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Abstract
In the present study, the free convection heat transfer of a power-law non-Newtonian fluid is considered in a cavity contain-
ing a flexible hot thin heater. The sidewalls of the square cavity are maintained at cold temperatures, while the hot heater is 
placed inside the cavity. The top and bottom walls of the cavity are kept insulated. The thin heater plate can undergo large 
deformations due to the interaction between the fluid flow and the heater. The arbitrary Lagrangian–Eulerian moving mesh 
method is employed to track the displacement of the heater in the fluid domain. Appropriate non-dimensional parameters 
are utilized to transform the governing equations into a general non-dimensional form. The equations governing fluid flow 
and heat transfer are solved using the finite element method with an automatic time-stepping scheme. The effect of con-
trol parameters such as the non-Newtonian power index (0.6 < n<1.4), the Rayleigh number (104 < Ra < 106), the element 
location and length is studied on the hydraulic and thermal behavior of the cavity and element displacement. The results 
indicate that raising the power-law index (n) from the pseudoplastic behavior (n < 1) to the dilatant (n > 1) behavior reduces 
the fluid circulation and heat transfer rate in the cavity, but it increases the magnitude of the exerted tensions on the element. 
Moreover, raising Ra from 104 to 106 enhances the average heat transfer the value of Nuav by up to 3.5 times in pseudoplastic 
fluids and by 1.5 times in dilatant ones. In addition, it is found that shifting the heater upward deteriorates the heat transfer 
rate by suppressing the convection flow intensity. A 35% rise in the average heater can be obtained when the height of the 
plate was divided by 4 in the cse of dilatant fluid, and an increase by up to 100% is found for pseudoplastic fluids. Increasing 
the length of the element is also found to reduce the average Nusselt number and to increase the tensions in the heater. The 
average Nusselt number can be doubled when the length of the plate is reduced seven times.

Keywords  Fluid–structure interaction (FSI) · Power-law non-Newtonian fluid · Natural convection heat transfer · Arbitrary 
Lagrangian–Eulerian (ALE) moving mesh

List of symbols
cp	� The isobaric specific heat capacity
D	� The structure displacement

E	� Dimensional Young’s modulus
Eτ	� Non-dimensional elasticity modulus
g	� Gravitational acceleration
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Gv	� Exerted body force
L	� Height of the enclosure
P	� Pressure field
Pr	� Prandtl number
Ra	� Rayleigh number
t	� Time
T	� Fluid and solid temperatures
u	� Fluid velocity vectors
w	� Moving mesh velocity vectors
x, y	� Cartesian coordinates

Greek symbols
α	� The fluid’s thermal diffusivity
β	� Coefficient of thermal expansion
ι, λ	� Structure modules defined in Eq. (7)
μ	� Viscosity of the fluid in the enclosure
ν	� Poisson’s ratio
νf	� Kinematic viscosity
ρ	� Density for fluid and the structure
ρr	� The density of the fluid to that of the structure
σ	� Stress tensor
τ	� Dimensionless time

Subscripts
av	� Average
c, h	� Cold and hot temperatures
f	� The fluid in the enclosure
s	� Flexible thin plate

Superscripts
tr	� Matrix transpose operator
*	� The dimensional form

Introduction

Convection in a differentially heated cavity is an important 
problem in many engineering applications such as biome-
chanics, automotive, MEMS, and aerospace. Fluid–struc-
ture interaction (FSI) has received considerable attention in 
recent years due to its potential applications in heat transfer 
enhancement. Various aspects of natural convection heat 
transfer in enclosures such as conjugate heat transfer [1, 
2], using nanofluids [3], hybrid nanofluids [4], and porous 
media [5] have been addressed in recent years.

Considering FSI effects, Al-Amiri and Khanafer [6] 
explored the effect of a right vertical flexible wall on natu-
ral convection in a porous cavity. Khanafer [7] was most 
probably the first to study the effect of a flexible bottom sur-
face on convective flow in a differentially-heated cavity. The 
outcomes of both studies showed that the elasticity of the 
flexible wall could have a significant impact on heat transfer 
enhancement. Khanafer [8] exhibited that the rate of heat 
transfer can be enhanced significantly by the flexible bottom 

wall for the case of a high value of the Grashof number and a 
moderate Reynolds number. Investigations of FSI in heated 
2D channel flow problems having thin, flexible plates/flaps 
can be found in [9–11], which showed heat transfer per-
formance enhancement. There are also some studies which 
addressed the interaction of flexible structured immersed in 
fluids [12–14].

Selimefendigil et al. [15] examined the combined effects 
of a flexible right wall and an inner rotating cylinder on 
mixed convection of a nanofluid in a cavity. Selimefendigil 
and Oztop [16] considered convection in a nanofluid-filled 
cavity having two flexible walls and an inner rotating cylin-
der. The heat transfer inside the cavity was found to be con-
trolled by the flexible sidewalls. Selimefendigil and Oztop 
[17] considered a cavity with a flexible right wall and filled 
with CuO–water nanofluid under the influence of an inclined 
magnetic field and volumetric heat generation. They showed 
that increasing the Richardson and Hartmann and internal 
Rayleigh numbers reduces the averaged heat transfer.

