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A B S T R A C T   

The intensions of this work are to explain the peristaltic flow and heat transfer of hybrid (Cu-Ag/blood) and 
phase flow (Cu/blood) nanofluid models inside a curved tube having ciliated wall. The governing mathematical 
equations are established for a curvilinear coordinate system (R,Z). In order to simplify these equations, we have 
exploited the lubrication approximation, i.e. Reynolds number tends to zero and wavelength tends to infinity. 
Finally, these abridged governing equations, subject to corresponding boundary conditions, are solved and 
luckily found exact solutions for the complicated problem. These solutions are discussed graphically for both 
hybrid (Cu-Ag/blood) and phase flow (Cu/blood) nanofluid models against various physical parameters that are 
involved in the governing equations. It is observed that the axial and thermal symmetry is demolished due to 
curved nature of the tube but when parameter s increases, i.e. the curved geometry is transformed into a 
straighter channel then the symmetry about the centre of channel is restored.   

Introduction 

Peristalsis is the mechanism of fluid transport inside a channel due to 
its sinusoidally advancing walls. The flow of fluid due to peristaltic 
pumping along the length of tube was discussed by Jaffrin [1]. Pozrikidis 
[2] had studied the two dimensional peristaltic flow for low value of 
Reynolds number and comparatively large value of wavelength. The 
trapping phenomena and reflux of peristaltic flow was discussed in 
detail by Takabatake et al. [3]. They had also described the physiolog
ical and engineering applications of peristaltic flows. The peristaltic flow 
in curved geometries, for different fluid models, was interpreted by 
Nadeem et al. [4-6]. 

There role of cilia is very essential in processes such as circulation, 
respiration, locomotion and food movement in digestive tract [7] and 
almost all the animal kingdoms have cilia. Blake [8] presented the study 
of cilia developed flows in a tube. These cilia co-ordinate in such a way 
that their sequential actions result in the formation of a metachronal 

wave that propagates the flow. Nadeem et al. [9] had modelled the 
problem for the peristaltic flow inside a two dimensional curved tube 
having ciliated walls. Ellahi et al. [10] studied the fluid flow through an 
annulus having blood clot and ciliated walls. The effect of sinusoidal 
wall motion on MHD flow of solid particles in a planar channel was 
described by Bhatti et al. [11]. Ramesh and Tripathi had done mathe
matical computations for cilia developed flow [12]. The metachronal 
wave developed due to cilia induced micro-polar fluid flow was studied 
by Farooq et al. [13]. 

Nanoparticles are tiny particles having size less than one hundred 
nanometre. In many industrial problems, the heat transfer analysis is 
limited due to low thermal conductivity of fluid but this issue can be 
resolved by enhancing the nanoparticles concentration in the fluid, since 
it finally increases the thermal conductivity of fluid [14]. The heat 
transfer for a two phase nanofluid flow inside a curved geometry was 
interpreted by Shahzadi et al. [15]. The ferro-nanofluid flow with torque 
effects between rotating circular plates is interpreted by Zhang et al. [16]. 
The flow inside a curved channel with nanofluid was mathematically 
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modelled by Tripathi et al. [17]. The blood flow inside a micro-channel 
with different shapes of nano-particles was studied by Tripathi and Pra
kash [18]. Some other studies dealing the studies of nanofluids and heat 
transfer are discussed in the Refs. [5,19-23]. Further, some recent re
searches that use the same technique are given [24-31]. 

Hybrid nanofluid is a new class of nanofluids that is obtained by 
combining two or more nanomaterials in the base fluid [32]. In this 
work, we have studied the peristaltic flow of hybrid (Cu-Ag/blood) and 
phase flow (Cu/blood) nanofluid models inside a curved tube having 
ciliated wall. We have considered blood as base fluid. The governing 
mathematical equations are developed for a two-dimensional curvi
linear coordinate system (R,Z). In order to simplify these equations, we 
have applied the approximations Re→0, λ→∞. Finally, these simplified 
governing equations, subject to corresponding boundary conditions, are 
solved to obtain exact solution for velocity and temperature profile by 
using Mathematica software. These solutions are discussed graphically 
for both hybrid (Cu-Ag/blood) and phase flow (Cu/blood) nanofluid 
models against various physical parameters that are involved in the 
governing equations. Streamlines are also plotted. 

