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The natural convection heat transfer of hybrid nanofluids over a vertical plate

embedded in a saturated Darcy porous medium is analytically investigated.

The base partial differential equations were reduced to a set of high-order

nonlinear differential equations by using appropriate similarity variables. A

new analytical solution based on the power series–transformation method is

presented, and the effect of the presence of hybrid nanoparticles in the form of

nondimensional parameters is investigated.
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1 | INTRODUCTION

Nanofluids are engineered fluids containing nanoscale-sized nanoparticles dispersed in a conventional heat transfer liq-
uid. The nanofluids are known with thermally enhanced thermo-physical properties.1–3 Because of the enhanced heat
transfer performance, nanofluids are proposed as good potential candidates to utilize in many engineering sectors such
as heat exchangers,4 cooling of computer and electronic devises,5 thermal energy storages,6 the coolant in machining,
and engine cooling of vehicles.7

The natural convection in porous media includes crucial applications in a number of technological and engineering
processes such as crude oil extraction, filtration, transpiration cooling, and storage of radioactive nuclear waste mate-
rials.8 A vertical surface covered with conductive fins, the walls of an atomic west container buried in the soil, and the
walls covered with packed beds are just simple examples of plates embedded in porous media.

There are many numerical and analytical approaches that have been utilized to study the free convection heat
transfer over vertical plate embedded in a porous medium. Cheng and Minkowycz9 examined the free convection

Received: 19 February 2020

DOI: 10.1002/mma.6457

Math Meth Appl Sci. 2020;1–19. wileyonlinelibrary.com/journal/mma © 2020 John Wiley & Sons, Ltd. 1

https://orcid.org/0000-0001-8762-5510
mailto:sohail.nadeem@tdtu.edu.vn
https://doi.org/10.1002/mma.6457
http://wileyonlinelibrary.com/journal/mma
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmma.6457&domain=pdf&date_stamp=2020-06-03


of a regular fluid about a vertical flat plate embedded in a saturated porous medium. They9 assumed a proscribed
temperature for the surface of the plate, which can be varied with the distance from the origin. The authors trans-
formed the partial differential equations, governing the heat and momentum of the fluid, into a set of nonlinear
ordinary differential equations (ODEs) by the aid of the similarity variables. Later, the deduced ODE is solved
using the Rong–Kutta method. Following, Cheng and Minkowycz,9 Belhachmi et al.10 solved the nonlinear ODEs
governing the equations of Cheng and Minkowycz9 using the finite difference method associated with the shooting
technique. Following the study of Cheng and Minkowycz,9 different aspects of boundary layer flow and heat trans-
fer over a flat plate embedded in porous media including thermophoresis,11 radiation,12 internal heat generation,13

non-Newtonian effects,14 magnetic15 and chemical reaction,16,17 and phase change18 effects have been numerically
analyzed.

Xu19 solved the nonlinear ODEs of Cheng and Minkowycz9 utilizing the homotopy analysis method (HAM). The
HAM is a powerful method to deal with nonlinear problems; however, this method needs too many terms to obtain a
sufficiently accurate solution. Hence, it required laborious and time-consuming manipulations, and in most cases, it
needs symbolic computer procedures. Chamkha and Quadri20 have numerically studied the boundary layer flow and
heat transfer of a binary mixture fluid in porous media using an implicit finite-difference method.

Effective cooling techniques are extremely required for removing heat from any high-energy device. The ther-
mal conductivity of the common heat transfer liquids such as ethylene glycol, engine oil, and water is low in
comparison with the thermal conductivity of the solids. Thus, dispersing very fine solid particles in the scale of
few nanometers can enhance the thermal conductivity of the conventional heat transfer liquids. As mentioned, a
nanofluid is the suspension of solid nanoparticles dispersed in a base fluid.21 Different shapes, sizes, and types of
nanoparticles have been utilized to synthesis nanofluids.1,2 Thus, the thermo-physical properties of nanofluids are
a function of the volume fraction, size, shape, and the constricting materials of nanoparticles.1–3 The thermo-
physical properties of nanofluids can be measured directly by experimental tests.22 In addition, several models can
evaluate the thermo-physical properties of nanofluids.23–26

Hybrid nanofluids are a new type of nanofluids that benefit from the advantage of two kinds of nanoparticles.
Mehryan et al.27 numerically investigated the flow and heat transfer of hybrid nanofluids in a porous enclosure. The
results showed that the presence of hybrid nanoparticles could enhance the natural convection heat transfer in some
circumstances where the interaction between the porous matrix and the nanofluid inside the pores is weak. Ghalambaz
et al.28 numerically addressed the free convection heat transfer of Ag–MgO hybrid nanofluids in a porous enclosure.
They concluded that the presence of hybrid nanoparticles could reduce the free convection heat transfer in certain cir-
cumstances. The free convection heat transfer of hybrid nanofluids has also be investigated in cavities with no porous
medium in various shapes such as an L-shaped cavity,29 a semicircular cavity,30 a partitioned cavity,31 and a cylinder
cavity.32 The nanoencapsulated phase change materials are another type of hybrid nanofluid, investigated in some of
the recent researches.18,33–35

In the convective heat transfer application of nanofluids, the overall heat transfer enhancement is the result of the
simultaneous variation of the thermophysical properties. For instance, the presence of nanoparticles in the base fluid
increases the thermal conductivity and dynamic viscosity of the nanofluids. The increase of the thermal conductivity
tends to increase the natural convection heat transfer coefficient; in contrast, the increase of the dynamic viscosity of
the nanofluid tends to decrease the natural convection heat transfer coefficient. Thus, the convective heat transfer anal-
ysis of nanofluids is crucial in the selection of the appropriate types of nanofluids in the engineering heat transfer appli-
cations. Indeed, the presence of an analytical solution can effectively facilitate the selection of the sufficient type of
nanoparticles to increase the heat transfer rate. In addition, the presence of a compact analytical solution leads to a bet-
ter understanding of the nonlinear nature of the system.