Alsabery et al. [18] studied the combined effects of a 
flexible wall and an inner heated rotating cylinder on con-
vection and entropy generation in a cavity. Anticlockwise 
rotation of the cylinder and small wall deformation gives a 
high heat transfer rate. Alsabery et al. [19] analyzed transient 
convection in a cavity with a partially heated left wall, a 
right flexible wall and having an inner cylinder. Raising the 
flexibility of the slanted wall of a triangular cavity and nano-
particle concentration enhances the heat transfer, as found 
by Selimefendigil and Oztop [20]. Selimefendigil et al. 
[21] studied the effects of a flexible right wall, an inclined 
magnetic field, and a moving top wall on convection in a 
nanofluid-filled cavity. Convection in an inclined 3D trap-
ezoidal cavity having two flexible walls was investigated by 
Selimefendigil et al. [22].

Convection problems in a cavity having a flexible struc-
ture positioned within it are important too since the presence 
of the flexible fin affects both the flow and thermal fields 
within the cavity. Jamesahar et al. [23] examined convec-
tion in a square cavity diagonally partitioned by a thin flex-
ible membrane. The heat transfer was found to be higher 
than that of the solid membrane. In another study, Mehryan 
et al. [24] studied unsteady MHD convection in a cavity 
partitioned by a thin flexible membrane. They found that 
the induced stresses in the membrane can be affected by 
the magnetic field. An inclined version of the problem with 
a sinusoidal temperature of the right wall and without the 
magnetic field was analyzed by Mehryan et al. [25]. The 
effect of the sinusoidal temperature condition on the mem-
brane was found to be negligible.

The effect of the sinusoidal temperature condition on 
the membrane was found to be negligible. Alshuraiaan 
and Khanafer [26] found that a horizontal porous thin fin 
attached to a wall of a cavity could increase heat transfer. 
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Ali et al. [27] showed that heat transfer could be improved 
in a 2D channel flow using freely oscillating flexible flaps. 
Ghalambaz et al. [28] examined the effect of a flexible fin 
attached to the left wall of a cavity. They found a significant 
improvement in heat transfer enhancement by increasing the 
amplitude of the fin oscillation.

Ismael and Jasim [29] considered convection in a cavity 
having an inlet (at the bottom of the left wall) and an outlet 
(at the top of the right wall) openings. A flexible fin placed 
close to the inlet opening was found to enhance the heat 
transfer. Alsabery et al. [30] studied the effect of a flexible 
oscillating fin on convection in a partially heated oblique 
cavity. They found that the heat transfer rate can be improved 
when the oscillation amplitude of the flexible fin’s end is 
increased. Selimefendigil et al. [31] examined the combined 
effects of a flexible fin attached to the cavity’s top wall, an 
inclined magnetic field, and moving left wall on convection 
of a nanofluid. Again, decreasing the rigidity of the flexible 
fin has the effect of increasing the heat transfer.

Yaseen and Ismael [32] considered mixed convection of 
a non-Newtonian fluid in a 2D open trapezoidal cavity with 
a parallel plane channel and a flexible fin attached to the top 
wall. They found the presence of the flexible fin has a neg-
ligible effect on the heat transfer performance. Sabbar et al. 
[33] studied the mixed convection heat transfer in a chan-
nel with a rectangular expanded section and flexible wall. 
The results show that the presence of a flexible wall could 
improve the heat transfer by 17% compared to a rigid wall. 
Sun et al. [34] showed that heat transfer from a circular cyl-
inder could be enhanced significantly by a flexible heated fin 
attached to the cylinder. The presence of elastic walls could 
improve or deteriorate the heat transfer rate. Selimefendigil 
and Oztop [35] simulated the mixed convection flow and 
heat transfer in a channel with two flexible walls.

Saleh et al. [36] recently investigated the effects of two 
flexible fins attached to the top wall of a cavity. They found 
that the same-direction and the opposite-direction oscilla-
tions of the fins give different instantaneous heat transfer 
characteristics. Raisi and Arvin [37] considered an FSI 
problem where an adiabatic flexible baffle was placed at the 
center of a cavity having a flexible top wall. Zadeh et al. [38] 
showed that increasing the baffle length has mixed effects 
on the thermal performance of the system. An increase in 
the baffle’s flexibility reduces the Nusselt number. Mehryan 
et al. [39] examined the effect of the presence of an inclined 
flexible baffle in an enclosure. The baffle could be fixed at 
its center or its edges. The results revealed that the fixed 
location of the baffle induces a notable impact on the baf-
fle deformation and heat transfer. The flexible baffles are 
also employed for natural convection flow control in a cavity 
[40]. Khanafer and Vafai [36] presented a good review of 
FSI in porous media recently.

