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Abstract 
 

The boundary layer heat transfer and entropy generation of a nanofluid over an isothermal linear stretching sheet with heat genera-

tion/absorption have been analyzed. In the nanofluid model, the development of nanoparticles concentration gradient due to slip mecha-

nisms, the effects of Brownian motion and thermophoresis, is taken into account. The dependency of the local Nusselt number and en-

tropy generation number on the non-dimensional parameters is numerically investigated. The results show that the increase of heat gen-

eration parameter, Brownian motion parameter, or thermophoresis parameter decreases the entropy generation number in the vicinity of 

the sheet.    
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1. Introduction 

The boundary layer flow and the heat transfer over a con-

tinuously moving surface are important types of flow and heat 

transfer that occur in several engineering processes. Heat-

treated materials travel between a feed roll and a wind-up roll 

while they are subject to heat transfer with a fluid. Another 

example is the products manufactured by extrusion of plastic 

sheets [1]. These processes can be modeled as a stretching 

sheet subject to heat transfer. The stretching sheet phenome-

non may occur in many other applications such as paper pro-

duction, glass blowing, wire drawing, metal spinning, hot 

rolling, polymer engineering, cooling of metallic sheets and 

crystal growing [1, 2]. In these applications, the quality of the 

final product depends on the heat transfer rate between the 

stretching surface and the fluid during the cooling or heating 

process. Therefore, the choice of a suitable cooling/heating 

liquid is essential as it has a direct impact on the rate of heat 

transfer. Numerous techniques have been investigated to en-

hance thermal performance of heat transfer fluids. Porous 

materials can be used to enhance the heat transfer rate from 

stretching surfaces in the industrial applications [3, 4]. An-

other method is dispersing the nanoscale particles of highly 

thermal conductive materials like carbon, metal and metal 

oxides into heat transfer fluids to improve overall thermal 

conductivity. Nanofluid is described as a fluid in which the 

solid nanoparticles with the length scales of nanometers are 

suspended in a conventional heat transfer fluid. Sakiadis [5] 

was the first to study the boundary layer flow over a continu-

ous stretching sheet. Many researchers have studied the differ-

ent aspects of hydrodynamic boundary conditions including 

permeable stretching sheet, partial slip velocity on the sheet 

surface [6], and nonlinear velocity of stretching sheet. The 

appearance of global slip leads to an increase in the number of 

slipping atoms and consequently an increase in the slip length. 

Hayat et al. [7] analyzed the effect of the slip boundary condi-

tion on the magneto hydrodynamic flow and heat transfer over 

a stretching sheet. Makinde [8] analyzed the simultaneous 

effects of Navier slip and Newtonian heating on an unsteady 

hydromagnetic boundary layer stagnation point flow towards 

a flat plate. Makinde and Sibanda [9] studied the effect of 

chemical reaction on the boundary layer flow past a vertical 

stretching surface in the presence of internal heat generation. 

They found that the velocity and temperature profiles increase 

significantly as the heat generation parameter increases. 

Mehmood et al. [10] analytically analyzed the unsteady heat 

transfer and flow of an incompressible viscous fluid over a 

permeable isothermal stretching sheet. In certain applications 

such as those involving heat removal from nuclear fuel debris, 

underground disposal of radioactive waste material, and exo-

thermic and/or endothermic chemical reactions, in the work-

ing fluid heat generation (source) or absorption (sink) effects 

are important. Kiwan and Ali [11] analyzed the flow and heat 

transfer characteristics of a fluid over a linearly stretching 

surface embedded in a saturated porous medium in the pres-
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ence of internal heat generation or absorption near and far 

away of the slit. Alsaedi et al. [12] analyzed the effects of heat 

generation/absorption on stagnation point flow of nanofluid 

over a stretching surface. 

