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ABSTRACT
A comprehensive mathematical model is presented to study the peristaltic flow of Bingham visco-
plastic micropolar fluid flow inside a microlength channel with electro-osmotic effects. The electro-
osmotic effects are produced due to an axially applied electric field. The circulation of this electric
potential is calculated by utilizing Poisson Boltzmann equation. The dimensionless form of math-
ematical equations is obtained by using lubrication theory and Debye-Huckel approximation. We
have obtained analytical solutions for the final dimensionless governing equations. Finally, the
graphical results are added to further discuss the physical aspects of the problem. Electro-osmotic
is mainly helping to control the flow and axial velocity decreases with an increase in the electric
field but micro-angular velocity increases with an increase in electric field.
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1. Introduction

The peristaltic flow phenomenon has a key role in
many physiological flow problems that are related to
human body. Latham (Latham 1966) had interpreted
mathematically the physiological flow inside human
body that involves peristalsis mechanism. These
physiological flow problems involve the stomach anat-
omy (i.e., movement of food bolus inside digestive
tract) and transport of urine from kidneys to bladder.
Both these physiological flow problems include peri-
stalsis mechanism.

The analytical solutions are obtained for peristaltic
flow in a vertical channel by Abumandour et al
(2020). Abdelsalam (Abdelsalam and Mekheimer
2018) had presented a model to obtain the closed
form analytical solutions for peristaltic flow problem.
Bhatti (Abdelsalam and Bhatti, 2018a) had mathemat-
ically interpreted the peristaltic flow with hall and slip
effects. The peristaltic flow of Prandtl fluid with
nanoparticles was examined by Abdelsalam and Bhatti
(2018b). Vafai (Abdelsalam and Vafai, 2017a) had
presented the mathematical study of electro-osmotic-
ally driven flow inside microfluidic channels. The
numerical, analytical and experimental research

problems related to peristaltic flow phenomenon for
distinct fluid models is presented under different con-
ditions with reference to diverse mechanical and
physiological applications (Shapiro et al. 1969; Jaffrin
and Shapiro 1971; Srivastava and Srivastava 1984;
Mekheimer and Abd Elmaboud 2008; Pandey and
Tripathi 2011). Peristaltic pumps have many uses in
transporting blood, slurry, food and corrosive liquids
etc. Some recent studies that include the analysis of
flow in microfluidic channels and their applications is
provided (Elkoumy et al. 2013; Mekheimer et al.
2013; Abdelsalam and Vafai, 2017b; Abd Elmaboud
et al. 2019; Abdelsalam et al. 2019; Abdelsalam and
Bhatti 2019; Eldesoky, Abdelsalam, El-Askary, Ahmed
2019; Eldesoky, Abdelsalam, El-Askary, El-Refaey,
et al. 2019).

The pumping mechanism that is used to transport
the fluid inside a microfluidic device has significant
importance due to its applications. The electro-osmotic
flow phenomenon has advantage over magnetohydrody-
namics, piezoelectrics and electrohydrodynamics due to
its simple design, comparatively low cost and their
relaxed fabrication (van Lintel et al. 1988; Richter et al.
1991; Arulanandam and Li 2000; Lemoff and Lee 2000).
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The flow is fully developed without the movement of
any mechanical part. The basic peristalsis principle and
electro-osmotic effects are used in working of many
micro-pumps. The highly applicable areas of electro-
osmosis phenomenon involve drug delivery by diagnos-
tic medical apprautus, treatment of diseases, (i.e., sickle
cell, anomaly in cells and blood related medical prob-
lems.). Some important non-Newtonian fluid models
are given (Khan et al. 2018; Qayyum et al. 2018; Khan
et al. 2019).

Further, main advantages of such electro-osmotic
pumps are their efficiency and low cost working. The
pumps that include combine benefits of both electro-
osmosis and peristalsis are widely used due to their
applications. Some recent studies that provide useful
results are also provided (Hayat et al. 2016; Khan
et al. 2017; Abbas, Khan, Kadry, Khan, Waqas, et al.
2020; Abbas, Khan, Kadry, Khan, Israr-Ur-Rehman,
et al., 2020; Khan et al., 2020a; 2020b; Nayak et al.
2020; Wang, Muhammad, et al. 2020).