The natural convection heat transfer of non-Newtonian 
fluids in FSI applications has not received much attention 
yet. In the present work, we shall examine the influence of 
the heated thin plate on the convective heat transfer of a 
non-Newtonian fluid in the cavity.

Problem mathematical formulation

The current work investigates natural convection heat trans-
fer of a power-law non-Newtonian fluid occupying a square 
cavity containing a horizontally placed flexible thin heater. 
The sidewalls of the cavity are maintained at a cold tempera-
ture T∗

c
 , whereas the top and bottom sidewalls are assumed 

thermally insulated. However, the flexible heater is main-
tained at a hot temperature T∗

h
 . All of the cavity sidewalls are 

assumed stationary and impermeable, and the no-slip condi-
tion applies to all of them. Figure 1 illustrates the schematic 
diagram and the coordinate system of the problem. The 
enclosure is a square with a size of L*. The flexible thin plate 
is assumed isotropic and uniform with a thickness t∗

p
 . All 

thermophysical properties are assumed constant except the 
density variation in the momentum equations, which is esti-
mated by Boussineq’s approximation. The force of gravity 
is taken into account and directed vertically, and the body 
forces on the thin plate include its mass and the buoyancy 
force.

Based on the physics of the problem, the governing equa-
tions include the balance laws of mass, linear momentum, 
and energy. Taking into account all of the above assump-
tions, and employing the arbitrary Lagrangian–Eulerian 
(ALE) technique, the governing equations can be written 
as [41]:

Continuity equation:

* *= hT T

* *= cT T* *= cT T

* * 0∂ ∂ =T y

Enclosure filled by
a non Newtonian fluid−

*x

*y

* * 0∂ ∂ =T y

*L

*
pl

*H

Flexible hot plate

Fixed point

g

Fig. 1   Schematic diagram of the problem
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Linear momentum equations:

in which

where m and n denote the non-Newtonian fluid consistency 
coefficient and the power-law index, respectively. It should 
be noted that for n < 1, the non-Newtonian fluid is called 
pseudoplastic fluid whereas for n > 1, the non-Newtonian 
fluid is called dilatant fluid. However, when n = 1, the New-
tonian fluid condition is recovered. These classifications are 
well known and are based on the changes in the apparent 
viscosity as a result of increasing shear stress. For a pseu-
doplastic fluid, the apparent viscosity decreases as the shear 
rate increases, whereas it augments with increases in the 
shear rate for a dilatant fluid.

Energy equation:

The nonlinear elastodynamic equation of the flexible 
plate:

where �∗ =
(
u∗
s
, v∗

s

)
 represents the velocity vector the mov-

ing grid, �∗ = (u∗, v∗) accounts for the vector of the fluid 
velocity, P* indicates the fluid pressure, T* is the solid/fluid 
temperature, g denotes the acceleration due to gravity, and cp 
is the specific heat capacity. The subscripts f and s indicate 
the fluid and the structure, respectively. �∗

s
 is the thin plate 

displacement vector such that d�∗
s

/
dt = �∗ , σ* is the solid 

stress tensor, and G∗
v
 represents the body force exerted on the 

thin plate. It should be noted that the stress analyzed here is 
the von Mises stress, and it is monitored over the entire fin 
surface. However, since the basis of the fin at the surface is 
the point where maximum strain occurs, the maximum will 
also be on the boundary of the fin. The density is represented 
by ρ with subscripts f and s corresponding to the fluid and 
solid, respectively. The symbols of νf, and β denote the fluid 
kinematic viscosity, thermal diffusivity, and the volumet-
ric thermal expansion coefficient, respectively. Finally, the 
thermal diffusivity is depicted by αf= kf/(ρ × Cp)f. The stress 

(1)�∗
⋅ �∗ = 0

(2a)

�
f

[
��∗

�t
+ (�∗ − �∗) ⋅ �∗�∗

]
= �∗

⋅
[
−P∗

I + �
(
∇∗�∗ + (∇∗�∗)tr

)]

+ �
f
��

(
T
∗ − T

∗
c

)

(2b)𝜇(𝛾̇) = m𝜇a

��������

𝜇a = (𝛾̇)n−1

𝛾̇ = max
�√

[�∗] ∶ [�∗], 𝛾̇min

�

2�∗ = ∇�∗ + (∇�∗)tr

(3)
(
�cp

)
f

(
�T∗

�t
+ (�∗ − �∗) ⋅ �∗T∗

)
= kf�

∗2T∗

(4)�s

d2�∗
s

dt2
− �∗�∗ = G∗

v

tensor in Eq. (4) is represented by the Neo-Hookean solid 
model as follows:

where Ftr denotes the transpose of matrix F and the symbol 
S is the Piola–Kirchhoff stress tensor and is linked to the 
strain energy density function Ws and the strain ε by the 
following equations:

The interface boundary conditions between the non-New-
tonian fluid and the hot plate and those on the boundaries 
are as follows:

Also, those on the surfaces of the flexible hot plate are 
given by

The governing partial differential Eqs. (1)–(4) are non-
dimensionalized by employing the following dimensionless 
parameters:

to yield the following dimensionless equations:

where

(5)�∗ = J−1FSFtr

(6)F =
(
I + �∗�∗

s

)
, J = det(F) and S = �Ws∕��

(7)

W
s
=

1

2
�
(
J
−1
I
1
− 3

)
− � ln (J)

+
1

2
�(ln (J))2

|||||

� = E∕(2(1 + �))

� = E�∕((1 + �)(1 − 2�))

(8)� =
1

2

(
�∗�∗

s
+ �∗�∗tr

s
+ �∗�∗tr

s
�∗�∗

s

)

(11a)On the side walls ∶ T∗ = T∗
c
, u∗ = v∗ = 0

(11b)

On the top and bottom walls ∶
�T∗

�y∗
= 0, u∗ = v∗ = 0

(11c)�∗
⋅ n = −P∗ + 𝜇(𝛾̇)�∗�∗, T∗ = T∗

h
,
𝜕�∗

s

𝜕t
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E
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p
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p
)

L∗

� =
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�f
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�∗L∗

�f
, P =

P∗L∗2

�f�
2
f

, T =
T∗ − T∗

c

T∗
h
− T∗

c

,� = �∗L∗

(13)(� ⋅ �) = 0

(14)
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+ PrRaT�
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Also, the Rayleigh and Prandtl numbers are defined as:

where

Here, the exerted buoyancy force inside the plate was 
ignored (i.e., Gν = 0). The non-dimensional boundary condi-
tions can be written as

The dimensionless form of the boundary conditions at the 
fluid–plate interface becomes as follows:

The initial conditions for the dimensionless fluid velocity 
and pressure are such that they are both null, whereas the 
initial dimensionless temperature is equal to 0.5. The local 
Nusselt number on the flexible hot thin element is assumed 
to represent the heat transfer rate as:

where n denotes the direction normal to the flexible plate’s 
surface. The average Nusselt number is calculated by inte-
gration of the local Nusselt number over the hot thin plate 
boundaries as follows:

Ultimately, the following partial differential equation is 
solved to visualize the flow patterns of the fluid:

(15)Ġ = max
�√

[�] ∶ [�], Ġmin

�
�2� =∇� + (∇�)tr

(16)Ra =
g�

(
T∗
h
− T∗

c

)
L∗3

�f�f
, Pr =

�f

�f

(17)
�T

��
+ (� − �) ⋅ �T = �2T

(18)1

�r

d2�s

d�2
− Eτ�� = EτGv

(19)E� =
EL∗2

�f�
2
f

, Gv =

(
�f − �s

)
L∗�

E
, �r =

�f

�s

(20a)On the sidewalls ∶ T = 0, u = v = 0

(20b)On the top and bottom ∶
�T

�y
= 0, u = v = 0

(20c)� ⋅ n = −P + PrĠn−1��,T = 1,
𝜕�s

𝜕t
= �

(21)Nulocal = −
�T

�n

||||On the hot plate

(22)Nuavg =
1

2 (lp + tp) ∫
Hot plate

Nulocalds

(23)�2� = −� × �

The value of ψ, namely stream function, on the outer 
walls of the enclosure, is zero.

Numerical solution and validations

Numerical approach

Due to the complexity of equations coupled with the bound-
ary conditions, it requires to convert them to a weak form of 
equations. After the conversion, the Galerkin finite element 
method accompanied by the ALE technique is applied to 
solve the weak equations. The details of the Galerkin method 
are available in Ref. [42]. The Yeoh scheme, with a stiffness 
factor of 100, was used for mesh smoothing. The equations 
were solved in fully coupled from, and the time step was 
controlled automatically employing the backward differen-
tiation formula.

Grid study and independence test

As shown in Fig. 2, a non-structured triangular mesh is 
provided for the computational domain of study, while a 
condensed structured mesh is applied for the plate. In order 
to assure that the quality of the grids used in the study is 
acceptable, the grid independence examination is an impor-
tant step. The grid independence test is accomplished in 
a way that the variations in the average Nusselt number, 

Fig. 2   Sample of utilized mesh
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maximum stress, and maximum strength of the streamlines 
become negligible with the increasing the number of the 
elements. Table 1 shows the variations in these parameters 
versus the element numbers. It can be seen that the acquired 
results for 9511 and 12,840 number of elements have a slight 
difference. Thus, due to lessen the computational costs, the 
mesh elements number of 9511 was chosen for numerical 
simulations.