Recently, Khan and Pop [13] analyzed the boundary-layer 

flow of a nanofluid past a stretching sheet using a model in 

which the Brownian motion and thermophoresis effect are 

taken into account. Noghrehabadi et al. [14] examined the 

effect of the partial slip boundary condition on the flow and 

thermal boundary layer of nanofluids over an isothermal 

stretching sheet. Das [6] did a case study for two types of nan-

ofluids, Cu-water and Al2O3-water, to analyze the convective 

heat transfer performance of nanofluids over a permeable 

stretching surface in the presence of partial slip, thermal buoy-

ancy and temperature-dependent internal heat generation or 

absorption.  

The study of entropy generation has become an important 

aspect of modeling and optimizing application in the energy 

system to find their optimum design condition. The foundation 

of knowledge of entropy production goes back to Clausius and 

Kelvin’s studies on the irreversible aspects of the second law 

of thermodynamics. Since then the theories based on these 

foundations have rapidly developed. However, the entropy 

production resulting from temperature differences has re-

mained untreated by classical thermodynamics, which moti-

vates many researchers to conduct analyses of fundamental 

and applied engineering problems based on second law of 

thermodynamics. 

Entropy generation, which is common in all types of heat 

transfer processes, is associated with thermodynamic irre-

versibility. Different sources are responsible for generation of 

entropy like heat transfer across finite temperature gradient, 

characteristic of convective heat transfer, viscous effect and 

mass diffusion. Bejan [15, 16] focused on the different reasons 

behind entropy generation in applied thermal engineering. 

Generation of entropy destroys available work of a system. 

Therefore, it makes good engineering sense to focus on irre-

versibility of heat transfer and fluid flow processes to under-

stand the function of entropy generation mechanism [15].  

Many researchers have studied the entropy generation of 

thermal systems. Among them, Weigand and Birkefeld [17] 

analyzed entropy generation due to laminar flow over a flat 

plate. Makinde [18] performed a second law analysis for the 

hydromagnetic boundary layer flow and heat transfer over a 

stretching sheet in the presence of thermal radiation. Makinde 

considered variable viscosity as an inverse function of tem-

perature difference and reported that the entropy generation 

number decreases as the Prandtl number, radiation parameter 

or viscosity variation parameter increases. In another study, 

Makinde [19] examined the inherent irreversibility in a grav-

ity-driven thin liquid film along an inclined heated plate with 

convective cooling and found that viscous dissipation irre-

versibility is dominant at the inclined heated plate surface 

while the heat transfer irreversibility strongly is dominant at 

the liquid-free surface. 

Because of the novelty of nanofluids, only few works have 

been done to analyze the second law of thermodynamics in the 

area of nanofluid flow and heat transfer. Among them, Es-

maeilpour and Abdollahzadeh [20] applied the second law to 

predict the nature of irreversibility in terms of entropy genera-

tion in the free convection flow and heat transfer of nanofluids 

inside an enclosure.  

To the best of the authors’ knowledge there is not any in-

vestigation to address the entropy generation of nanofluids 

using a model in which the dynamic effects of nanoparticles 

are taken into account. In the present study, the entropy gen-

eration, flow and thermal boundary layer over an isothermal 

stretching sheet are theoretically analyzed in the presence of 

the slip boundary condition and internal heat genera-

tion/absorption.  

 

2. Mathematical formulation of the problem 

Consider a two-dimensional incompressible and steady state 

viscous flow of a nanofluid over a continuously stretching 

surface. The velocity of surface is linear, which is taken as 

UW(x) = b.x where b is a constant, and x is the coordinate 

component measured along the stretching surface. The 

scheme of physical configuration has been depicted in Fig. 1. 

There are three distinct boundary layers, namely, hydrody-

namic boundary layer (velocity), thermal boundary layer 

(temperature) and concentration boundary layer (nanoparticle 

volume fraction) over the sheet. However, in the Fig. 1 only a 

single boundary layer is plotted to avoid congestion. Here, the 

nanofluid flows at y = 0 where y is the coordinate measured 

normal to the stretching surface. 

In the continuum modeling of fluidic transport, no-slip 

boundary condition is sometimes assumed, which means that 

the fluid velocity component is assumed to be zero relative to 

the solid boundary [21]. However, for nanofluids, a certain 

degree of tangential slip may be allowed [21, 22]. Considering 

the Navier condition, the velocity slip is assumed to be pro-

portional to the local shear stress at the sheet surface [23].  

