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Abstract
This research work interprets the mathematical study of peristaltic flow of non-Newtonian fluid
across an elliptical duct. The heat transfer mechanism for this elliptical duct problem is also
considered in detail. The mathematical equations for Casson fluid model are developed and then by
using appropriate transformations and long wavelength approximation, this mathematical problem
is converted into its dimensionless form. After converting the problem in dimensionless form, we
have obtained partial differential equations for both velocity and temperature profiles. These partial
differential equations are solved subject to given boundary conditions over elliptical cross sections
and exact mathematical solutions are obtained. The results are further discussed by plotting
graphical results for velocity, pressure gradient, temperature, pressure rise and streamlines.
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Nomenclature

( ¯ ¯)X Y Z, , Cartesian coordinate system

( ¯ ¯ ¯ )U V W, , Velocity components

a b,0 0 Half-axes of ellipse

d Wave amplitude

l Wavelength

c Velocity of propagation

T̄w Tube’s wall temperature

Dh Hydraulic diameter of ellipse

e Eccentricity of ellipse

T̄b Bulk temperature

f Occlusion

d Aspect ratio

Br Brickmann number

b Casson parameter

mB
Plastic viscosity

py
Yield Stress
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1. Introduction

The phenomenon of fluid propulsion across a channel with
deformable walls is known as peristalsis. The walls of such
flexible tubes contract and relax in such a systematic pattern
along the axial coordinate that the fluid also moves toward the
axial coordinate of the tube. The immense number of peristalsis
applications in the area of biology, engineering, biomedicine
and industrial problems has made it a very important topic for
researchers. The mechanical devices that operate on peristalsis
mechanisms are used to transport food, blood, slurry and cor-
rosive liquids [1]. Its industrial applications include processing
of food, treatment of water and agriculture etc. Barton [2] had
mathematically examined the peristaltic flow across the tubes
having much larger peristaltic wavelength when compared to
the average radius of the tube. Bohme et al [3] had provided
the study of non-Newtonian flow across ducts having sinu-
soidally deforming walls. In their work, a constant pressure is
considered over cross-section. The asymmetrical channel
peristaltic flow of a non-Newtonian Casson fluid with appli-
cations in refinement of crude oil was mathematically inter-
preted by Akbar [4]. Further, some more fruitful articles on
flow of non-Newtonian fluids across channels with sinusoidally
deformable walls is provided [5–13].

Recently, the flow inside elliptical ducts has also
achieved the interest of many researchers because of their
huge applications. Abdel Wahid et al [14] had experimentally
conducted the study of heat transfer and laminar flow across a
duct with elliptical cross section. The heat transfer phenom-
enon with viscous dissipation effects inside a duct having
elliptical cross section was studied by Ragueb et al [15]. Maia
et al [16] had investigated the fully developed flow with
constant properties inside a duct having elliptical cross-
section. There are many research articles in the literature that
mathematically addresses the peristaltic flow inside different
geometries like cylinders, asymmetric channels and rectan-
gular ducts. But the study of peristaltic flow inside elliptical
ducts is not much explored mathematically despite its
immense industrial and engineering applications. This huge
gap in literature needs to be filled, because the peristaltic flow
in an elliptical duct also has its worth like the study of peri-
staltic flow inside cylindrical and rectangular ducts. An
advantage of using the elliptic duct than circular duct is that
the heat transfer coefficient is increased. A reduction of drag
force is also expected in case of elliptical duct as compared to
circular duct. Further, elliptic duct has a less pressure drop
than circular one. Some recent articles related to peristaltic
flow problems are [17–38].

This research article addresses the mathematical study of
peristaltic flow of any non-Newtonian fluid within a duct hav-
ing elliptical cross section for first the time. The non-Newtonian
fluid considered in this study is the Casson fluid non-Newtonian
model. The heat transfer mechanism for this elliptical duct
problem is also studied in detail. Energy equation involves the
viscous dissipation term and it provides a full analysis of heat
transfer phenomenon. The mathematical equations for Casson
fluid model are developed and then by using appropriate
transformations, we have converted this mathematical problem

into its dimensionless form. After converting the problem in
dimensionless form, we have obtained partial differential
equations for both velocity and temperature profile equations.
These partial differential equations are solved subject to given
boundary conditions over elliptical cross sections and exact
mathematical solutions are obtained. The results are further
discussed by plotting graphical results for velocity, pressure
gradient, temperature and pressure rise. The graphical outcomes
include both 2-dimensional and 3-dimensional velocity and
temperature results.

2. Mathematical formulation

The incompressible, peristaltic flow of Casson fluid is studied
across a duct having elliptical cross-section see figure 1. A
Cartesian coordinate system ( ¯ ¯ ¯)X Y Z, , is utilized for this
mathematical study.

The following sinusoidal equations are provided to
describe the geometry of deformable walls [39].
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incompressible, non-Newtonian flow are given as
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The dimensional form of associated boundary conditions
are given as
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The given tensor [40] defines the extra stresses for
Casson fluid as follows
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The hydraulic diameter Dh of ellipse is provided as
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Here d= -e 1 ,2 is ellipse eccentricity and ( )E e is ellip-
tical integral of second kind [41].
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Equations (10) and (11) are used in equations (2)–(6) and
then applying lubrication approximation, (i.e. l  ¥), we
have following non-dimensional governing equations
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3. Exact solution

An exact mathematical solution is developed for velocity
profile by solving the partial differential equation given in
equation (16), with relevant boundary conditions provided in
equation (18) and this obtained velocity solution satisfies
both equation and boundary condition. The solution for both
velocity and temperature profiles are obtained by using the
method provided in the work of Hayman and Shanidze [42].

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( )

b
b

= - +
+ +

+ -w x y
dp

dz

a b

a b

x

a

y

b
, 1

1

2 1
1 ,

20

2 2

2 2

2

2

2

2

Figure 1. Geometry of Elliptical duct.
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