Flow activities of non-Newtonian fluids have larger
prominence as they occur extensively in several
physiological fluids and other fluids used in various
productions. The non-Newtonian fluid flow problems
have been extensively explored (Misra et al. 2001;
Misra and Ghosh 2001; Dhinakaran et al. 2010; Maiti
and Misra 2012). Various non-Newtonian models of
fluid exist in the literature (Haghighi et al. 2015;
Haghighi and Asl 2015; Abdelsalam and Bhatti 2020;
Abdelsalam and Sohail 2020; Haghighi et al. 2020;
Sadaf and Abdelsalam 2020; Sohail et al. 2020) and
for combined electroosmotic flow including slit
microchannel for Casson fluid (Ng and Qi 2014),
Jeffrey fluid in corrugated microchannels (Si and Jian
2015), power-law fluids in non-uniform microchan-
nels (Ng 2013), micropolar fluids in microchannels
(Ding et al. 2016), Maxwell fluids in rectangular
microchannels (Jim�enez et al. 2016), Bingham model
in wavy microchannels (Tripathi et al. 2018), and
Nanofluidics channel (Ding et al. 2017). Some recent

literature articles are provided (Ijaz Khan and
Alzahrani 2020; Khan, Qayyum, et al., 2020;
Muhammad et al. 2020; Wang, Khan, et al. 2020).

A complete descriptive literature analysis has
depicted that the flow of Micropolar Bingham
Viscoplastic fluid across a channel with wavy walls is
not interpreted mathematically with electro-osmotic
effects by anyone mathematically. The present analysis
first time addresses this important topic of
Micropolar Bingham viscoplastic fluid with the elec-
troosmotic effects. Mainly, we have examined the
peristaltic flow with combine electroosmosis effects
and the micro-rotations that occur during this flow
are also considered in this mathematical analysis.
Electric field is employed in an axial direction. For fluid
flow, a complex wavy microchannel is taken into
account. Analytical solutions for axial and micro-angular
velocity are obtained by using different methods of inte-
gration. Graphs for the closed-form solution are
sketched for different parameters using mathemat-
ics software.

2. Mathematical configuration

2.1. Geometric structure

The flow geometry for Micropolar Bingham viscoplas-
tic liquid in a microchannel influenced by electroos-
mosis is given in Figure 1. The geometry of
deformable wall is presented by the following math-
ematical statement:

h x, tð Þ ¼ aþ
Xn
i¼1

‍ /sin
2ip
k

x � ctð Þ, (1)

The value of n represents multiple sinusoidal waves.

We have used n¼ 2 for our present study. here h
characterizes transverse ocilliation of the channle’s

wall, a indicate the half-width of the microchannel, /
symbolizes the waves amplitude, k and c designates
wavelength and wave speed, x and t signifies, axial
coordinate, and time, respectively.

2.2. Fluid model

Mathematical expression for Micropolar Bingham vis-
coplastic fluids is given as (Shelukhin and Neverov
2016):

s ¼ s0 þ lþ kð Þ_c þ kN, s � s0
_c ¼ 0, s < s0

(2)

here s and s0 reveal the shear and the yield stress, l
is the viscosity of the fluid, _c indicates the shear

Figure 1. Flow geometry for wavy channel.
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strain rate, and k represents the vortex viscosity of
the fluid.

2.3. Governing equations

The mathematical equations govenring the flow of a
Micropolar Bingham viscoplastic fluid subject to an
electric field are provided by (Pandey and Chaube
2011):

@u
@x

þ @v
@y

¼ 0, (3)

q
@u
@t

þ u
@u
@x

þ v
@u
@y

� �
þ @p
@x

� @sxx
@x

� @�sxy
@y

� qeEx ¼ 0,

(4)

q
@v
@t

þ u
@v
@x

þ v
@v
@y

� �
þ @p

@y
� @�s yx

@x
� @�syy

@y
� qeEy ¼ 0,

(5)

qj
@N
@t

þ u
@N
@x

þ v
@N
@y

 !
þ 2kN � c

@2N

@x2
þ @2N

@y2

 !

� k
@v
@x

� @u
@y

� �
¼ 0,

(6)

with the boundary conditions:

sjy¼0 ¼ 0, sjy¼hpl
¼ s0, ujy¼h ¼ 0,

@N
@y

����
y¼0

¼ 0, N jy¼h ¼ 0,

(7)

where q is fluid’s density, u and v are the velocities
in an axial and transverse direction, p is pressure,
sxx , sxy , syx , syy are the components of stress, Ex
and Ey are components of the electric field E, N is

micro-angular velocity, j signifies the micro-inertia
per unit mass, c defines the spin gradient velocity and
qe is the total ionic charge’s density.