The temperature and the nanoparticle fraction at the stretch-

ing surface are assumed to have constant values Tw and φw, 

respectively, while the ambient temperature and nanoparticle 

 

Fig. 1. Physical configuration and coordinate system of the problem. 
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fraction have constant values T∞ and φ∞, respectively. It is 

further assumed that the base (host) fluid and the suspended 

nanoparticles are in thermal equilibrium. 

For nanofluids, by considering the dynamic effects of the 

nanoparticles and applying the boundary layer approximations 

the governing steady conservation of mass, momentum, ther-

mal energy in the presence of heat generation or heat absorp-

tion in the Cartesian coordinate system of x and y are as fol-

lows [24, 25]: 
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subject to the following boundary conditions at the sheet, 

 

0, ( ) , , , 0W S W Wv u U x U T T at yφ φ= = − = = =   (6) 

 

and the following boundary conditions at the far field 

 

0, , ,v u T T yφ φ∞ ∞= = = = →∞ .  (7) 

 

Here, u and v are the velocity components along the x axis 

and y axis, respectively. T is the temperature, p is the fluid 

pressure, α is the thermal diffusivity, v is the kinematic viscos-

ity, US is the velocity slip at the wall, Q0 is the dimensional 

heat generation or absorption coefficient, DB is the Brownian 

diffusion coefficient, and DT is the thermophoresis diffusion 

coefficient. τ = (ρc)p /(ρc)f is the ratio of the effective heat 

capacity of the nanoparticle material and heat capacity of the 

fluid and 2∇  is the Laplace operator in Cartesian coordinates. 

ρ and c are the density and specific heat capacity. The sub-

scripts of p and f show the properties of nanoparticle and fluid, 

respectively. 

Generally, the thermal diffusivity and diffusion coefficients 

are a function of the local volume fraction of nanofluids. In 

the present study, these properties are considered a function of 

quiescent volume fraction of nanofluid, φ∞; hence, the effect 

of the local concentration due to the concentration gradient on 

the variation of these parameters has been neglected. As the 

nanofluids are dilute solutions, neglecting this effect on the 

variation of properties is a valid engineering assumption 

which has been applied by previous researchers [13, 26, 27]. 

Therefore, in the present study, the properties are evaluated for 

the nanoparticle volume fraction of quiescent nanofluid. 

 

3. Nondimensionalization of the governing equations 

To attain a similarity solution for Eqs. (1)-(5), the stream-

function and dimensionless variables are introduced in the 

following form: 

 

( ) , /bv x f y b vψ η η= =   (8) 

( ) , /bv x f y b vψ η η= = .  (9) 

 

The stream function ψ can be defined with u = ∂ψ/∂y, v =   

-∂ψ/∂x, so that Eq. (1) is satisfied identically. The pressure 

outside the boundary layer in quiescent part of flow is constant, 

and the flow occurs only due to the stretching of the sheet; 

hence, the pressure gradient can be neglected. By applying the 

introduced similarity transforms Eqs. (8) and (9) on the re-

maining governing equations Eqs. (2)-(5) the following set of 

ordinary differential equations is obtained: 
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where primes denote differentiation with respect to η. The 

parameters of Pr, Le, Nb, Nt and λ are defined by: 
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where Pr, Le, Nb, Nt and λ denote the Prandtl number, Lewis 

number, Brownian motion parameter, thermophoresis parame-

ter and the heat source (λ > 0) or sink (λ < 0) parameter, re-

spectively. 