Comparisons with others

A vital part of numerical studies is to demonstrate the accu-
racy and correctness of the results by comparison with other 
studies. To verify the deformation of the flexible wall, the 

results of this study were compared with Kuttler and Wall 
[43] research. They did investigations on a lid-driven cav-
ity equipped with a flexible wall. According to Fig. 3a, the 
deformation of the flexible wall of the cavity in this study 
and Ref. [43] shows a good agreement. In order to exam-
ine the verification of natural convection mechanism for 
non-Newtonian fluid in this study, the obtained FSI code of 
this study was used to re-simulate the Matin and Khan [44] 
numerical study. They examined the natural convection heat 
transfer of a non-Newtonian fluid inside a cavity. As shown 
in Fig. 3b, an excellent agreement is evident between these 
two studies. Finally, the average Nusselt number and maxi-
mum stream function magnitude of this study and Ref. [45] 
were compared at various values of Rayleigh numbers. They 
addressed the natural convection heat transfer mechanism 
in an air-filled square cavity in which a plate was placed 
horizontally or vertically. It can be seen in Table 2 that the 
range of difference between the two studies is 0.49–4.2%, 
which verifies the results of this research. 

Results

Here, the impacts of various parameters on fluid flow 
and heat transfer in the cavity are analyzed. These fol-
lowing parameters are considered: Rayleigh number 

Table 1   Mesh independency based on Ra = 106, Pr = 10, Eτ = 
5 × 109, n = 0.6

The bold element size was adopted for the computation of the results

Mesh elements Nuav σmax |Ψ|max

2191 27.658 8.2788E8 79.00
3331 27.818 8.1471E8 83.086
5199 28.225 7.9255E8 87.925
7509 28.274 7.9395E8 88.650
9511 28.327 7.9313E8 90.802
12,840 28.433 7.9585E8 90.500

Fig. 3   a Comparison of the 
wall deformation between the 
present study and the result of 
Kuttler and Wall [43]; b the 
average Nusselt number against 
power-law index n of the cur-
rent study and Matin and Khan 
(points) [44]

x

y

0 0.5 1
0

0.5

1

Present study
Kuttler and Wall

Inlet Outlet

Moving wall
u(t) = (1–cos[0.4πt]) ms–1

Wall deformation

n

N
u a

vg

0.6 0.8 1 1.2 1.4
1

1.5

2

2.5

3

3.5

Present Work
Matin and Khan

(a) (b)

Table 2   Average Nusselt 
numbers and |ψmax|, and 
comparison between the 
present study and the result 
of Saravanan and Sivaraj [45] 
considering the zero wall 
emissivity and lp = 0.5

Ra 1E5 1E6 10E7

|ψmax| Nuav |ψmax| Nuav |ψmax| Nuav

Present study 7.0928 3.2774 15.471 5.1558 32.6441 8.4297
Saravanan and 

Sivaraj [45]
7.0358 3.3339 15.5904 5.2804 32.4851 8.7997

Error (%) 0.81 1.69 0.77 2.36 0.49 4.20
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(104 ≤ Ra ≤ 106), power-law index (0.6 ≤ n ≤ 1.4), plate length 
(0.1 ≤ lp ≤ 0.7), elasticity modulus (5 × 109 ≤ Eτ ≤ 5 × 1011), 
and the distance between the bottom wall and the thin plate 
center (0.3 ≤ H ≤ 0.7). The other parameters remained con-
stant throughout the analysis, like the density ratio ( �r = 1 ) 
and the plate thickness ( tp = 0.01).

Figure 4 illustrates the development of streamlines and of 
the isotherms in the enclosure with time for various values 
of the fluid power-law index, i.e., n. It is shown that initially, 
the streamlines are more developed for n = 1, compared to 
the two other cases. As time goes, the flow becomes more 
developed for n = 0.6 due to a lower resistive shear stresses 
in the case of a pseudoplastic fluid. For that case, a recircula-
tion zone appears near the bottom of the cavity. For n = 1, the 

flow is slow, and the streamlines surround the flexible plate. 
For a dilatant fluid (n = 1.4), the first observation is that the 
flexible plate is more inclined than the two other cases. For 
the case of dilatant fluid, although the flow velocity is low, 
the shear stresses of the fluid are higher, and this is why 
the deflection of the flexible plate is more for n = 1.4. Also, 
it can be seen that the streamlines are concentric curves 
having the center above the cavity middle. As for the iso-
therms, it is clear that the contours shape is similar in the 
three cases. However, the contours of each temperature are 
slightly higher for lower n, indicating that the fluid is hotter 
in the upper part of the cavity. The decrease in the resistive 
shear stress when n is decreased intensifies the convective 
flow leading to this distribution of the isothermal contours.