The present study aims to analytically study the natural convection heat transfer of hybrid nanofluids over a flat
plate embedded in a saturated porous medium. The analytical solution is obtained using a combination of symbolic
power series solution, Padé approximants, and a transformation approach. The obtained analytical solution is also valid
for common pure fluids.

2 | MATHEMATICAL FORMULATION

Consider a vertical flat plate embedded in a porous medium with a porosity of ε and permeability of κ. The porous
medium is saturated with a homogenous hybrid nanofluid. The plate is hot, and hence, the fluid in the vicinity of the
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plate gets hot. The hot fluid expands and tends to move upward; the cold fluid tends to replace the hot fluid. Hence,
there is a buoyancy-driven flow over the plate. The coordinate system is chosen such that y is perpendicular to the plate
into the porous space and x is aligned with the plate and opposite to the gravity acceleration. The plate is subject to a
prescribed temperature Tw, which varies with distance to the origin as Tw = T∞ + Axλ where λ and A are two arbitrary
constants. The term λ = 0 leads to the case of the isothermal plate, whereas λ = 1/3 yields the case of plate subject to a
constant heat flux.36 The volume fractions of the nanoparticles are ϕ1 and ϕ2. The hybrid nanofluid far from the plate is
quiescent and is at a constant temperature of T∞. A schematic view of the physical model and coordinate system is
depicted in Figure 1.

Considering the common boundary layer approximations and the Boussinesq approximation, the governing equa-
tions of continuity, momentum, and thermal energy for hybrid nanofluids over a flat plate are written as36

∂u
∂x

+
∂v
∂y

=0, ð1Þ

u= −
κ

μhnf

∂p
∂x

−ρhnf gβhnf T−T∞ð Þ
� �

, ð2aÞ

∂p
∂y

=0, ð2bÞ

u
∂T
∂x

+ v
∂T
∂y

= αhnf ,eff
∂2T
∂y2

: ð3Þ

Based on the problem description, the boundary conditions at the plate are

y=0 : v=0, T =T∞ +Axλ, x≥0,

and the boundary conditions far from the plate are

y!∞ : u=0, T =T∞: ð4Þ
In the above equations, u denotes the Darcy's velocity along the plate and v denotes the Darcy's velocity component of
the flow perpendicular to the plate (along the y direction).

T and P denote the temperature and the pressure of the hybrid nanofluid, respectively. The quantities of βhnf, ρhnf,
and μhnf are the thermal volume expansion coefficient, the density, and the dynamic viscosity of the hybrid nanofluid,
respectively. Here, g is the gravity acceleration, and κ is the permeability of the porous medium. The symbol αhnf,eff rep-
resents the effective diffusivity of the hybrid nanofluid and porous space. The effective diffusivity of the hybrid
nanofluid is the ratio of the effective thermal conductivity of the hybrid nanofluid to the thermal capacity of the hybrid
nanofluid as αhnf,eff = khnf,eff/(ρhnf × Cphnf), where khnf,eff is the effective thermal conductivity of the hybrid nanofluid
and Cphnf is the specific thermal capacity of the hybrid nanofluid.

FIGURE 1 Schematic view of the

plate and mathematical models [Colour

figure can be viewed at

wileyonlinelibrary.com]
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The thermophysical properties of the hybrid nanofluid can be directly measured from the experimental test or eval-
uated using the thermo-physical models. An excellent review of the thermophysical properties of hybrid nanofluids can
be found in Babu et al.26 and Sundar et al.37 Some general relations for the thermophysical properties of hybrid
nanofluids are summarized in Table 1, where the subscripts 1, 2, and f denote the first type nanoparticles, the second
type nanoparticles, and the base fluid, respectively.

Moreover, the thermophysical properties can be computed by using the available experimental data and correla-
tions. Following Sundar et al.38 the thermophysical properties of MWCNT–Fe3O4/water are summarized in Table 2 for
the working temperature of 40�C.

Now, the following stream function is introduced to satisfy the continuity equation 1:

u=
∂ψ

∂y
, v= −

∂ψ

∂x
: ð5Þ

The pressure is eliminated from the momentum equations, that is, Equations 2a and 2b, by cross-differentiations and
subtracting the resulting equations. Consider the following similarity variables:

η=
y
x
Rax

1
2, θ=

T−T∞

Tw−T∞
, ψ = αeff

� �
f f ηð ÞRa1

2
x ð6Þ

and the Rayleigh–Darcy number as

Rax =
gβ f κρ f x Tw−T∞ð Þ

μ fαeff ,f
: ð7Þ

Here, the similarity variables are introduced based on the base fluid thermo-physical properties. Hence, βf, ρf, and μf
denote the thermal volume expansion, the density, and the dynamic viscosity of the base fluid. αeff,f represents the effec-
tive thermal conductivity of the base fluid, and the porous medium, introduced as αeff,f = keff,f/(ρf. Cpf) where keff,f is the
thermal conductivity of the base fluid, and Cpf is the thermal capacity of the base fluid. Invoking the similarity