Using the boundary layer approximations and introducing 

the Navier condition, the hydrodynamic boundary condition at 

the sheet surface can be written as: 
 

( )w s

u
u U x N U

y
ρν

∂
− = =

∂
  (14) 

 

where ρ is the nanofluid density and N is a slip constant. By 

applying the similarity transforms, the Eq. (14) is reduced to: 

 

(0) 1 (0)f K f′ ′′− =   (15) 

 

where 1/ 2( )K N cvρ=  is the non-dimensional slip factor. By 

performing introduced similarity transforms (i.e., Eqs. (8) and 

(9)) on the remaining boundary conditions (i.e., Eqs. (6) and 
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(7)), the transformed boundary conditions are obtained: 

 

0: 0, 1 , 1, 1At f f K fη θ β′ ′′= = = + = =   (16) 

: 0, 0, 0At fη θ β′→∞ = = = .  (17) 

 

The quantity of practical interest in this study is the Nusselt 

number Nux: 

 

( )

w
x

w

xq
Nu

k T T∞
=

−
  (18) 

 

where qw is the wall heat flux. Applying the similarity vari-

ables yields: 

 
1/ 2Re (0)x xNu θ− ′= −   (19) 

 

where Rex = UW(x) x/ν is the local Reynolds number based on 

the stretching velocity UW(x). Nield and Kuznestov [27] referred 
1/ 2Rex xNu−  as the reduced Nusselt number Nur = -θ'(0). 

Neglecting Nb and Nt reduces this problem to the classical 

problem of flow and heat transfer of a viscous fluid over a 

stretching surface with constant wall temperature [23, 28, 29]. 

In this case, the boundary value problem for β becomes ill-

posed without physical meaning. 

 

4. Entropy generation analysis 

The local volumetric rate of entropy generation in the pres-

ence of finite temperature difference, viscous dissipation and 

mass diffusion is given by [30-33]: 
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 , 

  (20) 

 

where (SG) is the local volumetric entropy generation rate. Eq. 

(20) clearly shows contribution of entropy generation sources. 

The first term on the right-hand side of Eq. (20) is the entropy 

generation due to the heat transfer across a finite temperature 

difference (Sth), the second term is the local entropy generation 

due to viscous dissipation (Sfr), and the third term represents 

the diffusive irreversibility (Sdif).Therefore, the local entropy 

generation rate can be written as: 

 

G th fr difS S S S= + +   (21) 

 

where the subscripts th, fr and dif are used to indicate the ef-

fect of thermal diffusion, viscous dissipation and concentra-

tion diffusion, respectively. 

The dimensionless number for entropy generation rate (Ns) 

is defined by dividing the local volumetric entropy generation 

rate (SG) to a characteristic entropy generation rate (SG0). For 

the prescribed boundary condition, the characteristic entropy 

generation rate is: 
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In the above equation, T∞ is the absolute ambient tempera-

ture, ∆T is the temperature difference, and L is the characteris-

tic length. Therefore, the entropy generation number is: 
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By applying the similarity transforms on the Eq. (23), the 

similarity equation of entropy generation is obtained as fol-

lows: 
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In the above equation, Ns is the sum of three terms of irre-

versibility sources as Ns = Nth+Nfr+Ndif where  
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Br is the the Brinkman number, and Rel is the Reynolds 

number based on the characteristic length. Ω is the dimen-

sionless temperature difference and Σ is the dimensionless 

concentration difference. These parameters are given by the 

following relations: 
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Here, the irreversibility distribution ratios can be defined as 

the irreversibility of each term to the total irreversibility. 

Therefore, the following non-dimensional parameters can be 

defined: 

 

, ,
fr difth
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s s s

N NN

N N N
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where γth, γfr and γdif denote the fraction of entropy generation 

due to thermal diffusion, viscous dissipation and concentration 

diffusion, respectively. 
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5. Results and discussion 

The set of ordinary differential Eqs. (10)-(12) subject to Eqs. 

(16) and (17) is solved numerically for various ranges of the 

Prandtl number, Lewis number, Brownian motion parameter, 

thermophoresis parameter, slip factor and heat source/sink 

parameter. Numerical results are obtained by using the Runge- 

Kutta-Fehlberg method [34, 35]. The most crucial factor of the 

solution is to choose the appropriate finite value of η∞. Thus, 

to estimate the value of η∞, it is increased from an initial value 

of 15 until the evaluated values of f"(0), θ'(0) and β'(0) differ 

only after the desired significant digit.  