The variation in the maximum stress (σmax) and the aver-
age Nusselt number (Nuav) as functions of time for different 
values of n is plotted in Fig. 5. The value of n slightly affects 
the variations of Nuav and σmax. For the former, in the steady 
part of the curve, the value of Nuav is higher for n = 0.6 than 
the other cases and it is minimum for n = 1.4. Indeed, the 
apparent viscosity increases for higher values of n and leads 
to higher flow resistance. This limitation in convective flow 
translates into a decrease in the heat transfer by convection, 
as indicated by the reduction of Nuav. On the other hand, this 
increase in the apparent viscosity raises the magnitude of the 
hydrodynamic interaction force between the fluid and the 
baffle and increases σmax, which is at its highest for n = 1.4 
and decreases when n is reduced.

The effect of n on the variation in the absolute value of 
the maximum of the stream function |ψmax| as a function of 
time is shown in Fig. 6. |ψmax| increases substantially when 
n is decreased and is at its highest for n = 0.6, while it is 
slightly greater than zero for n = 1.2. |ψmax| is an indicator 
of the strength of the fluid flow. When the apparent vis-
cosity is reduced for n < 1 in the case of a pseudoplastic 

Fig. 5   Effect of the power-law 
index (n) during the time on 
a the average Nusselt num-
ber (Nuav), and b σmax in the 
plate when Ra = 105, Pr = 10, 
Eτ = 1010, H = 0.5, and lp = 0.4
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(shear-thinning) fluid, the flow faces less resistance from the 
flow, and its strength increases. The exact opposite occurs in 
the case of a dilatant (shear-thickening) fluid, where the flow 
strength is reduced. The change in the strength of the flow 
with n is equivalent to a change of the intensity of convec-
tion as discussed in Fig. 5.

Figure 7 depicts the streamlines and the isotherms in the 
enclosure for selected Rayleigh numbers (Ra) and the power-
law index (n). For n = 0.6, increasing Ra from 104 to 106 
increases the magnitude of the velocity, and an additional 
vortex appears below the plate. The streamlines also tend to 
cover a greater surface inside the cavity. A similar trend can 
be observed for n = 0.8, but with a lower velocity magnitude. 
In the case of a Newtonian fluid (n = 1), a vortex below the 
plate appears for Ra = 104 and vanishes when the velocity 

increases for higher Ra. Further increasing n reduces the 
effect of Ra on the streamline patterns. This is due to the fact 
that increasing n raises the apparent viscosity of the fluid. 
As Ra indicates the relative significance of the buoyancy 
forces with respect to the viscous forces, its effect becomes 
less apparent when n is increased, i.e., when the resistive vis-
cous forces in the flow intensify. For instance, comparing the 
cases Ra = 104 and Ra = 105 for n > 1 shows a similar flow 
pattern. A similar pattern can also be seen when comparing 
the cases n = 1.2 and n = 1.4 for Ra = 106. However, the flow 
velocity magnitude is increased when Ra is raised or when 
n is reduced. As for the isotherms, increasing Ra tends to 
raise the position of low-temperature isotherms inside the 
enclosure, due to enhanced convection effects as observed 
in the flow patterns. Nonetheless, these effects become less 
apparent for higher values of n when the viscous forces are 
relatively more important.

The variations of Nuav and σmax as functions of n for 
different values of Ra are shown in Fig. 8. It can be seen 
that for all the values of n, Nuav increases with the rise of 
Ra. Nonetheless, this increase is less apparent for higher 
values of n. For instance, for n = 1.4, increasing Ra from 
104 to 105 has little effect on the value of Nuav due to the 
presence of important resistive viscous forces in the flow 
compared to the other cases. Raising Ra from 104 to 106 
increases 3.5 times the value of Nuav for n = 0.6 and by 1.5 
times for n = 1.4. Indeed, Ra represents the relative impor-
tance of buoyancy forces with respect to the resistive viscous 
forces, and increasing its value raises the natural convec-
tion effects and, consequently, the convective heat transfer. 
A similar observation can be noted for the value of σmax, 
which increases with Ra for all the values of n. The order 
of magnitude of the increase is around 10 when the value of 
Ra is increased ten times. When the convective effects are 
increased, the flow acts over the plate with a higher interac-
tion force, which, as a consequence, increases the resulting 

Fig. 8   Variations of a average 
Nusselt number (Nuav) and b 
the maximum plate stress (σmax) 
for selected values of Ra at 
Pr = 10, Eτ = 1010, H = 0.5, and 
lp = 0.4
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Fig. 11   Variation of a the 
average Nusselt number (Nuav), 
and b the maximum plate stress 
(σmax) on the plate for select H 
and a range of n when lp = 0.4, 
Pr = 10, Eτ = 1011, and Ra = 106
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stress. As for the effect of n, it can be seen that for low 
Ra, the stress increases with n while when Ra is increased 
to 106, the stress decreases when n is reduced from 0.6 to 
0.8 then starts to increase with n when this latter is further 
raised until 1.4. This suggests that the stress in the flexible 
baffle is governed by two mechanisms, the shear stress in 
the fluid and the strength of the convection, which increases 
and decreases with n, respectively. For low Ra, the effect of 
n is more apparent as the intensity of the convection is low. 
For high Ra, decreasing n for a pseudoplastic fluid decreases 
the intensity of the flow for relatively similar shear stresses 
in the fluid. For a dilatant fluid, the intensity of the convec-
tive flow declines, and the fluid shear-stresses elevate. The 
growth of n leads to higher stress in the plate.