TABLE 1 Thermal properties of hybrid nanofluids Babu et al.26

Properties Hybrid nanofluids

Density ρhnf = ϕ1ρ1+ϕ2ρ2+(1 − ϕhnf)(ρCp)f

Heat capacity (ρCp)hnf = ϕ1(ρCp)1+ϕ2(ρCp)2+(1 − ϕhnf)(ρCp)f

Thermal expansion (ρβp)hnf = ϕ1(ρβ)1+ϕ2(ρβ)2+(1 − ϕhnf)(ρβ)f

Dynamic viscosity μhnf = μf(1 − ϕ1 − ϕ2)
−2.5

Thermal conductivity khnf
kf

¼ ϕ1k1þϕ2k2
ϕ1þϕ2

þ2kf þ2 ϕ1k1þϕ2k2ð Þ−2 ϕ1þϕ2ð Þkf
n o

× ϕ1k1þϕ2k2
ϕ1þϕ2

þ2kf − ϕ1k1þϕ2k2ð Þþ ϕ1þϕ2ð Þkf
n o−1

TABLE 2 The thermophysical properties of MWCNT–Fe3O4/water and computed corresponding values of Nc and Nv at the working

temperature of 40�C for glass ball porous matrix with the porosity of ε = 0.5

Thermophysical data from Sundar et al.38 Computed

Volume fraction
(%)

Density
(kg/m3)

Thermal conductivity
(W/m K)

Viscosity
(mPa�s)

Specific heat
(J/kg K) Na Nva

φ = 0.0 992.0 0.631 0.54 4179 1 1

φ = 0.1 1002.34 0.72 0.61 4179.66 1.0419 1.1180

φ = 0.3 1009.56 0.7656 0.76 4180.99 1.0608 1.3829

aDue to a low concentration of nanoparticles βnf/βf ~ 1.
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variables, that i, Equation 6, the partial differential equations of the momentum and energy are transformed to the fol-
lowing ODEs:

Nv f 00 ηð Þ= θ0 ηð Þ, ð8Þ

Naθ00 ηð Þ+ λ+1
2

� �
f ηð Þθ0 ηð Þ−λ f 0 ηð Þθ ηð Þ=0: ð9Þ

The transformed boundary conditions are

f 0ð Þ=0,θ 0ð Þ=1, ð10aÞ

f 0 ∞ð Þ=0,θ ∞ð Þ=0, ð10bÞ

where Na is the number of thermal diffusivity and Nv is the number of viscosity as

Na=
khnf ,eff ρ f Cp f

k f ,eff ,f ρhnf Cphnf
,Nv=

μhnf ρ f β f

μ f ρhnf βhnf
, ð11Þ

where the effective thermal conductivity of the porous medium and the fluid/nanofluid can be obtained as keff = (1-ε)
kf + ε km. Here, ε indicates the porosity of the porous medium, and km is the thermal conductivity of the porous
medium. For a glass ball porous medium, the thermal conductivity (km) is 1.05 W/m K.39

Based on the energy balance at the plate, the heat transferred from the surface is equal to the heat transferred into
the porous space and the hybrid nanofluid; hence, the energy balance at the surface is written as

q00 = −keff ,hnf
∂T
∂y

� �
y=0

= −keff ,hnf A
3
2

ρ f gβ f κ

μ fαeff ,f

 !1
2

x
3λ−1
2 θ0 0ð Þ: ð12Þ

Equation 12 can be rewritten in a nondimensional from as

Nux
Rax

1
2

= −
keff ,hnf
keff ,f

θ0 0ð Þ, ð13Þ

where the local Nusselt number (Nux) is

Nux =
hx
keff ,f

, ð14Þ

where h is the convective heat transfer coefficient at the wall, which is defined by Newton's cooling law as h = q"/
(Tw-T∞).7

In Equation 13, Nux/Rax
1/2 is the reduced Nusselt number (Nur), which is the nondimensional heat transfer

parameter over the plate. The reduced Nusselt number represents the heat transfer from the surface. This parame-
ter is the main parameter of interest in practical applications of boundary layer heat transfer over the plate. It is
worth noticing that substituting λ = 1/3 in Equation 12, the heat flux (q00) at the plate is independent of x, which
represents the uniform heat flux at the surface. Thus, the special case of λ = 1/3 is the case of constant heat flux
at the surface, which is of many practical applications. Equation 13 shows that the reduced Nusselt number (Nur)
is a function of θ0(0), which should be evaluated from the solution of Equations 8 and 9 subject to the boundary
conditions in Equations 10a and 10b. Finally, the total heat transfer rate through the plate of height L and unit
of width is evaluated as

GHALAMBAZ ET AL. 5
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�q0 =
ðL
0

q00 xð Þdx= keff
� �

nf A
3
2

gβ f K

υ fαm,f

� �1
2 2

1+ 3λ

� �
L

1+ 3λð Þ
2 −θ0 0ð Þ½ �: ð15Þ

3 | SOLUTION METHOD

3.1 | Symbolic power series

As there is not an independent variable (η) in Equation 8, it can easily be integrated as