Presenting the dimensionless parameters to get
closed-form solutions of modeled flow equations,

x ¼ x
k
, y ¼ y

a
, t ¼ tc

k
, u ¼ u

c
, v ¼ v

dc
, h ¼ h

a
,

/ ¼ /
a
, d ¼ a

k
,

s ¼ sa
lc

, s0 ¼ s0a
lc

, p ¼ pa2

lck
, u ¼ zeu

kBT
,

n ¼ n
n0

, N ¼ a
c
N , j ¼ j

a2
:

(8)

where s0 and s are the non-dimensional yield and
shear stress, / is the non-dimensional amplitude of
waves, d stands for the peristaltic wave number, and
u denotes the non-dimensional electric potential.

The contact between aqueous electrolytic solution
and the solid surface generally results in electrostatic
charge on the surface that is known as zeta potential.
Electric double-layer (EDL) appears when the charged
surface fascinates the counter ions toward itself in the
solution. Due to zeta potential, the electrical potential
in the solution follows the Poisson equation stated as:

r2u ¼ �qe
e
, (9a)

where u designates the electrical potential, r2 sym-
bolizes the two-dimensional Laplace operator, and qe
is the density of total ionic charge, and e is the elec-
trical permittivity of ionic solution.

Potential function u can be obtained as given in
(Nadeem et al. 2020).

u ¼ coshðjyÞ
coshðjhÞ : (9b)

Invoking dimensionless parameters and lubrica-
tion approcimation is used, (i.e., large wavelength and
low Reynolds number assumptions), Eqs. (1–6), take
the form:

hðx, tÞ ¼ 1þ
Xn
i¼1

‍ /sin2pðx � tÞ, (10)

s ¼ s0 þ lþ k
l

� �
@u
@y

þ k
l
N, s � s0

@u
@y

¼ 0, s < s0
(11)

@u
@x

þ @v
@y

¼ 0, (12)

@sxy
@y

¼ @p
@x

� j2ue
cosh jyð Þ
cosh jhð Þ , (13)

@p
@y

¼ 0, (14)

2�w
m2

� �
@2N
@y2

� 2N� @u
@y

¼ 0, (15)

where ue ¼ � Exef
lc is Helmholtz-Smoluchowski vel-

ocity, w ¼ k
lþk denotes coupling number and m2 ¼

a2kð2lþkÞ
cðlþkÞ is micropolar parameter.

3. Analytical solution

Substituting Eq. (11) in Eq. (13), we obtain,

@2u
@y2

þ w
@N
@y

þ 1� wð Þ � @p
@x

þ j2ue
coshðjyÞ
coshðjhÞ

� �
¼ 0,

(16)

with the dimensionless boundary conditions,
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@u
@y

����
y¼hpl

¼�wN, ujy¼h ¼ 0,
@N
@y

����
y¼0

¼ 0, Njy¼h ¼ 0:

(17)

Solving Eq. (15) and Eq. (16) using Eq. (17) we
attain the solution of the form,

N ¼ BcoshðmyÞ þ CsinhðmyÞ

� 1� wð Þ
2� wð Þ

@p
@x

yþ jm2ue
ðj2 �m2Þ

sinhðjyÞ
coshðjhÞ

 !

� A
2� wð Þ : (18)

u ¼� w

 
B
m
sinhðmyÞ þ C

m
coshðmyÞ

� 1� wð Þ
2� wð Þ

@p
@x

y2

2
þ m2ue
j2 �m2

cosh jyð Þ
cosh jhð Þ

 !
� Ay

2� wð Þ

!

þ 1� wð Þ @p
@x

y2

2
� ue

coshðjyÞ
coshðjhÞ

 !
þ Ayþ D:

(19)

The expression for volumetric flow rate is signified as

Q ¼
ðh
hpl

udy: (20)

Using Eq. (19) in Eq. (20) and integrating, we obtain:

Q ¼ �w

 
B
m2

coshðmhÞ � coshðmhplÞ
� �

þ C
m2

sinhðmhÞ � sinhðmhplÞ
� �

� 1� wð Þ
2� wð Þ Eþ Fm2ue

j j2 �m2ð Þ
� �

� A
2 2� wð Þ h2 � hpl

2
� �!

þ 1� wð Þ E� F
ue
j

� �

þ A
2

h2 � hpl
2

� �
þ D h� hpl

� �
:

(21)

where,

A ¼ 1� wð Þ � @p
@x

yþ jue
sinhðjhplÞ
coshðjhÞ

 !
, (22)

B ¼ �1
coshðmhÞ

 
Csinh mhð Þ � 1� wð Þ

2� wð Þ

@p
@x

hþ jm2ue
j2 �m2

tanhðjhÞ
� �

� A
ð2� wÞ

!
,

(23)

C ¼ ð1�wÞ
ð2� wÞ

1
m
@p
@x

þ j2mue
j2 �m2

1
coshðjhÞ

 !
, (24)

D ¼ w

 
B
m
sinhðmhÞ þ C

m
coshðmhÞ

� ð1�wÞ
ð2� wÞ

@p
@x

h2

2
þ m2ue
j2 �m2

� �
� Ah
ð2� wÞ

!