Figure 9 illustrates |ψmax| as a function of n for selected 
Rayleigh numbers. A significant increase of |ψmax| is 
observed when Ra is increased, mainly for the lower val-
ues of n, while this increase is less considerable when n is 
increased. In fact, the strength of the flow rises when the 
importance of the viscous forces is diminished compared 
to the buoyancy forces driving the flow, which is the case 
for higher Ra. However, the viscous forces are more impor-
tant when n is increased, which leads to flow with a lower 
strength compared to lower values of n. The increase in the 
strength of the flow is equivalent to an increase in the inten-
sity of convection, which is related to the results discussed 
in Fig. 8.

The effect of the location of the hot plate, i.e., H, on 
the streamlines and the isotherms is shown in Fig. 10 for 

selected values of n. It can be seen that for n = 0.6, the flow 
patterns above the plate are similar for all the values of H, 
but are more or less compressed according to the available 
size above the plate. Below the plate, the flow is almost 
not occurring when the plate is too low (H = 0.2), while 
a recirculation zone appears when the plate is in the mid-
dle (H = 0.5). For n = 1 and n = 1.4, when the plate is low 
(H = 0.2), the streamlines are concentric curves around the 
center. When the plate is moved upward, the flow patterns 
are disturbed around the plate, and an additional vortex 
appears in the case n = 1.4. Concerning the isothermal con-
tours, it is clear that in all the cases, the isothermal con-
tours of low temperature move upward when the hot plate is 
located in a high position, while naturally, the high-temper-
ature contours are concentrated around the plate.

The variation of Nuav and σmax as functions of n for 
selected values of H is depicted in Fig. 11. For all the val-
ues of n, Nuav increases when H is decreased, i.e., when the 
hot plate is moved downward. This increase is minimal for 
higher values of n, as a 35% increase in Nuav is observed 
when H is reduced from 0.8 to 0.2 for n = 1.4, while the 
value of Nuav is almost doubled for the same reduction of 
H for n = 0.6. This is because of the free convection mecha-
nism, i.e., the hot fluid going upward while the cold fluid is 
going downward. In fact, moving the hot plate downwards 
indicates that the fluid is heated in the vicinity of the bottom 
wall, while the colder fluid is near the top. Moving the hot 
plate upward reduces the distance between the high- and 
low-temperature zones and, as a result, reduces the natu-
ral convection. For the same reason, the maximum stress 
is higher when H is decreased for all the values of n, as the 
convective effects are less developed in that case. It can also 
be seen that the stress in the plate shows a local minimum 
at n = 0.8 for all the values of H. This is due, as previously 
explained in Fig. 8, to the fact that the stress over the plate 
results from two mechanisms, the intensity of convection 
which vary with H and the shear forces in the fluid which 
vary with n.

Figure 12 shows |ψmax| as a function of n for selected 
values of H. When n is equal to or higher than unity (dila-
tant fluid), |ψmax| decreases when the hot plate is moved 
upwards. In the case of pseudoplastic fluids, it is shown 
that for n = 0.8, while moving the plate below the middle 
of the cavity (H = 0.2 and H = 0.5) increases the value of 
|ψmax| compared to the case when the plate is above the mid-
dle (H = 0.8), |ψmax| decreases when H is raised from 0.2 to 
0.5. Indeed, the increase in the convective effects due to the 
reduction of H, as discussed in Fig. 11, leads to a flow with 
higher strength and a more intense convection.

The impact of the hot plate length, i.e., lp, on the devel-
opment of the streamlines and the isotherms for various 
values of n is illustrated in Fig. 13. First, it can be seen 
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that increasing lp induces a minimal influence on the flow 
velocity magnitude. On the other hand, increasing lp tends 
to create more disturbance in the flow patterns around the 
hot plate. In addition, the plate bending is more apparent 
when it is larger in size. This change of bending can further 
affect the flow patterns around the plate, like can be seen 
for instance, by comparing the cases lp = 0.5 and lp = 0.7 for 
n = 1.4. As for the isothermal contours, comparing the same 
location inside the enclosure for the same value of n but 
for different values of lp shows that increasing the size of 
the plate shows a lower temperature in the location, mainly 
for temperatures higher than 0.15. This shows that the heat 

transferred from the plate to the fluid increases with lp but 
the comparison with the flow patterns shows that a higher 
value of lp reduces the intensity of convection in the cavity.