As a test of the accuracy of the solution, the values of f''(0) 

in the case Nb = Nt = 0 are compared with the values reported 

by Wang [29], Sahoo and Do [28], Anderson [36] and Hayat 

et al. [7] for different values of the slip factor in Table 1. This 

table reveals that the numerical results obtained by the present 

algorithm are in very good agreement with the previous results. 

Table 2 shows the evaluated values of the reduced Nusselt 

number (Nur) for Pr = 10, Le = 10 in the case of the no slip 

condition and neglecting heat generation/absorption for sev-

eral values of Brownian motion and thermophoresis parameter. 

The results of Table 2 in those cases are compared with Khan 

and Pop [13]. The comparison presented in Table 2 exhibits a 

fine agreement.  

Values of the Prandtl number (Pr) and the Lewis number 

(Le) depend on the nature of the fluid. In gases α ≈ ν which 

leads to Pr and Le being of the order of unity. However, in 

most liquids Pr > 1 [37]; thus, heat diffusion is more efficient 

than mass diffusion, yielding a Lewis number which is greater 

than unity. The choice of the values for Nb and Nt was dic-

tated by the fact that these values were used by Khan and Pop 

[13] and Makinde and Aziz [24] for the flow and heat transfer 

of nanofluids. In most cases of heat generation analyses for 

nanofluids, the parameter of λ considered in the range of -0.2 

to 0.2 [6, 12, 25]. In the nanofluids, a limited range of tem-

perature difference is applicable. High temperature differences 

may cause the evaporation of the base fluid which has not 

been considered in the present work. As the T∞ is the absolute 

temperature, the value of Ω in most physical cases is on the 

order of magnitude of 10
-1
. For the nanofluids, the magnitude 

of dynamic viscosity is of the scale of 10
-3
 and the term of 

k(Tw-T∞) has the scale of 10
2
. Therefore, Br and Br/Ω are small 

parameters. For the parameter of ε, the parameter of φ∞ which 

shows the volume fraction of nanoparticles is of the order of 

10
-2
, and the magnitude of R/k is also of the order of 10

3
. 

However, as Buongiorno [38] analyzed, DB is a very small 

value. Consequently, the value of ε for nanofluids is also very 

small. The φw and φ∞ are of the same order of magnitude. 

Thus, the parameter of Σ is also of the order of magnitude of 

10.  

Fig. 2 shows the dimensionless temperature profiles θ(η) for 

selected values of the slip factor (K) and heat source/sink pa-

rameter (λ). In preparing this figure, Brownian motion, ther-

mophoresis parameters, Lewis number and the Prandtl num-

ber were kept fixed. This figure illustrates that the nanofluid 

temperature in the vicinity of the sheet is high and decreases to 

zero at the edge of boundary layer, which satisfies the asymp-

totic far field boundary condition. The temperature in the 

thermal boundary layer rises as the slip factor or heat 

source/sink parameter increases. It is obvious that the increase 

of slip factor and heat source/sink parameter increases the 

magnitude of thermal boundary layer thickness. The increase 

of the heat source/sink parameter means the increase of the 

heat generated inside the boundary layer, which leads to 

higher temperature profiles. In the case of high values of heat 

generation (λ = 0.3) the maximum temperature occurs in the 

vicinity of the sheet, but not at the sheet. This observation is in 

good agreement with the physical insight of the problem. The 

temperature of fluid near the stretching sheet is high. There-

Table 1. Comparison of skin friction coefficient –f''(0) for various 

values of slip factor K. 
 

K Present result 
Sahoo and 

Do [28] 

Wang 

[29] 

Ander-

son [36] 

Hayat et al. 

[7] 

0.0 1.00000000 1.001154 1.0 1.0000 1.000000 

1.0 

2.0 

5.0 

0.43016066 

0.28398138 

0.14484373 

0.428450 

0.282893 

0.144430 

0.430 

0.284 

0.145 

0.4302 

0.2840 

0.1448 

0.430162 

0.283981 

0.144841 

20 0.04379400 0.043748 0.0438 0.0438 0.043782 

 
Table 2. Comparison of results for the reduced Nusselt number -θ'(0) 

when Pr = Le = 10 and λ = K = 0. 
 