� 1� wð Þ @p
@x

h2

2
� ue

� �
� Ah,

(25)

E ¼ @p
@x

h3

6
� hpl

3

6

� �
, (26)

F ¼ tanhðjhÞ � sinhðjhplÞ
coshðjhÞ

 !
: (27)

Pressure difference along unit wave length is given
by:

Dp ¼
ð1
0

@p
@x

dx: (28)

The wave frame (xw, yw) and the laboratory frame
(x, y) alterations are given by: y ¼ yw, u ¼ uw þ
1, x ¼ xw � t, v ¼ vw, where (u, v) and (uw, vw) are
the apparatuses of velocity in laboratory and wave
frame respectively.

The volumetric flow rate is mathematically
expressed by following expression

qw ¼
ðh
hpl

‍ uwdyw ¼
ðh
hpl

‍ u� 1ð Þdyw, (29)

after integration,

qw ¼ Qþ 1� h: (30)

Flow rate along with a unit wave is specified as

Q ¼
ð1
0

‍ Qdt ¼
ð1
0

‍ ðqw þ h� hplÞdt: (31)

Explanation of the above equation yields,

Q ¼ ðqw þ 1� hplÞ ¼ Qþ 1� h: (32)

Shear stress at the wall can be calculated as:

sxyjy¼h ¼ s0 þ 1
ð1� wÞ

@u
@y

þ w
ð1� wÞN

� �����
y¼h

(33)

Substituting Eq. (25) and Eq. (26) in the above
equation we obtain:
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sxyjy¼h ¼ s0 þ @p
@x

h� juetanh jhð Þ þ A
1� wð Þ : (34)

4. Results and discussions

Figures 2–6 provides the variation of velocity u
against y� axis for changing values of Helmholtz-
Smoluchowski velocity ðueÞ, Debye-length parameter
ðjÞ, plug flow width (hpl) coupling number (w), and

micropolar parameter (m2). As illustrated in Figure 2,
the velocity of fluid declines with the increasing val-
ues of plug flow. Figure 3 depicts that an increase in
the value of j also increases the axial flow.

In the case of Helmholtz-Smoluchowski velocity,

(ue ¼ � Exef
lc ), it is straight forward linked to the elec-

tric field in the axial direction Ex: Therefore, axial vel-
ocity increases with an increase in ue as shown in
Figure 4. Figure 5 shows the variation in velocity pro-
file with an increase in the coupling number (w). As
the coupling number is directly related to spin gradi-
ent velocity (k), so velocity profile decreases with the

slight increase in w. Figure 6 depicts that the velocity
profile increases slightly with the increase in the
micropolar parameter.

Figures 7–11 represents the variation in micro-
angular velocity. It is revealed from Eq.(7) that micro-
angular velocity drops with increase in plug flow
width ðhpl). However, with an increase in Helmholtz-
Smoluchowski velocity ðueÞ and the Debye-length par-
ameter ðjÞ, the micro-angular velocity profile
increases as shown in Figures 8 and 9. Figure 10
depicts that the increase in coupling number (w)
decreases the micro-angular velocity (N); however, for
the micropolar parameter, N gains high value near
the wall but declines far away from the wall as shown
in Figure 11.

Figures 12–16 provides the relation between Dp
and Q, for different parameters. Evidently, Dp and Q
are inversely related, which means that pressure dif-
ference decreases when the volumetric rate of the
flow along unit time period increases. The increase in
the value of plug flow width results in decline of DP,
as displayed in Figure 12. A rise in the Debye-length
parameter expressively increases the pressure differ-
ence, as shown in Figure 13. However, Dp reduces for
‘negative’ values of ue, whereas, increases for ‘positive’
values of ue as plotted in Figure 14. Figure 15 reveals
that an increase in the coupling number reduces the
pressure difference Dp along Q, but an increase in
micropolar parameter increases the pressure differ-
ence as plotted in Figure 16; however, an inverse lin-
ear relationship could be observed in all plots.