The profiles of Nuav and σmax are plotted in Fig. 14 for 
a range of variation of n and selected values of lp. For all 
the values of n, Nuav is reduced when lp increases and is 
maximum for lp = 0.1. Indeed, the presence of a longer plate 
in the middle of the cavity creates more obstruction to the 
flow and slows it down which reduces heat transfer by free 
convection. Nonetheless, as lp is increased above 0.3, the 
variation of Nuav becomes less significant. For instance, for 
n = 0.6, a 100% increase of Nuav can be noticed when lp is 
decreased from 0.7 to 0.1 while Nuav varies slightly when 
lp is decreased from 0.7 to 0.5. This indicates that lp = 0.5 
can be considered as a critical length under which the free 
convection would be enhanced due to a lower obstruction of 
the flow. It is worth noting that an increase in the value of 
Nuav does not indicate an increase in the total heat transfer, 
as the overall heat transfer is reduced for lower lp because the 
surface of heat transfer is decreased. On the other hand, the 
maximum stress σmax increases when the value of lp is raised, 
for the various values of n. This is due to the fact that the 
contact area of the fluid–structure interaction is increased, 
and, thus, the interaction forces acting upon it are enhanced.

Figure 15 depicts the variation of |ψmax| as a function of 
n for different values of lp. For n > 0.8, the value of |ψmax| 
shows very little variation when lp is below 0.5. for n = 0.6, 
|ψmax| increases substantially to a maximum value when 
lp = 0.1 compared to the other cases. For all the values 
of n, |ψmax| is always minimum for lp = 0.7. As indicated 
previously, increasing the length if the plate obstructs the 
flow and reduces its strength as well as the intensity of 
convection.

Fig. 14   Behavior of a the 
average Nusselt number (Nuav) 
and b the maximum plate 
stress (σmax) for a range of n at 
different lp at H = 0.5, Pr = 10, 
Eτ = 1011, and Ra = 106

(a) (b)
n

N
u a

v

0.4 0.6 0.8 1 1.2 1.4

0

10

20

30

40

50

60
l = 0.1
l = 0.3
l = 0.5
l = 0.7

n

σ
m

ax

0.4 0.6 0.8 1 1.2 1.4

106

107

108

109

l = 0.1
l = 0.3
l = 0.5
l = 0.7

Fig. 15   Variation in the maximum value of the streamlines (|ψmax|) at 
different heater length (lp) at H = 0.5, Pr = 10, Eτ = 1011, and Ra = 106



Free convective heat transfer of a non‑Newtonian fluid in a cavity containing a thin flexible…

1 3

Conclusions

In the current work, the flow and heat transfer of pseudo-
plastic and dilatant liquids were investigated in a cavity 
containing a thin hot plate. The large displacements of the 
plate due to the fluid interaction were modeled by the ALE 
approach. The governing equations for the displacement of 
the plate and the flow and heat transfer in the liquid were 
introduced in the form of partial differential equations and 
transformed into a non-dimensional form. The PDE equa-
tions were written in a weak form and solved by FEM. 
The effect of mesh size on the accuracy of the results was 
investigated. The simulation outcomes for some marginal 
cases were compared with the literature results and found 
in good agreement. The influence of the important non-
dimensional parameters on the streamlines, isotherms, and 
Nusselt number was addressed. The main outcomes of the 
present numerical analysis can be summarized as follows:

•	 Increasing the power-law index of the non-Newtonian 
fluid, i.e., n, raises the apparent viscosity and reduces the 
strength of the flow and the intensity of convection. The 
heat transfer is thus more enhanced in the case of a pseu-
doplastic (shear-thinning) fluid compared to a dilatant 
(shear-thickening) fluid. On the other hand, increasing 
n leads to higher stress over the flexible plate due to a 
higher magnitude of the fluid–structure interaction force.

•	 Using a higher value of Rayleigh number, i.e., Ra, 
increases the relative importance of the buoyancy forces 
driving the flow compared to the viscous forces and leads 
to higher convection intensity. Consequently, the heat 
transfer by natural convection is enhanced. This enhance-
ment is less important for high values of n where the 
viscous effects remain more pronounced. Increasing Ra 
from 104 to 106 raises the value of Nuav by 3.5 times for 
n = 0.6 and by 1.5 times for n = 1.4.

•	 Raising the position of the hot plate inside the enclosure 
reduces the vertical distance between the hot and cold 
zones in the fluid and, as a result, diminishes the inten-
sity of convection and the resulting heat transfer. This is 
valid for all the values of n. Nuav increases by 35% when 
H is decreased from 0.8 to 0.2 for n = 1.4, while Nuav is 
doubled for the same decrease of H when n = 0.6.

•	 Using a longer flexible plate leads to a more obstruction 
of the flow, which decreases the intensity of convection. 
Increasing the length of the plate lp thus weakens the 
average heat transfer by free convection. Nuav is almost 
doubled when lp is reduced from 0.7 to 0.1 while Nuav 
changes slightly when lp is reduced from 0.7 to 0.5. 
Nonetheless, due to the increased size of the plate, the 
stress acting over it rises.
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