Nt Nb Present result Khan and Pop [13] 

0.1 0.1 0.95238 0.9524 

0.2 0.1 0.69317 0.6932 

0.3 0.1 0.52008 0.5201 

0.1 0.2 0.50558 0.5056 

0.1 0.3 0.25216 0.2522 

 

 

 
 

Fig. 2. Effect of heat source/sink parameter and slip factor on the di-

mensionless temperature profiles. 
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fore, addition of external heat which is generated in the 

boundary layer increases the fluid temperature to values 

higher than the temperature of stretching sheet. The presence 

of heat generation has the tendency to increase the fluid tem-

perature. When heat absorption exists, the fluid temperature 

decreases, and the thermal boundary layer thickness becomes 

thinner. The movement of the flow in the boundary layer is 

because of the motion of the stretching sheet. Therefore, the 

increase of the slip factor decreases the effect of sheet motion 

on the boundary layer, and consequently, the flow tends to 

slow down. Thus, as the slip factor increases, the rate of heat 

transfer between the sheet and nanofluid decreases, and the 

thickness of thermal boundary layer increases. 

The effects of Prandtl number and thermophoresis parame-

ter on the dimensionless temperature profiles are shown in Fig. 

3. As the thermophoresis parameter increases or the Prandtl 

number decreases, the local temperature profiles in the bound-

ary layer increase. For a constant value of viscosity, the de-

crease of thermal diffusivity increases the magnitude of 

Prandtl number. Therefore, increase of Prandtl number de-

creases the diffusion of heat in the boundary layer, and thus 

the temperature profiles are increased. Fig. 4 illustrates the 

effects of Brownian motion and slip factor K on the concentra-

tion profiles. This figure shows that as the Brownian motion 

parameter increases, the concentration profiles decreases. By 

the increase of the Brownian motion parameter, the thickness 

of the concentration boundary layer is decreased. As the slip 

factor increases, the effect of stretching sheet on the boundary 

layer increases. Therefore, by the increase of the slip factor the 

concentration tends to rise in the vicinity of stretching sheet. 

However, far from the sheet, the slip factor does not have a 

significant effect on the thickness of the boundary layer.  

As mentioned, the entropy generation number is the sum of 

three types of entropy sources: thermal diffusion, viscous dis-

sipation and concentration diffusion. The contribution of each 

source of entropy in the boundary layer is depicted in Fig. 5. 

This figure reveals that near the sheet, the thermal diffusion is 

the dominant source of entropy generation. However, close to 

the sheet, which the velocity gradients are comparatively high, 

the entropy generation due to viscous dissipation also is com-

paratively significant. Near the boundary edge, which the 

temperature gradients are low, the local entropy generation 

due to viscous dissipation is the dominant source of entropy 

generation. It is worth noticing that near the boundary edge 

the total number of entropy generation is very small. There-

fore, however, the entropy generation due to the viscous dissi-

pation is dominant, but its magnitude is very low. The entropy 

generation due to concentration diffusion in the entire of 

boundary layer is slight. Figs. 6-11 show the effect of non-

dimensional parameters of Le, Pr, Nt, Nb, λ and K on the en-

tropy generation number, respectively. These parameters can  

 
 

Fig. 3. Effect of Prandtl number and thermophoresis parameter on the 

dimensionless temperature profiles. 

 

 

 
 

Fig. 4. Effect of Brownian parameter and slip factor on concentration 

distribution. 

 

 
 

Fig. 5. Variations of relative entropy generation for each type of en-

tropy generation source. 
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Fig. 9. Effect of Brownian parameter on the entropy generation num-

ber. 

 

 
 

Fig. 10. Effect of heat source/heat sink parameter on the entropy gen-

eration number. 

 

 
 

Fig. 11. Effect of slip factor on entropy generation number. 

 

 
 

Fig. 6. Effect of Lewis number on the entropy generation number. 

 

 
 

Fig. 7. Effect of Prandtl number on the entropy generation number. 