In Figures 17–19, we have plotted the shear stresses
sxy at the wall y ¼ h for values of Helmholtz-
Smoluchowski velocity ðueÞ, plug flow width (hpl),
and Debye-length parameter ðjÞ when the yield stress
s0 ¼ 2:3: The wall shear stress decreases with the
increase in all three parameters.

Figure 2. Impact of hpl on velocity field with w¼ 0.2, m ¼
1, j ¼ 2, ue, x¼ 1.

Figure 3. Impact of j on velocity field with x ¼ 1, ue ¼
1, hpl ¼ 0:1, m ¼ 1, w ¼ 0:2:

Figure 4. Impact of ue on velocity field with hpl ¼ 0:1, x ¼
1, j ¼ 2, m ¼ 1, w ¼ 0:2:
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5. Conclusion

In the present analysis, a theoretical analysis is pre-
sented to study the electroosmotic flow of a micropo-
lar Bingham viscoplastic fluid. Analytical solutions are
obtained for axial and micro-angular velocity. The
pumps that include combine benefits of both electro-
osmosis and peristalsis are widely used due to their

applications. The highly applicable areas of electro-
osmosis phenomenon involves drug delivery by diag-
nostic medical apprautus, treatment of diseases, (i.e.,
sickle cell, anomaly in cells and blood related medical
problems.). Further, main advantages of such electro-
osmotic pumps are their efficiency and low cost
working. The obtained results are analyzed by plotting

Figure 5. Impact of w on velocity field with hpl ¼ 0:1, x ¼
1, j ¼ 2, m ¼ 1, ue ¼ 1:

Figure 6. Impact of m on velocity field with hpl ¼ 0:1, x ¼
1, j ¼ 1, w ¼ 0:2, ue ¼ 1:

Figure 7. Impact of hpl on micro-angular velocity field with
x ¼ 1, j ¼ 1, m ¼ 6, ue ¼ 1, w ¼ 0:2:

Figure 8. Impact of j on micro-angular velocity field with
hpl ¼ 0:1 x ¼ 1, m ¼ 6, ue ¼ 1, w ¼ 0:2:

Figure 9. Impact of ue on micro-angular velocity field with
hpl ¼ 0:1 x ¼ 1, m ¼ 6, j ¼ 1, w ¼ 0:2:

Figure 10. Impact of w on micro-angular velocity field with
hpl ¼ 0:1 x ¼ 1, m ¼ 6, j ¼ 1, ue ¼ 1:
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graphical outcomes for various physical parameters
that are included in this mathematical problem. The
graphical results show the impact of various parame-
ters that how these parameters are effecting the flow
physically. The impact of Helmholtz-Smoluchowski
velocity, Debye-length parameter, plug flow width,
coupling number and micropolar parameter on axial
velocity u, micro-angular velocity N pressure difference

Dp, and shear stress sxy is plotted by using
Mathematica 9.0. From the current analysis, it is con-
cluded that:

� Axial velovity u declines with the rise in plug flow
width and coupling number whereas increases
with Helmholtz-Smoluchowski velocity, Debye
length parameter and micropolar parameter.

Figure 11. Impact of m on micro-angular velocity field with
hpl ¼ 0:1, x ¼ 1, j ¼ 2, ue ¼ 1, w ¼ 0:2:

Figure 12. Impact of hpl on pressure gradient with x ¼
1, j ¼ 1, m ¼ 6, ue ¼ 1, w ¼ 0:2:

Figure 13. Impact of j on pressure gradient with x ¼ 1, hpl ¼
0:1, m ¼ 6, ue ¼ 1, w ¼ 0:2:

Figure 14. Impact of ue on pressure gradient with x ¼
1, hpl ¼ 0:1, m ¼ 6, j ¼ 1, w ¼ 0:2:

Figure 15. Impact of w on pressure gradient with x ¼
1, hpl ¼ 0:1, m ¼ 6, j ¼ 1, ue ¼ 1:

Figure 16. Impact of m on pressure gradient with x ¼
1, hpl ¼ 0:1, w ¼ 0:2, j ¼ 1, ue ¼ 1:
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� Micro-angular velocity N increases with
Helmholtz-Smoluchowski velocity, Debye length
parameter and micropolar parameter however,
there is opposite impact for plug flow width and
coupling number.

� Pressure gradient decays with an increase in plug
flow width and coupling number but increases

with Helmholtz-Smoluchowski velocity, Debye
length parameter, and micropolar parameter.

� Shear stress decreases with the growth in Debye
length parameter, Helmholtz-Smoluchowski vel-
ocity as well as plug flow width. However, no
change is detected in the case of the coupling
number and micropolar parameter.
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