Mathematical formulation 

Considered the peristaltic flow of an incompressible, laminar, 
Newtonian fluid inside a curved channel, with centre O and radius R*, 
having ciliated walls. The governing equations are formulated for a 
curvilinear coordinate system (R, Z) due to the curvedness of channel 
[33]. Here U and W are the velocity components along radial and axial 
directions respectively. Blood is considered as base fluid for both 
hybrid (Cu-Ag/blood) and two phase flow (Cu/blood) of nanofluid 
models. 

The mathematical expression for cilia tips envelope is written as 
[34]. 

R = a+ aεCos
(
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λ

(
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))
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The velocities of cilia tips can be represented as 
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By using Eq.(2) in Eq.(1), we have 
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We can distinguish between cilia’s effective as well as recovery 
strokes by these two velocities that are given above. Here W as well as U 
represent the effective and recovery strokes respectively. 

The dimensional form for governing equations take the form [35] 
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ρhnf

(
∂U
∂t

+U
∂U
∂R

+
R*W

R + R*

∂U
∂Z

−
W2

R + R*

)

= −
∂P
∂R

+ μhnf

[
1

(R + R*)

∂
∂R

{(

R*

+ R)
∂U
∂R

}

+

(
R*

R* + R

)2∂2U
∂Z2 −

U
(R* + R)2 −

2R*

(R* + R)2
∂W
∂Z

]

, (5)  

Nomenclature 

R*(m) Radius of curved channel 
(

R, Z
)

Curvilinear coordinates 

a (m) Mean radius of channel 
b(m) Amplitude of wave 
λ(m) Wavelength of metachronal wave 
c(ms− 1) Wave speed 
Zo reference position of particle 
α Eccentricity of Elliptical Motion 
hnf Hybrid nanofluid 
μ(Nsm− 2) Dynamic viscosity 

k
(

W
mK

)

Thermal conductivity 

Cp

(
J

kg.K

)

Specific heat 

ρ(kg
m3) Density 

α*(K− 1) Thermal expansion coefficient 

Qo

(
W

m2K

)

Constant of heat absorption parameter 

β Wave number 
s curvature parameter 
γ Heat generation/absorption coefficient 
ϕ Volume fraction of nanofluid 1.3% 
Gr Grashoff number 
ϕ1 Volume fraction of Copper (s1)1% 
ϕ2 Volume fraction of Silver (s2)0.3% 
bf Base fluid 
Re Reynold number  
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The flow is unsteady in fixed coordinates (R,Z) but it turns out to be 
steady in a wave frame (r, z). Since the flow and wave now moves with 
same speed in Z-direction. The transformations between fixed and 
moving frame are 

z = Z − ct, r = R, p = P,w = W − c, u = U, (8) 

The dimensionless variables are 
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a
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Now using Eqs. (8) and (9) in Eqs. (4–7), then by using approxima
tions Re→0, λ→∞, we get the non-dimensional form of governing 
equations 
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With non-dimensional boundary conditions 
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Exact solution 

The exact solution of Eqs. (11) and (12) satisfying the boundary 
conditions (13) and (14) are obtained directly by using Mathematica 
software and defined as 
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The volumetric flow rate defined by Eq. (17) and pressure gradient is 
calculated by using this volumetric flow rate 

F =

∫ h

− h
wdr, (17) 

The dimensionless form for rate of fluid flow and pressure rise are 
computed by using following relations Fig. 1 

Q = F + 2,ΔP =

∫

0

dp
dz

dz, (18)  

Results and discussion 

In this segment, the graphical results for the exact solutions that are 
obtained in previous section are discussed. The velocity profile w(r, z) is 
plotted for different increasing values of physical parameters ε and s, as 
shown in Fig. 2a, (2b) respectively. Fig. 2a depicts that the velocity gains 
magnitude for both Cu/blood and Cu-Ag/blood, in the region 
− 1 ≤ r ≤ 1.1 as the values of ε increases but it shows completely 
opposite behaviour outside this region. Fig. 2b shows that the velocity 
increases for both Cu/blood and Cu-Ag/blood, in the region − 0.55 ≤ r 
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