 

  
 

Fig. 8. Effect of thermophoresis parameter on the entropy generation 

number. 
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directly affect the flow, temperature, and concentration field 

inside the boundary layer, and consequently, they affect the 

entropy generation number. The increase of Lewis number 

affects the concentration, and consequently, the temperature 

profiles. The variation of Lewis number increases the entropy 

generation number at the vicinity of the sheet. However, far 

from the sheet it has not significant effect on the Ns (Fig. 6). 

Fig. 7 shows that as the Prandtl number increases, the entropy 

generation number increases gradually from the plate surface 

to its highest value in the vicinity of the plate and then de-

creases to the zero value of quiescent fluid. By contrast, in the 

places comparatively far from the sheet, the increase of 

Prandtl number decreases the entropy generation number. Figs. 

8 and 9 demonstrate the effect of thermophoresis and 

Brownian motion on the entropy generation number, respec-

tively. According to these figures, close to the sheet, as the 

thermophoresis parameter or Brownian motion parameter 

increases, the entropy generation number decreases. However, 

far from the sheet and inside the boundary layer, the increase 

of thermophoresis parameter or Brownian motion parameter 

increases the entropy generation number. Moreover, the en-

tropy generation number is higher near the surface. This 

means that the surface acts as a strong source of irreversibility. 

Fig. 10 depicts the influence of the heat generation (λ > 0) and 

the heat absorption (λ < 0) parameter on entropy generation 

number. As the heat source/sink parameter λ increases, the 

entropy generation number decreases. Fig. 11 illustrates the 

effect of the slip factor on the entropy generation number. It is 

noticed that entropy generation increases as the slip factor 

decreases. The curves in the Figs. 6-11 have maximum value 

in the vicinity of the wall (not exactly on the wall). Based on 

the Fig. 2, the maximum values of the temperature were ob-

served on the sheet or in the vicinity of the sheet and the 

minimum values of the temperature were observed on the 

edge of the boundary layer. Furthermore, moving from the 

surface to the edge of the boundary layer reduces the slop of 

the temperature curves. Therefore, the heat diffusion decreases 

by moving from the sheet to the edge of boundary layer. 

Hence, the maximum value of the heat diffusion also will be 

on the sheet or its vicinity. Now, by attention to the definition 

of the entropy generation (dS'''gen = δQ/T), as moving from the 

boundary edge toward the sheet, the magnitude of temperature 

(T) and temperature slope (δQ) increase. Therefore, the de-

nominator is trying to increase Ns, and the numerator is trying 

to decrease Ns. Hence, in a place on the sheet or in the vicinity 

of the sheet, the difference between the denominator and the 

numerator will have the least value, which will be the maxi-

mum entropy generation point where was observed in the Figs. 

6-11.  

Figs. 12-15 show the effect of Rel, Br/Ω, Σ/Ω and ε on the 

entropy generation parameter. These parameters directly affect 

the entropy generation number. The augmentation of the Rey-

nolds number increases the contribution of the entropy genera-

tion number due to fluid friction and heat transfer in the 

boundary layer. The increase of Reynolds number disturbs the 

 
 

Fig. 12. Effect of Reynolds number on the entropy generation number. 

 

 
 

Fig. 13. Effect of dimensionless group parameter on entropy genera-

tion number.  

 

 
 

Fig. 14. Effect of the ratio of the dimensionless concentration differ-

ence to the dimensionless temperature difference on the entropy gen-

eration number. 
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fluid, and then chaos appears in the fluid movement. The di-

mensionless group Br/Ω determines the relative importance of 

viscous effect. As the dimensionless group (Br/Ω) increases, 

the Ns increases. This augmentation is due to the fact that for 

higher values of the dimensionless group (Br/Ω), the entropy 

generation number due to the fluid friction is higher. 

The parameter ΣΩ
-1
 is the ratio of the dimensionless con-

centration difference to the dimensionless temperature differ-

ence. For a given η, as this parameter increases, the entropy 

generation number increases. This augmentation is due to the 

contribution of the mass transfer to the entropy generation 

number. The parameter ε shows the contribution of the mass 

transfer to the entropy generation number. For a given η, as 

this parameter increases, the entropy generation number in-

creases. 