Nv f 0 ηð Þ= θ ηð Þ+C0, ð16Þ

where invoking one of the boundary conditions of Equation 10b gets

Nv f 0 ηð Þ= θ ηð Þ: ð17Þ

Now, substituting the above equation into Equation 9 gives

Na f
000
+

λ+1
2

� �
f : f 00−λ: f 02 = 0, ð18Þ

which is a third-order nonlinear boundary value differential equation. Using Equation 17, the boundary conditions are
also obtained as

f 0ð Þ=0, f 0 0ð Þ= 1
Nv

, f 0 ∞ð Þ=0: ð19Þ

Here, the symbolic power series method, in Guzel and Bayram40 and Celik and Bayram,41 is utilized to solve the
governing equation of hybrid nanofluid over the plate (Equation 18), subject to its transformed boundary conditions,
Equation 19. The basic idea of symbolic power series is explained in Celik and Bayram.41 Following Celik and
Bayram,41 Equation 18 and the corresponding boundary conditions (Equation 19) are rewritten in a more convenient
form as

df 1 = f 2, df 2 = f 3 , df 3 =
λ f 2

2− λ+1
2

� �
f 1 f 3

Na
, ð20Þ

f 1 0ð Þ=0, f 2 0ð Þ=1=Nv, f 3 0ð Þ=K, ð21Þ

where K is an unknown constant, which can be determined later.
Based on the symbolic power series method, the values of f1, f2, and f3 are needed at the starting point. Hence,

starting with η = 0, the values of f1 and f2 are 0 and 1/Nv, respectively. However, the value of f3 is unknown at this
starting point. In this case, the unknown value of f3 at η = 0 is replaced by f3 = K, where K is an unknown constant,
which later can be evaluated using the remaining unused boundary condition, that is, f2(∞) = 0.

Based on the symbolic power series method, and starting from η = 0, the power series solution of Equation 20 is
written as

f 1 = 0+ e11η

f 2 =
1
Nv

+ e12η

f 3 =K + e13η,

ð22Þ

6 GHALAMBAZ ET AL.
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where e1i and i = 1 … 3 are the unknowns, which form the first-order series of the solution. Now, substituting Equa-
tion 22 into Equation 20, and discarding the higher order terms (of η), results in the following algebraic equation:

e11−
1
Nv

−e12η=0

e12−K−e13η=0

e13−
1
a
λ e2η+

1
z

� �2

−e11η
λ

2
+
1
2

� �
K + e13ηð Þ=0:

ð23Þ

Solving the above algebraic equations for e1i gives

e11 =
1
Nv

e12 =K

e13 =
λ

NaNv2
:

ð24Þ

The evaluated values of e1i are substituted in Equation 22 to form the first-order series of the solution. Now, taking into
account the second-order approximation of the solution gives

f 1 =
η

Nv
+ e11η

2

f 2 =
1
Nv

+Kη+ e12η
2

f 3 =K +
λ

NaNv2
η+ e13η

2:

ð25Þ

Invoking Equation 25 and substituting into Equation 20 and again discarding the higher-order terms (of η) result in the
following algebraic equation for e2i and i = 1 … 3 gives

e21 =
K
2

e22 =
λ

2NaNv2

e23 =
3Kλ−K
4NaNv

:

ð26Þ

Again, substituting the evaluated values of e2i into Equation 25 and taking into account a higher term of η give a
higher-order series solution. Following this procedure, the power series solution of f1 is obtained after 11 iterations:

f1 ηð Þ= η

Nv
+
Kη2

2
+

λ

6NaNv2
η3−

K 1−3λð Þ
48NaNv

η4−
NaK2Nv3−3NaK2λNv3−2λ2 + 2λ
� �

240Na2Nv3
η5 +

19Kλ2−18Kλ+3K
� �

2880Na2Nv2ð Þ η6

+

11K2Nv3Na−42λK2Nv3Na
+27K2Nv3Naλ2−16λ2 + 16λ3 + 8λ

� �
20160Nv4Na3

η7 +
K 161λ−297λ2 + 167λ3−84λK2Nv3Na

+54λ2K2Nv3Na+22K2Nv3Na−15

� �
322560Nv3Na3

η8

+

709λK2Nv3Na−1035K2Nv3Naλ2−129K2Nv3Na
+527λ3K2Nv3Na−304λ3 + 104λ4 + 184λ2−48λ

� �
2903040Nv5Na4

η9

+
K −1910λ+3342λK2Nv3Na−750K2Nv3Na−3834K2Nv3Naλ2

+ 5392λ2−6298λ3 + 2295λ4 + 1674λ3K2Nv3Na+105

� �
58060800Nv4Na4

η10:

ð27Þ

GHALAMBAZ ET AL. 7
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Usually, the convergence range of power series is small. However, converting the series solution into a ratio series form
using the Padé approximants may significantly increase the convergence range of solutions.42,43 Following the Padé
method,42,43 the Padé series with the size of (2, 2) of Equation 27 is evaluated as

f 1 ηð Þ= 1
48

3456K2Na2Nv3−2304λNað Þη+ 1728K3Na2Nv4−1440NvNaKλ−288KNvNað Þη2½ �
72K2Na2Nv4−48NvNaλ−6KNv2Na 1+ λð Þη+ −9λK2Nv3Na+3K2Nv3Na+8λ2

� �
η2

� � : ð28Þ

For instance, in the case of an isothermal flat plate, that is, λ = 0, the Padé (4, 4) of Equation 27 is evaluated as

f 1 ηð Þ=

486091368000Nv7Na4K4−61725888000K2Na3Nv4−65840947200NvNa2ð Þη
+ 243045684000Nv8Na4K5−208324872000Nv5Na3K3 + 41150592000Nv2Na2K
� �

η2

+ −3857868000Nv6Na3K4 + 15382483200K2Na2Nv3−6009292800Na
� �

η3

+ 28934010000Nv7Na3K5−24200467200Nv4Na2K3 + 4964198400KNvNað Þη4

0
BBB@

1
CCCA

136080

3572100Nv8Na4K4−453600Nv5Na3K2−483840Nv2Na2

+ −1304100Nv6Na3K3 + 544320Nv3Na2K
� �

η

+ 425250Nv7Na3K4−133920Nv4Na2K2−17280NvNað Þη2
+ −38430Nv5Na2K3 + 14880Nv2NaKð Þη3
+ 2205K4Nv6Na2−840K2Nv3Na+64
� �

η4

0
BBBBBB@

1
CCCCCCA

: ð29Þ

It is worth noticing that the parameter of K is unknown yet in Equations 28 and 29. In order to achieve a full analytical
solution for the problem, the undetermined value of K is required to be determined by utilizing the remaining unused
boundary condition of f2(∞) ! 0. However, the direct use of this boundary condition is not possible because the accu-
racy of the series solution significantly reduces as η ! ∞. Furthermore, the appropriate physical value of the infinity is
not clear. Utilizing a small asymptotic value ∞ leads to physical error, and utilizing a large asymptotic value leads to
divergence of the solution and invalid values of K. Thus, the direct implementation of the asymptotic boundary condi-
tion f2(∞) ! 0 is not practical at this stage. Here, the treatment of the next section is utilized to facilitate the evaluation
of K without assuming an asymptotic boundary condition.

3.2 | The transformed differential equation

Let us assume the following changes of variables:

X = f 2 ηð Þ, ð30Þ

Y Xð Þ= f 3 ηð Þ: ð31Þ

It is clear that f3(η) = df2(η)/dη; and hence, using Equations 30 and 31, Y(X) is written as

Y =
df 2 ηð Þ
dη

=
dX
dη

, ð32Þ

Y 0 =
dY
dX

=
df 3
f 3

, ð33Þ

Y 00 =
d2Y

dX2 =
dY 0

dX
=
d2 f 3 × f 3− df 3ð Þ2

f 23
: ð34Þ

On the other hand, Equations 18 can be rewritten as

8 GHALAMBAZ ET AL.
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f 1 =
2 λ f 22−Nadf 3
� �

λ+1ð Þ f 3
: ð35Þ

By invoking Equations 30–33, the above equation is written as

f 1 =
2 λX2−NaY Y 0ð Þ

λ+1ð ÞY : ð36Þ

Applying the notation of Equation 20, Equation 18 can be rewritten as

Nadf 3 +
λ+1
2

� �
f 1 f 3−λ f 22 = 0: ð37Þ

Now, differentiating both sides of Equation 37 with respect to the dependent variable of η gives

d
dη

Nad f 3ð Þ+ λ+1
2

� �
f 1 f 3−λ f 22

� �
=Nad2 f 3ð Þ+ λ+1

2

� �
f 3 f 2 + d f 3ð Þ f 1ð Þ−2 λ f 3 f 2 = 0: ð38Þ

Substituting Equation 36 into Equation 38 results

Nad2 f 3ð Þ+ λ+1
2

� �
f 3 f 2 + d f 3ð Þ 2 λ f 22−Nad f 3ð Þ� �

λ+1ð Þ f 3

 ! !
−2 λ f 3 f 2 = 0: ð39Þ

Finally, the following transform equation is achieved by substituting Equations 30–34 into Equation 39:

NaY 00Y 2 +XY
1−3λ
2

+ λ:X2Y 0 =0: ð40Þ

Now, the boundary condition should also represent in the form of new variables. The second boundary condition of
Equation 21 indicates

X = f 0 ηð Þ= 1
Nv

: ð41Þ

Substituting the first boundary condition Equation 21 into Equation 36 yields

2λ
Nv2

λ+1ð ÞY 1=Nvð Þ
−
2NaY 0

1=Nv

λ+1ð Þ =0: ð42Þ

According to assumption equations (Equations 30 and 31), Y(f'(η))=f"(η), as η=0 results Y(f '(0))=f"(0) now assuming
f"(η)=K and using Equation 41 one can find that

Y 1=Nvð Þ =K: ð43Þ

Thus, as η = 0, Equation 36 yields

Y 0
1=Nvð Þ =

λ

Nv2NaK
: ð44Þ

GHALAMBAZ ET AL. 9
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According to assumption equations (Equations 30 and 31) and boundary condition equation Equation 21, it is clear that
0 < x < 1/N. Therefore, considering that as η ! ∞ results in x ! 0 and f'(∞) = f"(∞) = 0 and using Equation 31, it is
clear that

f 00 ∞ð Þ=Y 0ð Þ=0: ð45Þ

Now, the second-order boundary value differential equation of Equation 40 subject to the boundary conditions of Equa-
tions 43–45 can be solved to obtain the undetermined value of K. It is worth mentioning that the differential Equation 40
is free of any asymptotic boundary condition. It should be noticed that the differential equation of Equation 40 is a
second-order differential equation, and in Equations 43–45, there are three corresponding boundary conditions and an
undetermined value of K. Thus, the solution of Equation 40 subject to the boundary conditions of Equations 43–45
would give the undetermined value of K.

Here, the symbolic power series is applied to solve the present boundary value differential equation. Attention to
boundary conditions indicates that two of the boundary conditions of Equation 40 are proposed at the point (1/Nv);
hence, X is changed to X + 1/Nv for convenience. Invoking the change of the variables, the differential equation of
Equation 40 and the corresponding boundary conditions (Equations 43–45) are written as

NaY 00Y 2 +
1−3λ
2

X +1=Nvð ÞY + λ: X +1=Nvð Þ2Y 0 =0, ð46Þ

Y 0ð Þ =K,Y 0
0ð Þ =

λ

Nv2NaK
,Y −1=Nvð Þ =0: ð47Þ

Following the symbolic power series method, the second-order nonlinear differential equation of Equation 46 is written
as a set of two first orders nonlinear differential equations as

dY 1 =Y 2,dY 2 = −
X +1=Nvð ÞY 1

1−3λ
2 + λ: X +1=Nvð Þ2Y 2

� �
NaY 1

2 ð48Þ

Subject to:

Y 1 0ð Þ=K

Y 2 0ð Þ= λ

Nv2NaK

ð49Þ

The first-order approximation of the series solution at X = 0 is written as

Y 1 =K + e11X

Y 2 =
λ

Nv2NaK
+ e12X :

ð50Þ

Now, inserting Equation 50 into Equation 48, and discarding the higher-order terms (of X) results in the following alge-
braic equation for e1i, i = 1, 2:

e11−e12X−
λ

Nv2NaK
=0,

e12 +
λ e12η+

λ

KNv2Na

� �
η+ 1

Nv

� �2− 3λ
2
−
1
2

� �
η+

1
Nv

� �
K + e11ηð Þ

Na K + e11ηð Þ2 ,

ð51Þ

which solving the above equation of e1i gives

10 GHALAMBAZ ET AL.
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e11 =
λ

KNv2Na

e12 =
3NaK2λNv3−NaK2Nv3−2λ2
� �

2K3Nv4Na2
:

ð52Þ

Substituting the obtained values of e1i into Equation 50 and adding a higher-order term yield

Y 1 =K +
λη

KNv2Na
+ e21η

2,

Y 2 =
λ

KNv2Na
−
η NaK2Nv3−3NaK2λNv3 + 2λ2
� �

2K3Nv4Na2
+ e22η

2:

ð53Þ

Again, substituting Equation 53 into Equation 48 and discarding the higher-order terms of X then solving for e2i,
i = 1,2, give

e21 = −
NaK2Nv3−3NaK2λNv3 + 2λ2
� �

4K3Nv4Na2
,

e22 =
3Na2λK4Nv6−Na2K4Nv6−10λ2K2Nv3Na+2λK2Nv3Na+6λ3
� �

4K5Nv6Na3
:

ð54Þ

Repeating the above procedure, the power series for Y1 after four iterations is accomplished as

Y1 =K +
λ

Nv2NaK
X +

1
4

3K2Nv3Naλ−K2Nv3Na−2λ2
� �

Nv4Na2K3
X2

+
1
12

1

Nv6Na3K5

2K2Nv3Naλ−10λ2Nv3NaK2

+ 6λ3−K4Nv6Na2 + 3K4Nv6Na2λ

� �
X3

−
1
96

1

Nv8Na4K7

K4Nv6Na2−20K4Nv6Na2λ+22K2Nv3Naλ2

+ 59K4Nv6Na2λ2−122λ3K2Nv3Na+60λ4

� �
X4,

ð55Þ

where the above equation can be transformed into a Padé series of (2, 2) to attain an increased accuracy and conver-
gence. Later, the undetermined value of K can be evaluated by invoking the remaining unused boundary condition in
Equation 47, that is, y (−1/Nv) = 0. Thus, converting the power series of Equation 55 into a Padé series of (2, 2) and
substituting −1/Nv in the deduced Padé series give the following equation:

648K
Nv12Na4 λ−

1
3

� �
λ−

13
27

� �
K8−

35
72

Nv9Na3
1
15

−
43
315

λ−
65
63

λ2 + λ3
� �

K6

−
313
162

Nv6Na2λ2 λ2 +
16
313

−
55
313

λ

� �
K4 +

55
27

Nv3Naλ4 λ−
1
11

� �
K2−

5
9
λ6

0
BBB@

1
CCCA

648Nv12Na4 λ−
1
3

� �
λ−

13
27

� �
K8−9Nv9Na3

1
3
−
1
9
λ−

187
9

λ2 + λ3
� �

K6

−1204Nv6Na2λ2 λ2 +
10
301

−
73
301

λ

� �
K4 + 744Nv3Na λ−

5
31

� �
λ4K2−72λ6

0
BBB@

1
CCCA

=0: ð56Þ

If the above equation is equal to zero, its numerator should be zero; hence,

Nv12Na4 λ−
1
3

� �
λ−

13
27

� �
K8−

35
72

Nv9Na3
1
15

−
43
315

λ−
65
63

λ2 + λ3
� �

K6

−
313
162

Nv6Na2λ2 λ2 +
16
313

−
55
313

λ

� �
K4 +

55
27

Nv3Naλ4 λ−
1
11

� �
K2−

5
9
λ6

0
BBB@

1
CCCA=0, ð57Þ
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which solving for K2 gives

K2 =
1

NaNv3
Rotts

648λ2−528λ+104
� �

r4 + 325λ2−21+ 43λ−315λ3
� �

r3

+ −1252λ4 + 220λ3−64λ2
� �

r2−360λ6 + −120λ4 + 1320λ5
� �

r

 !
, ð58Þ

where r is an independent variable. K can be derived from Equation 58. There are multiple roots for Equation 58; how-
ever, merely the real and negative roots are of physical meaning. For instance, assuming λ = 1/3, Equation (58) gives
the following roots for K2:

K2
1 =

1
NaNv3

1
270

71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p	 
1
3−

71

270 71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p� �1
3
+

73
270

0
@

1
A, ð59aÞ

K2
2 =

1
NaNv3

−
1
540

71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p	 
1
3
+

71

540 71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p� �1
3

+
73
270

0
@

1
A

+

ffiffiffi
3

p

2
I

1
270

71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p	 
1
3
+

71

270 71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p� �1
3

0
@

1
A

2
6666664

3
7777775
, ð59bÞ

K2
3 =

1
NaNv3

−
1
540

71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p	 
1
3
+

71

540 71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p� �1
3
+

73
270

0
@

1
A

−
ffiffiffi
3

p

2
I

1
270

71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p	 
1
3
+

71

270 71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p� �1
3

0
@

1
A

2
6666664

3
7777775
: ð59cÞ

Two of these three roosts are not real, and hence, they can be discarded. The remaining root is real, which can be
expressed as

K = � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NaNv3

p 1
270

71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p	 
1
3−

71

270 71092+ 405
ffiffiffiffiffiffiffiffiffiffiffiffi
30815

p� �1
3

+
73
270

0
@

1
A

1
2

= � 0:677ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NaNv3

p : ð60Þ

Finally, the negative real root is acceptable, which can be expressed by

K = −
0:677ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NaNv3

p : ð61Þ

It is worth mentioning that obtaining K indeed is equal to obtaining θ0(0) as they are related together directly through
Equation 17 as follows:

θ0 0ð Þ=NvK: ð62Þ

Thus, in this particular case, that is, λ = 1, Numerical analysis of unsteady is obtained as

θ0 0ð Þ= −
0:677ffiffiffiffiffiffiffiffiffiffiffiffi
NaNv

p , ð63Þ
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and consequently, the reduced Nusselt number (Nur), which is the main parameter of interest, can be calculated using
Equation 13 as Nur = −(keff,hnf/keff,f)θ0(0) where (keff,hnf/keff,f) is the conduction ratio, which comes from the thermo-
physical properties and hence is known.

Now, the obtained value of K can be substituted in Equation 27 to result in the complete form of the streamline
boundary layer profile. Consequently, the velocity profiles can be derived by differentiation from Equation 27 with
respect to η. The temperature boundary layer profile can also be achieved by utilizing Equation 17. Therefore, the accu-
rate approximate solution of the natural convection boundary layer flow and heat transfer of hybrid nanofluids over a
flat plate is obtained. It should be noticed that the obtained solution is also valid for the case of pure fluid by simply set-
ting Nv = Na = 1.

4 | VALIDATION OF THE SOLUTION

The system of Equations 8 and 9 subject to the boundary conditions, Equations 10a and 10b, is analytically solved by a
combination of transformation method, power series, and Padé approximation. Assuming Nv = Na = 1, the present
study reduces to the case of a pure fluid, which was numerically studied by Cheng and Minkowycz.9 In this case, the
values of –θ0(0) are evaluated using Equations 58 and 17 for different values of λ. A comparison between the results of
the present study and those reported by Cheng and Minkowycz9 is performed in Table 3. The results of Table 3 indicate
that the obtained analytical results are in excellent agreement with the numerical results of Cheng and Minkowycz.9

A comparison between the nondimensional temperature boundary layer profile obtained in the present study by
Padé (4, 4), the numerical solution of Cheng and Minkowycz,9 and the available experimental results44 are depicted in
Figure 2. As seen, there is an excellent agreement between the analytical, numerical, and experimental results.

In the case of isothermal wall temperature and a pure fluid, that is, λ = 0 and Nv = Na = 1, the temperatures bound-
ary layer profile, accomplished using Padé (2, 2), Padé (4, 4), series size of (16), that is, O(x17), series size of (22), and
the numerical results reported by Cheng and Minkowycz9 are depicted in Figure 3. The corresponding Padé series of
(2, 2) and (4, 4) are as follows: The results show that a series solution, as well as the series-Padé (2, 2), do not follow the
numerical results and diverge at η = 2.5. The value of K is calculated using Equation 58. The results indicate that the
series solution with many terms (O (x22)) cannot reach the physical infinity, and it diverges. Therefore, it is clear that it
was not possible to directly utilize the obtained series solution to evaluate the undetermined coefficient of K. The results
of this figure show that the Padé (4, 4) follows the dimensionless temperatures profiles with high accuracy. The
corresponding Padé approximations (2, 2) and (4, 4) when λ = 0 are summarized as follows:

θ2,2 ηð Þ= 1−0:3370188880η+0:03285256407η2

1+ :1123396293η+0:08333333333η2
, ð64Þ

θ4,4 ηð Þ=
1+ :6024637366η+0:03119804175η2−0:07406710542η3

+ 0:009442556106η4

� �
1+ 1:051822254η+0:5038433302η2 + 0:1148926433η3

+ 0:02589016734η4

� � : ð65Þ

TABLE 3 A comparison between the evaluated results of –θ0(0) and the work of Cheng and Minkowycz9 for a pure fluid when

Nv = Na = 1

λ Present method Numerical2

0 0.4493 0.444

1/4 0.6258 0.630
1/3 0.6772 0.678

½ 0.7701 0.761

3/4 0.8923 0.892

1 1 1.001

GHALAMBAZ ET AL. 13
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Figure 3 shows that the power series without using Padé approximants cannot follow the solution in the entire domain
of the solution, and they diverge before reaching the asymptotic solution. Figure 3 indicates that the series in the form
of Padé with the size of (2, 2) follows the solution but its accuracy is not good; the series solution in the form of Padé
(4, 4) follows the solution with excellent precision and is almost identical with the accurate numerical solution of the
problem. Therefore, the Padé approximants with the size of (4, 4) associated with evaluated K from Equation 58 is ade-
quate for the study of the boundary layer flow and heat transfer of hybrid nanofluids.

5 | RESULTS AND DISCUSSION

Figure 4 shows the boundary layer temperature profiles for different values of the number of thermal diffusivities (Na)
parameter. This figure shows that an increase in the number of thermal diffusivity increases the thickness of the ther-
mal boundary layer. Indeed, as the thermal diffusivity of the hybrid nanofluid increases, the heat can more contently
penetrate from a layer to its adjacent layer by conduction mechanism. Therefore, the increase in the number of thermal
diffusivity increases the temperature in the boundary layer.

