outlier 

MAE1 = 0.0160
MAE2 = 0.0044

MAE1 = 0.0103
MAE2 = 0.0019

MAE1 = 0.0100
MAE2 = 0.0015

MAE1 = 0.0091
MAE2 = 0.0012

MAE1 = 0.0083
MAE2 = 0.0015

MAE1 = 0.0085
MAE2 = 0.0016

MAE1 = 0.0087
MAE2 = 0.0013

MAE1 = 0.0089
MAE2 = 0.0011

MAE1 = 0.0089
MAE2 = 0.0011

MAE1 = 0.0097
MAE2 = 0.0012

Fig. 11   Some target images of the test data with the worst MAE when they were estimated by Net_MMaSE. MAE1 and MAE2 denote the MAE 
of an image when estimated by Net_MMaSE and Net_MAE, respectively



Using deep learning to learn physics of conduction heat transfer﻿	

1 3

pixels by the cost of a slight increase in the average error 
of the pixels.

2.	 The estimated images by Net_MMaSE contain fewer and 
smaller outlier errors compared to Net_MSE, and hence, 
they are much similar to the target imaged compared to 
that of Net_MSE.

3.	 In the early stages of the training, the convergence rate 
of Net_MMaSE was much lower than that of Net_MSE, 
but the convergence rate of Net_MMaSE is raised by 
the continuation of the training process. Eventually, the 
ultimate value of MMaSE for Net_MMaSE was lower 
than that of Net_MSE. In the entire training process, the 
reduction rate of MSE for Net_MSE was better than that 
of Net_MMaSE.

4.	 Both of the DNNs were successful in learning the phys-
ics of heat transfer and estimating the overall tempera-
ture distribution. However, the results, estimated by the 
customized loss function of MMaSE, were much better 
than that of typical MSE. Moreover, the generalization 
capability of Net_MMaSE was much better than Net_
MSE.

5.	 The results of the present research demonstrate the gen-
eral capability of DNNs in learning the physics of heat 
transfer. The trained DNNs were capable of generating 
images with accurate temperature distribution without 
knowing the underlying governing partial differential 
equation. Hence, DNNs are promising for learning more 
advanced physics, such as convective heat transfer and 
hydrodynamic of fluids.

The outcomes demonstrated that a tailored loss function, 
MMaSE, could lead to a DNN with much better estimations. 
Hence, introducing new hybrid loss functions and improving 
the internal structure of DNNs for a better estimation can be 
subject to future studies.
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