 

6. Conclusions 

The effect of partial slip (i.e., Navier condition), heat gen-

eration as well as nanofluid parameters on the boundary layer 

flow, heat transfer and entropy generation of nanofluids past 

an isothermal stretching sheet is theoretically investigated. 

The boundary layer equations governing the flow, heat and 

nanoparticle are reduced to a set of nonlinear ordinary differ-

ential equations using the similarity transformations. The ob-

tained differential equations are solved numerically for differ-

ent combinations of nanofluid parameters. Effect of the slip 

factor (K), heat generation parameter (λ), Prandtl number (Pr) 

as well as the effect of nanofluid parameters including Lewis 

number (Le), Brownian motion parameter (Nb) and thermo-

phoresis parameter (Nt) on the entropy generation are dis-

cussed. The obtained results can be summarized as follows: 

The entropy generation due to thermal diffusion is the 

dominant source of entropy generation.  

As λ and K increases the temperature and thermal boundary 

layer thickness increase while the Nusselt number and entropy 

generation number decrease. 

As Prandtl number increases, the temperature decreases 

while the entropy generation at sheet nearby increases. In-

creasing the Prandtl number results in reduction of thermal 

boundary layer thickness and consequently the increase of 

Nusselt number and entropy generation number. 

It is interesting that the increase of nanofluid parameters of 

Brownian motion and thermophoresis decreases the entropy 

generation at sheet nearby. 

Increase of Le raises the temperature while it increases the 

entropy generation near the sheet. 

As Rel , BrΩ
-1
, Σ/Ω and ε increase, the entropy generation 

number increases. 

In the present study, the nanofluid is considered as a dilute 

solution, and a simple boundary condition for the concentra-

tion of nanoparticles at the sheet surface has been adopted. 

Furthermore, the effect of the local volume fraction on the 

thermophysical properties has been neglected. Future studies 

can focus on the effect of this assumption on the heat transfer 

and entropy generation in the boundary layer. 
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Nomenclature------------------------------------------------------------------------ 

(ρc)f   : Heat capacity of the fluid    

(ρc)p   : Effective heat capacity of the nanoparticle material 

b     : Constant 

Br  : Brinkman number 

DB  : Brownian diffusion coefficient 

DT  : Thermophoretic diffusion coefficient 

k : Thermal conductivity 

K  : Dimensionless slip factor 

Le  : Lewis number 

N  : Slip constant 

Nb  : Brownian motion parameter 

Nt  : Thermophoresis parameter 

Ns  : Entropy generation number 

p  : Pressure 

Pr : Prandtl number 

R  : Universal constant of gases Reynolds number 

Rel  : Reynolds number based on the characteristic length  

Q  : Heat generation coefficient 

SG  : Local volumetric rate of entropy generation 

SG0  : Characteristic volumetric rate of entropy generation 

T  : Fluid temperature 

T∞  : Ambient temperature 

Tw  : Temperature at the stretching sheet 

Ul  : Sheet velocity 

u,v  : Velocity components along x- and y-axes 

uw  : Velocity of the stretching sheet 

 
 

Fig. 15. Effect of the ε on the entropy generation number. 
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x,y  : Cartesian coordinates (x-axis is aligned along the 

stretching surface and y-axis is normal to it) 

 

Greek symbols 

α  : Thermal diffusivity 

β  : Dimensionless nanoparticle volume fraction 

η  : Similarity variable 

ε  : Constant parameter 

θ  : Dimensionless temperature 

λ  : Heat source/sink parameter 

ρf  : Fluid density 

ρp  : Nanoparticle mass density 

φ  : Nanoparticle volume fraction 

φ∞  : Ambient nanoparticle volume fraction 

φw  : Nanoparticle volume fraction at the stretching sheet 

ψ  : Stream function 

Ω  : Dimensionless temperature difference 

Σ  : Dimensionless concentration difference  
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