FIGURE 2 Comparison between experimental data,

transformation-series Padé (4, 4), and numerical method

FIGURE 3 Comparison between transformation-series solution

method with sizes of (15) and (20), transformation-series-Padé with

sizes of (2, 2) and (4, 4), and the numerical results for the boundary

layer temperature profiles

14 GHALAMBAZ ET AL.
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Figure 5 depicts the nondimensional temperature profiles for selected values of the viscosity number (Nv). As seen,
the increase of the viscosity number also increases the thickness of the thermal boundary layers. Indeed, the increase of
the dynamic viscosity of hybrid nanofluid tends to reduce the velocity of the hybrid nanofluid over the plate. Any reduc-
tion of the velocity in the boundary layer reduces the heat transfer by the convective terms and hence increases the tem-
perature in the boundary layer.

It should be noticed that the increase of Nv, which decrease of the magnitude of |-θ0(0)|, merely results in the deteri-
oration of the heat transfer rate from the plate. However, the increase of the thermal diffusivity number, Na, induces
two opposite effects on the heat transfer rate from the wall. By the increase of the thickness of the boundary layer
(i.e., a decrease of the magnitude of |-θ00(0)|), it tends to reduce the magnitude of the reduced Nusselt number and con-
sequently the heat transfer rate from the plate. In contrast, the increase of the thermal diffusivity parameter may
increase the thermal conductivity ratio (keff/keff,f), which directly tends to increase the reduced Nusselt number.

In most practical cases, the increase of the thermal conductivity ratio is significant, and hence, the heat transfer rate
by using hybrid nanofluids increases. However, the results of the present study indicate that in some cases in which the
values of Nv are large, the thickness of the thermal boundary layer can significantly increase, and hence, the
corresponding reduced Nusselt number may decrease, which leads to the deterioration of heat transfer. The reduced
Nusselt number can be evaluated easily using Equations 13 and 58. Therefore, the present analytical solution is crucial

FIGURE 4 The dimensionless temperature profiles for

different values of Na

FIGURE 5 The dimensionless temperature profiles for

different values of Nv

GHALAMBAZ ET AL. 15
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in the design of heat transfer systems and choosing the appropriate types of hybrid nanofluids and nanoparticles to con-
tently enhance the heat transfer rate from the plate without going through costly numerical procedures.

Using the data of Table 1 and Equation 63, the values of Nur for MWCNT–Fe3O4/water are computed and reported
in Table 4. The values of the reduced Nusselt number (Nur) represent the heat transfer rate over the surface. For the
case of MWCNT–Fe3O4/water in the glass ball porous matrix, the results of Table 4 show that using the hybrid
nanoparticles reduces the heat transfer rate. This is due to the significant increase in dynamic viscosity due to the pres-
ence of MWCNTs.

6 | CONCLUSIONS

The natural convection of hybrid nanofluids over a vertical flat plate embedded in a porous medium filled with a hybrid
nanofluid is theoretically analyzed. A new analytical solution based on the symbolic power series and Padé
approximants is proposed. The power series solution includes an undetermined coefficient, which should be deter-
mined using the asymptotic boundary condition. A transformation method is utilized to deal with the asymptotic
boundary condition and determined the undetermined coefficient analytically. The results are compared with the
numerical and experimental results available in the literature in the case of pure fluid and found in the excellence
agreement.

The study of hybrid nanofluids shows that the increase of the thermal diffusivity number and the viscosity number
increases the thickness of the thermal boundary layer. Therefore, there are cases in which the presence of nanoparticles
may deteriorate the heat transfer rate from the plate. The analytical results of the present study are crucial in engineer-
ing design and selection of appropriate nanofluids to sufficiently enhance the heat transfer rate without using time-
consuming numerical procedures.

CONFLICTS OF INTEREST
This work does not have any conflicts of interest.

NOMENCLATURE
A amplitude of wall heating (K/mλ)
Cp specific heat at constant pressure (J/kg K)
e dummy parameter
f dimensionless stream function, dummy parameters
g gravitational acceleration (m/s2)
h convective heat transfer coefficient (W/K)
i dummy parameter
k thermal conductivity (W/m K)
L height of the plate
Na the number of thermal diffusivity
Nur reduced Nusselt number
Nux local Nusselt number
Nv the number of viscosity
p pressure (Pa)
q00 surface heat flux (W/m2)

TABLE 4 The thermophysical properties of MWCNT–Fe3O4/water and computed corresponding values of Nc and Nv at the working

temperature of 40�C

Volume fraction (%) Na Nv Nur

φ = 0.0 1 1 0.667

φ = 0.1 0.8857 1.1180 0.6567

φ = 0.3 0.8392 1.3829 0.6037
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Rax Rayleigh number
T fluid temperature (K)
T∞ ambient temperature (K)
Tw surface temperature (K)
u, v Darcy velocities (m/s)
�q0 the total heat transfer rate through the plate of height L
x, y Cartesian coordinates (m)
X,Y dummy functions

Greek symbol

α thermal diffusivity (m2/s)
β thermal expansion (1/K)
ε porosity
η similarity variable
θ dimensionless temperature
κ permeability (m2)
λ prescribed the power of temperature variation
μ dynamic viscosity (kg/m s)
ρ density (kg/m3)
ϕ nanoparticles volume fraction
ψ stream function (m2/s)

Subscripts

eff effective value for porous medium and fluid
∞ ambient condition
f base fluid
m porous media
hnf hybrid nanofluid
p particle
1 the first type of solid nanoparticles
2 the second type of solid nanoparticles

Superscript

0 differentiation with respect to η
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